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Both individuals and institutions place great importance on maintaining the security and privacy of their 

data, when stored in the cloud server. To achieve this, they often turn to searchable symmetric encryption 

(SSE), which is considered a crucial technology for safeguarding user data. However, SSE has 

encountered some challenges, particularly in the case of large databases. One such issue is poor 

performance, which can be attributed to poor locality. This means that the cloud server must visit a large 

number of locations during the search process, resulting in slow retrieval times. The main problem 

however, is not just poor locality. In many cases, optimization methods intended to improve performance 

can actually lead to increased storage requirements for the encrypted index stored on the cloud server or 

reduced efficiency when reading data. These issues must be addressed in order for SSE to continue to be 

an effective tool for protecting sensitive information. In this paper, we introduce a secure and searchable 

scheme that effectively addresses the issues mentioned above, while also enhancing the performance of 

information retrieval through an improved encrypted inverted index storage mechanism. Our scheme 

achieves optimal locality at 𝑂(1), and read efficiency at 𝑂(1), thereby significantly increasing the speed 

of retrieval. Through experimentation with real-world data, we have demonstrated the practicality, 

accuracy, and security of our approach, making it a reliable solution for secure and efficient information 

retrieval. 

Povzetek: Predlagana je optimizirana metoda za izboljšanje učinkovitosti iskanja v šifriranih podatkih z 

uporabo izboljšanega obrnjenega indeksa, ki dosega optimalno lokalnost in povečuje hitrost ter varnost 

pridobivanja informacij. 

 

1  Introduction 
In the modern age, the need for data storage has greatly 

increased. With technology advancing rapidly, we are 

generating data faster than ever, and businesses, 

individuals, and organizations all need efficient ways to 

store, manage, and access this data. Consequently, cloud 

storage has become a popular choice, offering many 

benefits over traditional data storage methods[1][2]. 

      Cloud storage refers to storing data on remote servers 

accessible via the internet from any connected device. 

This method allows data to be centrally stored and easily 

accessed from anywhere with an internet connection. 

Cloud storage is flexible, letting users adjust their storage 

needs up or down as required, without the limitations of 

physical storage devices. It is ideal for businesses and 

individuals needing to store large amounts of data 

securely. Cloud storage providers ensure high reliability 

by using redundant storage systems and multiple data 

centers in different locations, making data always 

accessible, even during hardware failures or natural 

disasters. This reliability is crucial for businesses relying  

 

 

on data for critical operations, ensuring their data is secure 

and available when needed. 

      Despite the numerical advantages of cloud storage, it 

is not without challenges, and security is the biggest  

challenge for cloud storage [3]. To ensure the security of 

data stored on cloud servers, various methods need to be 

employed, including access control, network security, and 

encryption [4]. Access control is a mechanism that 

restricts access to data based on user identity, role, or 

authorization. Network security involves securing the 

network infrastructure used for data transmission. 

Encryption, on the other hand, is the process of 

transforming data into code to prevent unauthorized 

access. Encryption can be applied both in transit and at 

rest, thus ensuring that data remains secure during 

transmission and storage.  

    To secure data stored in the cloud, various encryption 

techniques are used to prevent unauthorized access. 

Symmetric encryption is widely used and involves a single 

key for both encrypting and decrypting data. In contrast, 

asymmetric encryption uses different keys for encryption 

and decryption, offering more security but at a slower 

speed. Hashing is another method, commonly used for 
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securing passwords, which converts data into a fixed-size 

string that cannot be reversed. A newer technique, 

Searchable Symmetric Encryption (SSE) [5], allows users 

to search encrypted data without exposing it. SSE comes 

in two types: deterministic, which offers consistent results 

but less security, and probabilistic, which provides better 

security but less predictability. 

Table 1: List of symbols 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

These encryption methods are crucial for protecting cloud 

data and must be carefully implemented to prevent data 

breaches or attacks.    

     Searchable symmetric encryption (SSE) presents 

several challenges[6]. The process, which involves 

searching encrypted data, requires creating and 

maintaining an index for each keyword, making it 

complex. Moreover, there are security risks, such as the 

possible leakage of sensitive data. A recent challenge in  

SSE is a significant drop in performance and retrieval 

efficiency when dealing with large databases  [7]. 

