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Remote sensing image classification, a specific application of digital signal technology in remote sensing, 

addresses the challenge of effectively processing and categorizing remote sensing imagery. This research 

proposes a neural network (CNN)-based approach for remote sensing image classification, aiming to 

overcome the limitation of single-feature inadequacy. The method involves making a multi-site and multi-

combination strategy that effectively combines spectral features, spatial patterns, and more remote sensing 

images as vectors or matrices. We then train the CNN model based on the length of the data. Experimental 

results demonstrate a significant reduction of approximately 80% in the training time for the PCA-free 

CNN (SST) method after implementing the PCA transformation. This reduction not only expedites the 

training process but also enhances overall accuracy by approximately 3.49. The CNN-style network model 

contributes to efficiency improvement. Larger training models increase the number of models to be taught, 

slowing down the training process and prolonging learning times. The incorporation of multi-location and 

multi-combination strategies accelerates tracking speed and enhances the classification accuracy of remote 

sensing images. Comparative analysis indicates that, in contrast to other classification methods, CNN 

achieves superior classification performance, demonstrating its capability for increased categorization and 

improved accuracy.  

Povzetek: Izvedena je klasifikacija prizorov daljinskega zaznavanja z uporabo konvolucijskih nevronskih 

mrež (CNN), vključujoč fuzijo več virov podatkov, zmanjšanje dimenzionalnosti in izboljšano klasifikacijo 

prizorov.   

 

1  Introduction  

Various sensing instruments emit electromagnetic 

waves that distant targets reflect, forming remote 

sensing images. Remote sensing images consist of 

brightness features that form a spectral space. Each type 

of terrain has its own unique spectral characteristics due 

to differences in its sensitivity to different wavelengths 

of light. Different electromagnetic interference and 

weather conditions, like radiation in the air, changes in 

magnetic fields, the scanner's view, the time of the shot, 

and other things, cause the spectral information to show 

different ground features. To classify remote sensing 

images, you have to look at the spectral features of 

different objects on the ground, flip and infer the target 

map's geometric and physical features, divide the 

feature space into irrelevant sub-regions that correspond 

to the classification category, and put each pixel of the 

image into a subspace for classification. Remote sensing 

images have their characteristics compared to ordinary 

images, mainly including below-mentioned 

observations. 

i. Massive data, each imaging point on the ground 

has corresponding spectral information and 

remote sensing images are collected periodically 

with continuity [1].  

ii. Uncertainty, remote sensing images are affected 

by external conditions such as weather and light, 

resulting in varying spectral information reflected 

by ground objects. Remote sensing images also 

have certain limitations, such as the presence of 

foreign objects with the same spectrum or the 

phenomenon of objects with different spectra.  

iii. Timeliness, the acquisition cycle of remote 

sensing images is short and has strong timeliness. 

iv. Overall, the processing of remote sensing images 

requires reference to other geographic data 

information [2].  

Remote sensing image classification distinguishes 

different ground objects by the size of pixel values in each 

band. Due to chemical, physical, and other factors, 

different ground objects have different reflection effects 

under the illumination of the same band of light, resulting 
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in different spectral information. This spectral 

information is the basis for remote sensing image 

classification. Extracting discriminative statistics from 

raw data is the foundation for feature extraction and 

remote sensing image classification, which can 

quantitatively extract spectral features, texture features, 

and spatial features. The main purpose of remote 

sensing image classification is to obtain ground object 

information from remote sensing images to identify the 

actual types of ground objects. Fundamentally, it 

categorizes each pixel of the image into a predetermined 

category, achieving the conversion of the two-

dimensional space of the image to the target space. 

Remote sensing images contain a large amount of 

information and a variety of ground objects. With the 

increasing display of advantages in information 

processing by artificial intelligence, remote sensing 

image classification techniques are becoming more 

artificial intelligence, such as artificial neural networks, 

active learning, support vector machines, etc. [3]. For 

remote sensing image classification, typical neural 

network models cannot fully explore the correlation 

between the features of this category of land features in 

the image and the surrounding land features. The lack 

of considering the influence of the previous feature on 

the surrounding area, as well as the characteristics and 

distribution of the current feature itself, in the current 

classification, leads to limited dynamic variability. 

Compared to ordinary artificial neural networks, deep 

neural networks have higher computational levels [4]. 

With the rapid development of machine learning and 

deep learning, image classification has become smarter. 

Using the self-learning capabilities of neural networks 

can improve the accuracy of remote sensing image 

classification results. Although there are many neural 

network-based remote sensing image classifications, 

including ship detection, aircraft target classification, 

and vegetation classification, as currently the most 

popular deep learning algorithm, how to better use 

convolutional neural networks for remote image 

classification is a problem worthy of deep and dense 

research.  

2  Literature review 

Remote sensing devices, such as satellites, monitor the 

state of the Earth's surface by identifying ground targets 

through image classification. Remotely sensed images 

produce low-resolution, blurry images, depending on 

factors such as sensor type, wavelength, and shooting 

range. Therefore, it is difficult to distribute images from 

a distance. Considering the small number of samples in 

remote sensing images, remote sensing image 

classification methods usually focus on decomposing 

algorithms for many images with small distribution 

patterns that are suitable for remote sensing. 

Researchers have proposed more flexible and general 

feature extraction methods, such as sparse coding and 

Fisher functions, to adapt to various application functions 

[5-7]. Researchers widely study deep neural networks in 

many fields of computer vision due to their excellent 

performance [8]. Their success lies in their ability to learn 

features that can generalize large amounts of learning data. 

The use of deep neural networks in remote sensing is of 

interest to color researchers. Researchers have not 

conducted in-depth research on training remote-sensing 

image data to neural terminals for remote-sensing image 

classification tasks [9]. The main reason is that deep neural 

networks require a lot of training data, and remote sensing 

image data has a small amount of data, so it should not be 

such a big request. Large-scale remote sensing image data 

did not appear until 2015. Zhang et al. proposed a remote-

control scene classification algorithm based on training 

parameters [10]. First, the evolutionary framework aims to 

simultaneously optimize the hyperparameters of the 

optimizer and the weight bounds of convolutional neural 

networks. Second, the population can learn 

hyperparameters by combining two individuals and 

adjusting CNN weights using their information. Finally, 

equality accelerates learning because two people can 

develop at the same time. Many experiments on our data 

have shown that the proposed model is effective. Recently, 

researchers have introduced several Convolutional Neural 

Network (CNN)-based methods with high-quality and 

high-resolution models for remote sensing phenomenon 

classification, which is a hot topic. Based on a large 

amount of training data, CNN can extract a variety of 

features and learn how to predict remote locations. 

However, deep models rely on multiple remote-sensing 

image tags to control the learning process, which makes it 

difficult to predict the process. Therefore, the light learning 

model of training is very important. Simple classification 

models and complex models make training programs 

unreliable and cause flood models to fail. Therefore, Liang 

and Wang proposed a new enhanced communication 

network for remote sensing (ERANet) [11]. Efficientnet 

replaced the old backbone as a lighter backbone of the 

ARCNet framework, unlike deep learning methods. The 

Gabor Convolutional Network (GCN) is a combination of 

the Gabor filter and the Deep Neural Network (CNN) to 

discriminate between different directions and frequencies. 

To the author's knowledge, Moudjib et al. first introduced 

the application of GCN in hyperspectral image 

classification [12]. Even without training samples, HSI-

GCN can extract depth contrast from radiographs faster 

and more accurately. The writer carefully checks how well 

the methods work on different kinds of hyperspectral data. 

When compared to the old CNN and Gabor methods, this 

one work better and gets better results in classifying. 

Currently, there is little research on the use of deep neural 

networks for remote sensing image classification in China. 

Therefore, the author proposes a remote sensing image 

classification model based on a neural network (CNN) 

solution. In response to the problem that a single source 
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cannot provide more useful information, the author 

created multiple sources and multiple fusion methods. 

These features combine spectral features, texture 

patterns, contrast-related features, and other parts of 

remote-sensing images as vectors or matrices based on 

the length of the image. Researchers use these features 

to train degenerate neural network models. 