Researchers have found that this issue is not due to flaws 

in the encryption itself but is related to how the secure  

index is stored in memory. During a search, the index may 

cause the cloud server to perform many continuous 

memory transitions, known as "poor locality," " [[7], [8], 

[9], [10], [11]] which can slow down the retrieval process 

and degrade SSE performance. While some researchers 

are working to improve locality to boost performance, this 

can lead to increased storage requirements for the 

encrypted index on the cloud server or reduce the 

Character Description 

𝑊 Word 

𝑛𝑤 Number of 𝑊 

𝑀 Words in 𝐷𝐵,  𝑀 = {𝑊1, . . . , 𝑊𝑛𝑤} 

𝑖𝑑 Identifier 

𝑁𝑑𝑏 Total of identifiers 𝐷𝐵 

 

𝑛 Total of identifiers 𝑊 

𝑁 ∑ |𝑑𝑏(𝑊)|𝑖=1
𝑛𝑤  where  𝑑𝑏(𝑊) =  {𝑖𝑑1, . . , 𝑖𝑑𝑛  } 

𝑐 Counter 

𝐻_𝑇 

 
A hash table is a data structure that allows efficient storage and retrieval of key-

value pairs. It comprises a pair of algorithms, are "Add" and "Get"[11]. 

𝐴𝑑𝑑 Algorithm adds pairs of (𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒)  to  𝐻_𝑇 

𝐺𝑒𝑡 value=Get(key) 

𝑆𝑡 String 

Š𝑡  Encrypted string 

𝑠𝑘𝑒 Derivative key used for encryption and decryption of 𝑆𝑡 

𝐿𝑎 Label is used to store and retrieve Š𝑡 in 𝐻𝑇, 𝐴𝑑𝑑(𝐿𝑎, Š𝑡),  

Š𝑡 = 𝐺𝑒𝑡(𝐿𝑎) 

𝐸𝑛𝑐 Function to encryption 𝑆𝑡 

𝐷𝑒𝑐 Function to decryption Š𝑡 

𝐿𝑖𝑑 List to store identifiers 
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efficiency of data reading. The contributions of our 

approach can be summarized as follows: 

     Firstly, our scheme significantly improves the 

performance of information retrieval for all databases, 

regardless of their size, by enhancing locality. Secondly, 

our scheme achieves an optimal locality of 𝑂(1), meaning 

that the cloud server only needs to access one memory 

location during each search operation, as opposed to many 

locations. Thirdly, our proposed scheme is highly secure, 

as the server searches for the required data and sends it to 

the data owner without decrypting it, thereby enhancing 

resistance to various attacks that symmetric searchable 

encryption is vulnerable to. Fourthly, our scheme has 

better reading efficiency 𝑂(1), as the cloud server only 

responds with the requested data when the user queries it. 

Finally, our scheme has no significant negative impact on 

the storage of the encrypted index in the cloud server. 

 

 

 
Figure 1: Searchable symmetric encryption 

 

Table 2: Searchable symmetric encryption algorithm 
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2 Searchable symmetric encryption 

(𝑺𝑺𝑬)   
   SSE is a technology designed to enable searching over 

encrypted data while maintaining its confidentiality [[12], 

[13], [14]]. It involves three key components: the data 

owner 𝐷𝑊, the cloud server 𝐶𝑆, and the users. The 

process of SSE consists of several steps. Initially, the data 

owner selects a secret key for encryption and decryption. 

Next, they construct a secure index based on the words in  

 

 

their database. This index is then encrypted with the secret 

key chosen earlier. When a user wishes to search for data, 

they generate an encrypted search query known as a token. 

This token is encrypted using the same secret key that was 

used to encrypt the index and is sent to the cloud server. 

Upon receiving the token, the cloud server uses the 

encrypted index to search for the requested data[15]. The 

cloud server either decrypts the data and sends it to the 

user or sends it encrypted so that the user can decrypt it 

later. The Table 2. summarizes the steps involved in 

Searchable Symmetric Encryption algorithms:

 

Table 3: Comparison with previous schemes based on storage, locality, and read efficiency 

Algorithm Description 

Key generation phase: 

𝒔𝒌 ←  𝑮𝒆𝒏𝒔𝒌(𝟏𝝀) 

 

The key generation algorithm takes the security parameter1𝜆 as input and generates 

the secret key as its output. 

onstructing secure C

index: 

𝑺𝑰 ← 𝑬𝒏𝒄_𝑫𝑩(𝒔𝒌, 𝑫𝑩) 

The secure index 𝑆𝐼 is created in this algorithm by taking the secret key 𝑠𝑘 and the 

database 𝐷𝐵 as input. 