Experimental results show that this fusion method can 

make the CNN training model more abstract and high-

level, improve classification accuracy, and achieve the 

best distribution of results.  

3 Methods 

3.1 Introduction to convolutional neural 

networks  

Convolutional neural networks, a typical model for deep 

learning, are multi-layer neural network models. It usually 

consists of an input layer, a solution layer, a low-level layer 

(reservoir layer), a general connection layer, and an output 

layer. Figure 1, presents the model of convolutional neural 

network. 

 

Figure 1: A diagram of the convolutional neural network 

Firstly, the input layer receives the original image, and 

then the convolution layer is used to extract the feature 

of the image and reduce the impact of noise. 𝑌0 = 𝑋0, 

assuming the input raw image is 𝑋, and 𝑌𝑖  is the 𝑖𝑡ℎ  

layer characteristic map [13]. Assuming 𝑌𝑖  is the 𝑖𝑡ℎ 

convolutional layer, then Equation 1 represents the 

functionality. 

𝑌𝑖 = 𝑓(𝑊𝑖 ∙ 𝑌𝑖−1 + 𝑏𝑖) (1) 

In this equation, Wi is the weight of the convolution 

kernel of the 𝑖𝑡ℎ  layer, and the operator · is the 

convolution of the layer 𝑖 − 1. 𝑏𝑖 represents the bias 

vector of the 𝑖𝑡ℎ  layer; 𝑓  is a non-linear activation 

function, which is usually represented by the ReLU 

function and is represented in Equation 2. 

f(𝑥) = {
0, 𝑥 < 0
𝑥, 𝑥 ≥ 0

 (2) 

 The down-sampling layer follows the convolutional 

layer closely and reduces the dimensionality of the 

feature map based on the local correlation of the image 

while maintaining the scale invariance of the features. 

Assuming 𝑌𝑖 is the down-sampling layer feature map, then 

samples are evaluated using Equation 3.  

𝑌𝑖 = 𝑠𝑢𝑏𝑠𝑎𝑚𝑝𝑙𝑒(𝑌𝑖−1) (3) 

In general, there are two aggregation methods: 

maximum aggregation and intermediate aggregation. 

After changing the connection between the multi-

resolution process and the underlying layer, the entire 

process continues to reduce the length of the extracted 

features. Finally, the output layer outputs the 

corresponding labels of the samples based on the feature 

vectors extracted from the full concatenation process 

[14]. 

The classification process of neural network problem 

solving is mainly the learning process of the network, 

which is equivalent to the learning process of the human 

brain. It is divided into two stages:  

i. Forward propagation, which leads to pattern 

learning from the input layer to the output layer. 

ii. Backpropagation calculates the error between the 

result and the expected result based on a loss 
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function L (W, b) called the “residual” and 

adjusts the network without using the standard 

gradient descent of the layers.  

Currently, the loss function widely used in CNNs is the 

cross-entropy (CE) loss function, which is calculated by 

Equation 4. 

L(W, b) = CE(W, b) = − ∑ ∑ 1{ŷi = j}logpi
j

c

j=1

N

i=1

 (4) 

 In the equation: ŷi is the expected value of the 𝑖𝑡ℎ 

training sample, pi
j
 is the prediction probability of the 

jth category of the 𝑖𝑡ℎ training sample, 𝐶 is the total 

number of training samples and N is the total number of 

training samples. The training goal of the neural 

problem solver is to minimize the loss function 

𝐿 (𝑊, 𝑏) of the network by gradient descent [15]. During 

the entire training process, the loss value is calculated from 

the posterior distribution, and then the recovery process is 

performed with gradient lips, and the training of W and b 

is updated for each layer. The parameters of the formula 

change are defined as presented in Equation 5 and 6. 

𝑊𝑖 = 𝑊𝑖 − 𝜂
𝜗𝐿(W, b)

𝜗𝑊𝑖

 (5) 

𝑏𝑖 = 𝑏𝑖 − 𝜂
𝜗𝐿(W, b)

𝜗𝑏𝑖

 
(6) 

In the above Equations: η learning rate of the network 

is used to control the intensity of backpropagation of 

loss values.  

3.2 Remote sensing image classification 

method based on CNN 

3.2.1  CNN classification model  

The AlexNet network model is a deep convolutional neural 

network model designed by Alex Krizhevsky in 2012. 

Considering that the model has not very deep layers and 

has good classification performance, therefore, the author 

constructed a CNN model suitable for remote sensing 

image classification based on the AlexNet model, and its 

model structure is shown in Figure 2. 

 

Figure 2: Proposed model 
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The difference from AlexNet is that the designed CNN 

model removes a portion of the convolutional and 

pooling layers, as the pooling layer is mainly used for 

dimensionality reduction, while the author classifies 

remote sensing images at the pixel level [16]. To 

prevent training samples from being too small in size at 

higher levels, only the pooling layer of the last layer is 

retained. Set 3 convolutional layer parameters to 32@3 

× 3 64@2 × 2 and 64@2 × 2, steps are all 1. The pooling 

layer adopts a size of 2 × 2. Maximize pooling with a 

step size of 2. The Dropout parameter is set to 0.5 during 

training and 1 during testing, and the Adam 

optimization algorithm is used.  

3.2.2 Multi-source and multi-feature fusion  

Winsize × At present, most classification methods for 

winsize are based on manually designed single source 

features. Due to the fact that single source features often 

cannot reflect the differences between all ground object 

categories well, the generalization performance of 

classification algorithms is poor. To address this issue, 

the author has designed a method for multi-source and 

multi feature fusion. For each pixel point, neighborhood 

pixels with a surrounding size of were considered, 

which helps to eliminate speckle noise in the image. 

Firstly, PCA is used to transform the original data, and 

then the first three principal components (PCA1, PCA2, 

PCA3) containing almost 95% or more information 

from all bands are selected as the transformed original 

image. Next, extract the spectral values corresponding 

to the training samples to form a one-dimensional 

spectral feature vector A, and calculate NDVI to form a 

one-dimensional feature vector B. Secondly, calculate 

the gray level co-occurrence matrix (GLCM) for each 

image, and extract eight second-order probability 

statistical texture filters based on GLCM, including 

mean, variance, entropy, angular second-order distance, 

correlation, dissimilarity, contrast, and synergy, form a 

texture feature matrix C in the order of extraction [17]. 

Finally, perform K-T transformation on the image to 

extract data from three components: brightness, 

greenness, and humidity to form a feature matrix D.  

Experiments and analysis 

3.3 Experimental environment  

The author adopts the TensorFlow1.1.0 open-source 

framework, built in a personal PC environment with 

Ubuntu 16.04 operating system and Intel (R) Core (TM) 

i5-4440 processor CPU@3.10 GHz, with 8 GB of running 

memory. 

3.4 Experimental data and sample selection  

The study area is located in the western part of some states. 

According to the actual distribution of land in the area, 

there are 6 categories: agricultural fields, pastures, 

wetlands, reservoirs, residential areas, and bare land. The 

author used a Landsat-8 satellite remote sensing image 

from September 2016 and selected all training samples at 

the level of 16160 pixels. Of these, 1/4 of the data samples 

for each soil type were selected as valid samples, and the 

remaining data samples were used as training methods 

[18].  

3.5 Experimental results and analysis 

To verify the effectiveness of this method, experiments 

will be compared with other methods in the literature, such 

as SVM, NN, RF, DBN, and CNN (Patch). The CNN 

(Patch) method is a CNN model based on region blocks, 

which takes neighborhood blocks of 5×5 size around pixels 

as the input of a single sample and can be seen as adding 

neighborhood information to the sample. In addition, based 

on this method, the author has designed two other 

comparative experimental models. One is to only use 

spectral features as input to CNN (CNN (ST)), which is to 

verify the effectiveness of the author's multi-source and 

multi-feature fusion method; Another type is the multi-

source and multi-feature fusion model (CNN (SST)) that 

does not use PCA. The main purpose of this model is to 

verify whether PCA can shorten the training time of the 

model and accelerate convergence speed [19]. Table 1 

shows the confusion matrix of the classification results of 

this method, indicating that CNN (PCA) ultimately 

achieved an overall accuracy of 97.83%, with a Kappa 

coefficient of 0.973 6. For single class land features, both 

PA and UA exceed 90%, and the classification accuracy of 

certain land features, such as water and bare land, has 

reached the best, with both PA and UA reaching over 99%. 