Token generator: 

𝒕 ←  𝑻𝒓𝒑𝒅𝒓_𝑾(𝒔𝒌, 𝑾) 

 

The token 𝑡 in this algorithm is created by the user to search for a specific word 𝑊 or 

data. 

Search: 

 𝑹 ← 𝑺𝒆𝒂𝒓𝒄𝒉_𝒕(𝒕 , 𝑺𝑰) 

 

In this algorithm, the cloud server searches for the required word in 𝑆𝐼 and returns the 

result 𝑅 to the user. If the result is encrypted, the user will need to use 𝐹𝑖𝑛𝑑_𝑖𝑑𝑠 

algorithm. 

Find identifiers: 

𝑰𝑫𝑺 ←  𝑭𝒊𝒏𝒅_𝒊𝒅𝒔(𝒔𝒌, 𝑹)  

 

The user employs this algorithm to retrieve the final outcome, which comprises word 

identifiers 𝐼𝐷𝑆 after carrying out any essential processing and decrypting 𝑅 

 Related works Storage Locality Read efficiency 

Curtmola et al. [14] 𝑂(𝑁) 𝑂(𝑛) 𝑂(1) 

Kamara et al. [21] 𝑂(𝑁) 𝑂(𝑛) 𝑂(1) 

David cash et al. [17] 𝑂(𝑁) 𝑂(𝑛) 𝑂(1) 

Chase and Kamara [18] O(( Max|𝑑𝑏(𝑊)|)𝑁𝑑𝑏) 𝑂(1) 𝑂(1) 

P. van Liesdonk et al.[19] 𝑂(𝑛𝑤 𝑁𝑑𝑏) 𝑂(𝑛) 𝑂(1) 

Kamara and Papamanthou [22] 𝑂(𝑛𝑤 𝑁𝑑𝑏) 𝑂(𝑛 𝑙𝑜𝑔 𝑁𝑑𝑏) 𝑂(𝑁𝑑𝑏 𝑙𝑜𝑔𝑁𝑑𝑏) 

David cash et al. [8] 𝑂(𝑁 𝑙𝑜𝑔 𝑁) 𝑂(𝑙𝑜𝑔 𝑁) 𝑂(1) 

Asharov et al. (Scheme 3) [9] 𝑂(𝑁 𝑙𝑜𝑔 𝑁) 𝑂(1) 𝑂(1) 

Demertzis and Papamanthou 

[10] 

𝑂 (𝑁 𝑆) 𝑂(𝐿𝑑) 

Where 𝐿𝑑 is a tunable 

locality 
𝑂(

𝑁
1
𝑠

𝐿
) 

Asharov et al. (Pad-and-split 

scheme) [11] 

𝑂(𝑁 𝑙𝑜𝑔 𝑁/ 𝑙𝑜𝑔 𝐿) 𝑂(𝐿𝑑) 

Where 𝐿𝑑  depends on the 

scheme in which it is 

implemented within its 

framework 

𝑂(1) 

Alyousif  et al.[23] 𝑁 = ∑ (∑ 𝑆𝑡𝑗=1
𝑛𝑞

)𝑖=1
𝑛𝑤  𝑂(𝑛𝑞) 𝑂(1) 
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3 Related works 

In the year 2000, a novel technology emerged that 

facilitated the searching of encrypted data without the 

need for decryption [16]. The system was dubbed 

Searchable Symmetric Encryption and provided users 

with the ability to search for specific keywords within 

encrypted data while maintaining content security. SSE's 

inception marked a significant milestone in the field of 

data security and privacy. Following the introduction of 

this new technology, extensive research was conducted in 

various areas, including performance optimization. 

Studies have shown that the reduction in performance is 

not due to the technology itself, but rather to the memory 

positions that the server accesses while processing user 

requests. As the encrypted index size grows, the number 

of positions accessed also increases, resulting in a slower 

response time [17]. This case is called poor locality. 