However, for cultivated land categories, the classification 

accuracy is relatively poor [20]. The model misclassifies 

them into wetland categories with a large number of 

samples. The reason for the analysis is that the spectral 

value range of crops overlaps with that of wetlands, which 

is a serious phenomenon of “foreign objects in the same 

spectrum”, making it difficult for the model to effectively 

distinguish between cultivated land and wetlands.  
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Table 1: Confusion matrix of the CNN (PCA) classification results 

Category Cultivated land Meadow Wetlands Waters Residential areas Bare ground Total PA/% UA/% 

Cultivated land 647 11 39 0 3 0 700 92.43 98.33 

Meadow 3 596 1 0 0 0 600 99.33 97.70 

Wetlands 1 3 576 0 0 0 580 99.31 93.51 

Waters 0 0 0 520 0 0 520 100.00 100.00 

Residential areas 6 0 0 0 593 1 600 98.83 99.33 

Bare ground 1 0 0 0 1 230 232 99.14 99.57 

Total 658 610 616 520 597 231   — 

 

Table 2 shows the comparison of experimental results 

between this method and other classification methods, 

and it can be seen from the table that this method 

achieved the best classification effect. Compared to 

SVM, NN, and RF, the overall accuracy of CNN (PCA) 

has been improved by about 13.61%, 9.34%, and 7.3%, 

respectively [21]. The Kappa coefficient has been 

improved by about 20.42%, 13.16%, and 10.02%, 

indicating that CNN’s classification performance is far 

superior to shallow classification algorithms, this is 

thanks to the unique structure of CNN, such as local 

connections, weight sharing, pooling, etc. These 

characteristics enable CNN to have a certain scale of 

displacement, scale, and deformation invariance. Its 

powerful learning and fault tolerance capabilities enable 

CNN to automatically learn more abstract and 

representative features, thereby achieving higher 

classification accuracy. However, shallow classification 

algorithms cannot obtain more useful information from 

the original samples when the information is 

insufficient or insufficient. Similarly, compared to other 

deep learning methods, the classification accuracy of 

CNN (PCA) is also higher than that of DBN and CNN 

(Patch). The reason for the analysis is that DBN uses an 

unsupervised method to train the network layer by layer, 

and finally uses a supervised method for fine tuning. This 

layer-by-layer training method causes greater randomness 

in the network parameters, which is not conducive to the 

overall optimization of the network [22]. For CNN (PCA), 

although this method also uses a CNN model, the input 

information only considers the spectral information around 

the sample, without considering the texture features of the 

image. It is precisely the texture features that best reflect 

the differences between different categories, resulting in 

poor classification performance. From another 

perspective, it can also illustrate this point, as designed by 

the author, the comparative experimental models CNN 

(ST) and CNN (SST) only consider the spectral features of 

the samples, while the latter combines spectral and texture 

features, which improves the overall accuracy of CNN 

(SST) by about 7.2% and the Kappa coefficient by about 

5.29% compared to CNN (ST). Moreover, the CNN (SST) 

method can effectively improve the severe “salt and 

pepper” phenomenon in CNN (ST).

Table 2: Comparison of the classification effects of different classification methods 

 

Method 

Category (%)  

OA/% 

 

Kappa Cultivated land Meadow Wetlands Waters Residential areas Bare ground 

SVM 50.29 79.84 97.76 100.00 85.33 99.57 84.22 0.808 5 

NN 63.00 92.00 98.45 100.00 91.33 98.26 88.49 0.860 4 

RF 66.29 91.17 99.83 100.00 99.00 95.69 90.53 0.884 9 
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 Figures 3 and 4 respectively show the comparison 

results of the author's designed comparison model 

regarding training time and training accuracy. From 

Figure 3, it can be seen that after using PCA 

transformation, the training time of the CNN (SST) 

method without PCA is reduced by about 80%, which 

not only significantly shortens the training time, but also 

improves the overall accuracy by about 3.49%. This is 

related to the network structure of the CNN model itself. 

The higher the dimension of input sample information, 

the more parameters the model needs to train will 

increase geometrically, resulting in slow training speed 

and long training time [23-25]. As shown in Figure 4, the 

model performance of CNN (PCA) tends to stabilize 

around 300 iterations, while CNN (ST) and CNN (SST) 

only stabilize after 2000 and 1100 steps, respectively. This 

indicates that after PCA dimensionality reduction, the 

model converges faster and performs better. The reason is 

that after PCA transformation, the inter class gap increases, 

the intra class gap decreases, and the noise information in 

the samples can be eliminated to a certain extent, thereby 

accelerating the convergence speed of the model and 

improving the overall classification accuracy.  

 

Figure 3: Performance comparison of different methods 
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DBN 81.57 93.83 94.83 100.00 94.83 99.57 92.95 0.917 1 

CNN(Patch) 67.00 98.00 97.59 100.00 92.17 95.26 90.25 0.881 8 

CNN(ST) 58.71 96.83 95.86 100.00 88.50 93.97 87.14 0.884 3 

CNN(SST) 83.14 96.17 97.93 100.00 95.17 99.57 94.34 0.931 1 

CNN(PCA) 92.43 99.33 99.31 100.00 98.83 99.14 97.83 0.973 6 
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Figure 4: Comparison of the training accuracy of the different methods 

The training time of the PCA-free CNN (SST) method 

was cut by an amazing 80% in the experiments that were 

done after PCA transformation was added. 

Additionally, there is an observed improvement in 

overall accuracy of approximately 3.49. The 

experiments highlight the efficacy of the proposed 

multi-site and multi-combination strategy in enhancing the 

tracking speed and classification accuracy of remote 

sensing images. Comparative analysis with other 

classification methods emphasizes the superior 

performance of CNN in achieving increased classification 

and improved accuracy. 

 

 

Figure 5: Comparative Analysis of the proposed model with existing studies [5-7] 

Figure 5 compares the performance indices of the 

proposed research with three existing studies in remote 

sensing image classification. The proposed research 

demonstrates superior classification accuracy, 

outperforming [5], [6], and [7] by 7%, 5%, and 3%, 

respectively. Additionally, the proposed method 

achieves notable reductions in training time (20%), 

improvement in analysis speed (15%), and a significant 

model complexity reduction (25%) compared to the 

existing studies. These results suggest that the proposed 

approach excels in multiple key aspects, showcasing its 

potential for enhancing remote sensing image 

classification methodologies. The comparative analysis 

highlights the efficacy of the proposed research in  
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addressing key challenges in remote sensing image 

classification. With superior performance across 

multiple indices, including accuracy, training time, 

analysis speed, and model complexity, the proposed 

approach stands as a promising advancement in the 

field. Future research may focus on further optimizing 

training speed and exploring trade-offs to enhance the 

overall efficiency of the proposed model. 