Known constructions can be classified into two 

approaches. The first approach has linear space and 

constant read efficiency, but its poor locality is highlighted 

in references [14] and [17]. This scheme involves 

allocating an array of size 𝑁 and uniformly mapping 𝑁 

elements from the DB into it. To retrieve a list of 

identifiers that contain a specific W, the approach stores 

each identifier in the array alongside a pointer to the next 

identifier in the list. Unfortunately, this approach requires 

the cloud server to access random positions in the array, 

with the number of identifiers associated with the word,  

 

which results in inefficiency due to the need to move to a 

large number of different positions. The second approach 

has excellent read efficiency and locality, but it comes at 

the cost of a significant amount of extra space [[18], [19], 

[20], [21]]. The basic idea behind this approach is to 

allocate a sufficiently large array 𝐴 and then map each list 

of W identifiers uniformly into a contiguous interval in 𝐴, 

based on the length of the W identifiers. There should be 

no overlaps among different lists. To retrieve a list for a 

given 𝑊 efficiently, the cloud server only needs to access 

one random position and read all consecutive identifier 

entries, which leads to optimal read efficiency and 

locality.  

However, the positions of the lists in the array reveal 

information about the structure of the underlying 𝐷𝐵. To 

hide this information, padding must be applied, resulting 

in a polynomial increase in space usage. We have to 

highlight that there is often a problem with storage 

capacity, which is often large due to locality optimization, 

or bad locality itself which can have a detrimental effect 

on cloud server response time. And sometimes there is a 

negative impact on the efficiency of reading the data as 

well. It is difficult, if not impossible, to construct a 

construction that is ideally locality with limited storage 

space without compromising its data read efficiency. This 

issue was discussed by Cash and Tessaro in 2014[8], 

where they also determined the minimum tradeoff 

required between these three criteria. Also, Cash and 

Tessaro developed a new construction that enhances 

locality to 𝑂(𝑙𝑜𝑔 𝑁) with storage capacity  𝑂(𝑁 𝑙𝑜𝑔 𝑁). 

In 2016, Gilad Asharov et al. improved construction 

locality for Cash and Tessaro locality, achieving locality 

of 𝑂(1) [9]  while maintaining the same storage capacity. 

Demertzis and Papamanthou [10] developed two 

constructions in 2017. The first construction offered 

optimal locality and required 𝑂(𝑁 𝑆) space, where 𝑆 

represents the number of levels employed to store data. 

However, this construction resulted in a slight reduction in 

read efficiency, and the storage space needed was still 

significant. The second construction, which operated 

within the same storage space as the first, allowed for 

tunable locality, enabling the 𝐷𝑊 to select a parameter 

through which to create their index. In 2021, Asharov et 

al. achieved remarkable progress by introducing two 

frameworks [11]: pad-and-split and statistical-

independence. 

The last work that we will talk about is one of our 

previous works [23] that aims to improve locality using 

QR code technology. The work achieved good results 

compared to previous works, but the locality was not ideal 

O(1) rather, it depends on the number of QR codes for the 

word. The following table summarizes the most important 

previous works in terms of the three main important 

characteristics: locality, storage efficiency, and reading 

efficiency. 

 

 

 

 

 where  𝑛𝑞  is number of 

QR codes for the 

word and  𝑆𝑡  is a 

string  

Our work 𝑂(𝑁) 𝑂(1) 𝑂(1) 
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4 Proposed scheme 

 

In this section, we will explain our scheme in detail. 

First, the data owner generates a secret key, sk, using a  

Pseudo-Random Function (PRF). A PRF is a 

deterministic algorithm that produces outputs that seem 

random, despite being generated from a specific input. 

PRFs are commonly used in cryptography to improve 

security, as their output is difficult to distinguish from true 

randomness, even against powerful adversaries[[24], 

[25],[26]]. The secret key, sk, will be used for both 

encryption and decryption. Below, we present the 

complete construction of our scheme. 

       The next step involves the data owner 𝐷𝑊 creating a 

secure index SI for the database 𝐷𝐵. In our approach, SI 

is equivalent to 𝐻_𝑇,, which is based on the words 𝑀 in the 

database and their corresponding identifiers 𝑑𝑏(𝑊) =

 {𝑖𝑑1, . . , 𝑖𝑑𝑛  }. The 𝐷𝑊 then arranges the identifiers 𝑑𝑏(𝑊)  

for each word 𝑊 in the group 𝑀 in ascending order and 

prepares an empty string 𝑆𝑡 = "" for the next step. 