4  Conclusion 

The study introduces a neural network-based 

classification approach for remote sensing images, 

addressing the challenge of extracting valuable 

information from multiple resources. By incorporating 

multiple locations and combinations, this method 

effectively integrates spectral, texture, and contrast 

properties, enhancing the comprehensive analysis of 

remote sensing images. The integration of PCA 

transformations significantly reduces training time and 

enhances overall accuracy. The findings underscore the 

advantages of employing CNN in remote sensing image 

classification, demonstrating its capacity for improved 

categorization and accuracy compared to alternative 

methods. Future research avenues may explore further 

optimizations to address challenges associated with 

larger training models and enhance the efficiency of the 

CNN-style network model. When compared to SVM, 

NN, RF, DBN, and CNN (Patch), CNN is the best at 

finding the distribution of remote sensing patterns and 

picking out important details in the images. This is 

because it has advanced models that include local 

connectivity, weight distribution, and integration. Also, 

a close look at the author-made CNN (ST) and CNN 

(SST) models reveals that the suggested multiple 

locations and combinations greatly increase the amount 

of data that the CNN can use. This makes it more 

accurate at classifying and faster at analyzing. However, 

CNN, as a novel learning machine, presents challenges 

such as diversity and prolonged training times, despite 

the observed benefits in classification accuracy. The 

absence of theoretical support for the network model 

necessitates recommendations derived from iterative 

experiments. Future research endeavors will focus on 

refining the training speed of the model and identifying 

optimal trade-offs. Additionally, we will direct efforts 

toward addressing the inherent disadvantages of the 

network model, paving the way for advancements in the 

efficiency and theoretical foundations of remote sensing 

image classification systems.  

Acknowledgement 

Supported by the university-level platform of Digital 

Creative Design Production-Education Integration 

Collaborative Innovation Center. 

References 

[1] Qi, K., Yang, C., Hu, C., Shen, Y., Shen, S., & Wu, 

H. (2021). Rotation invariance regularization for 

remote sensing image scene classification with 

convolutional neural networks. Remote Sensing, 

13(4), https://doi.org/569.10.3390/rs13040569 

[2] Shi, C., Zhang, X., Sun, J., & Wang, L. (2022). 

Remote sensing scene image classification based on 

self-compensating convolution neural network. 

Remote Sensing, 14(7), https://doi.org/96-

102.10.3390/rs14030545 

[3] Byju, A. P., Sumbul, G., Demir, B., & Bruzzone, L. 

(2021). Remote-sensing image scene classification 

with deep neural networks in jpeg 2000 compressed 

domain. IEEE,69(4), 

104.https://doi.org/10.30534/ijeter/2020/120872020 

[4] Deepan, P., & Sudha, L. R. (2020). Remote sensing 

image scene classification using dilated 

convolutional neural networks. International Journal, 

8(7). https://doi.org/ 

[5] Pires de Lima, R., & Marfurt, K. (2019). 

Convolutional neural network for remote-sensing 

scene classification: Transfer learning analysis. 

Remote Sensing, 12(1), 

86.https://doi.org/10.3390/s20071999 

[6] Yu, D., Xu, Q., Guo, H., Zhao, C., Lin, Y., & Li, D. 

(2020). An efficient and lightweight convolutional 

neural network for remote sensing image scene 

classification. Sensors, 20(7), 1999.https://doi.org/ 

[7] Wang, D., Zhang, C., & Han, M. (2022). Mlfc-net: a 

multi-level feature combination attention model for 

remote sensing scene classification. Computers & 

Geosciences, 160(33), 

105042.https://doi.org/10.1016/j.cageo.2022.105042 

[8]  Qi, K., Yang, C., Hu, C., Zhai, H., Guan, Q., & Shen, 

S. (2021). A multi-level improved circle pooling for 

scene classification of high-resolution remote sensing 

imagery. Neurocomputing, 462 

(10), 506-

522.https://doi.org/10.1016/j.neucom.2021.08.022 

[9]  Lin, T. Y. (2021). A novel convolutional neural 

network architecture of multispectral remote sensing 

images for automatic material classification. Signal 

Processing. Image Communication: A Publication of 

the the European Association for Signal Processing, 

97(1).74-78. 

https://doi.org/10.1016/j.image.2021.116329 

[10]  Zhang, D., Zhou, Y., Zhao, J., & Zhou, Y. (2022). 

Co-evolution-based parameter learning for remote 

sensing scene classification. International Journal of 



54   Informatica 49 (2025) 45-54                                                                    Y. Liu et al. 

Wavelets, Multiresolution and Information 

Processing.854(2), 

20.https://doi.org/10.1142/S0219691321500466 

[11] Liang, L., & Wang, G. (2021). Efficient recurrent 

attention network for remote sensing scene 

classification. IET Image Processing, 15(10),859-

862.https://doi.org/10.1049/ipr2.12139 

[12] Moudjib, H. Y., Haibin, D., Zhang, B., & Ghaleb, 

M. S. A. (2021). Hsi-gcn: hyperspectral image 

classification algorithm based on gabor 

convolutional networks. World Journal of 

Engineering, ahead-of-print(ahead-of-

print).87(7),65-69. https://doi.org/10.1108/WJE-

09-2020-0460 

[13] Shi, C., Zhao, X., & Wang, L. (2021). A multi-

branch feature fusion strategy based on an 

attention mechanism for remote sensing image 

scene classification. Remote Sensing, 13(10), 

1950.https://doi.org/10.3390/rs13101950 

[14] Xie, H., Chen, Y., & Ghamisi, P. (2021). Remote 

sensing image scene classification via label 

augmentation and intra-class constraint. Remote 

Sensing, 13(13), 

2566.https://doi.org/10.3390/rs13132566 

[15] Li, M., Lei, L., Tang, Y., Sun, Y., & Kuang, G. 

(2021). An attention-guided multilayer feature 

aggregation network for remote sensing image 

scene classification. Remote Sensing, 13(16), 

3113.https://doi.org/10.3390/rs13163113 

[16] Shabbir, A., Ali, N., Ahmed, J., Zafar, B., Rasheed, 

A., & Sajid, M. (2021). Satellite and scene image 

classification based on transfer learning and fine 

tuning of resnet50. Hindawi Limited,58(7), 589-

597.https://doi.org/10.1155/2021/5843816 

[17] Wu, X., Zhang, Z., Zhang, W., Yi, Y., & Xu, Q. 

(2021). A convolutional neural network based on 

grouping structure for scene classification. 

Remote Sensing, 13(2457), 1-22. 

https://doi.org/10.3390/rs13132457 

[18] Wang, G., Xu, H., Wang, X., Yuan, L., & Wen, X. 

(2022). Remote sensing scene image classification 

model based on multi-scale features and attention 

mechanism. Journal of Applied Remote 

Sensing,471(7),15-16. 

https://doi.org/10.1117/1.jrs.16.044510 

[19] Sun, M., Zhang, H., Huang, Z., & Li, Y. (2021). 

Remote sensing target detection in a harbor area 

based on an arbitrary-oriented convolutional 

neural network. Journal of Applied Remote 

Sensing,69(3), 

15.https://doi.org/10.1117/1.JRS.15.034503 

[20] Chen, X., & Zhu, J. (2022). Land scene classification 

for remote sensing images with an improved capsule 

network. Journal of Applied Remote 

Sensing,3662(7),145-149.https://doi.org/ 

[21] Lin, C. H., & Wang, T. Y. (2021). A novel 

convolutional neural network architecture of 

multispectral remote sensing images for automatic 

material classification. Signal Processing Image 

Communication, 97(105), 

116329.https://doi.org/10.1016/j.image.2021.116329 

[22] Zhang, J., Zhang, W., Hu, Y., Chu, Q., & Liu, L. 

(2022). An improved sea ice classification algorithm 

with gaofen-3 dual-polarization sar data based on 

deep convolutional neural networks. Remote Sensing, 

14(41),85-86. https://doi.org/10.3390/rs14040906 

[23] Bi, Q., Zhang, H., & Qin, K. (2021). Multi-scale 

stacking attention pooling for remote sensing scene 

classification. Neurocomputing, 436(12), 

874.https://doi.org/10.1016/j.neucom.2021.01.038 

[24] Guo, Y., Ji, J., Shi, D., Ye, Q., & Xie, H. (2021). 

Multi-view feature learning for vhr remote sensing 

image classification. Multimedia tools and 

applications,968(15), 

80.https://doi.org/10.1007/s11042-020-08713-z 

[25] Ma, A., Wan, Y., Zhong, Y., Wang, J., & Zhang, L. 

(2021). Scenenet: remote sensing scene classification 

deep learning network using multi-objective neural 

evolution architecture search. ISPRS Journal of 

Photogrammetry and Remote Sensing, 172(33), 171-

188.https://doi.org/10.1016/j.isprsjprs.2020.11.025 

 

 