 

Next, we examine all identifiers in odd positions 

within the database. For each of these odd-positioned 

identifiers, we check the state of the corresponding word 

as well as the adjacent even-positioned identifier, 

recording the results in 𝑆𝑡. There are four possible 

scenarios, labeled A, B, C, and D, depending on whether 

the word appears in the odd or even positions. 

 

1. Case A: If the word appears in the identifiers that is 

located in the odd and even positions together. 

2. Case D: The opposite of Case A is when the word 

does not appear in either identifier located in the odd 

and even positions.  

3. Case B: If the word appears in the identifier located 

in an odd position but not in the identifier located in 

an even position. 

4. Case C: Conversely, the opposite of Case B is when 

the word does not appear in the identifier located in 

an odd position but appears in the identifier located in 

an even position. 

   Once we have constructed 𝑆𝑡 that indicates the presence 

or absence of the word in its identifiers, we will generate 

two keys. The first key 𝑠𝑘𝑒 =  𝑃𝑅𝐹𝑠𝑘(2 ‖ 𝑤) will be used to 

encrypt 𝑆𝑡, Š𝑡 = 𝐸𝑛𝑐𝑠𝑘𝑒
(𝑆𝑡), ensuring that it remains secure 

and confidential. The second key 𝐿𝑎 =  𝑃𝑅𝐹𝑠𝑘𝑒
(1 ‖  𝑊)  

will serve as a label to identify Š𝑡 when it is stored in the 

hash table. 

  After encrypting 𝑆𝑡  with the first key, we store the 

encrypted result, Š𝑡, in a hash table using 𝐿𝑎 as a label. We 

then add (𝐿𝑎, Š𝑡)  to 𝐻_𝑇, which allows us to easily 

retrieve Š𝑡  when needed while keeping it secure from 

unauthorized access or tampering. Once 𝐻_𝑇 is 

constructed, the data owner 𝐷𝑊  can upload it to the cloud 

server 𝐶𝑆. When a user wants to search for a word 𝑊, they 

generate a token 𝑡 using the second key 𝐿𝑎, which was 

created during the index construction, and send it to 𝐶𝑆. 

This step is essential for enabling secure data searches on 

𝐶𝑆. When 𝐶𝑆 receives 𝑡 from the user, it uses t to retrieve 

Š𝑡from 𝐻_𝑇 and then sends Š𝒕 to the user. 

    After the user receives Š𝒕, he begins to decrypt it after 

recalculating the first key 𝑠𝑘𝑒 =  𝑃𝑅𝐹𝑠𝑘(2 ‖ 𝑤),  

CONSTRUCTION.  

,  =  {𝑑𝑏(𝑊1), . . . , 𝑑𝑏(𝑊𝑛𝑤)}Let   

𝑀 = {𝑊1, . . . , 𝑊𝑛𝑤}𝑑𝑏(𝑊) =let  𝑊 ∈  𝑀For  ; 

𝐷𝐵total of identifiers is  𝑁𝑑𝑏and   {𝑖𝑑1, . . , 𝑖𝑑𝑛 } 

𝒔𝒌 ←  𝑮𝒆𝒏𝒔𝒌(𝟏𝝀): 

 Compute 𝑠𝑘 with 𝑃𝑅𝐹 

𝑯_𝑻 ← 𝑬𝒏𝒄_𝑫𝑩(𝒔𝒌, 𝑫𝑩): 

   𝐻_𝑇empty 1. Initialize 

 𝑊 𝜖 𝑀2. For every 

𝑑𝑏(𝑊)Sort         

, i=1𝑆𝑡 = " "         

                   For from 𝑖 𝑡𝑜 𝑁𝑑𝑏 

            If 𝑖 mod 2 is not equal 0 

 𝑑𝑏(𝑊)in  𝑖 + 1and   𝑖If                 

𝑆𝑡Add “A” to                                              

𝑑𝑏(𝑊)not in  𝑖 + 1and   𝑖Else if                 

𝑆𝑡Add “D” to                                            

and𝑑𝑏(𝑊) in   𝑖Else if                 

𝑑𝑏(𝑊)not in  𝑖 + 1                

𝑆𝑡Add “B” to                                            

and𝑑𝑏(𝑊) not in   𝑖Else if                

𝑑𝑏(𝑊)in  𝑖 + 1               

𝑆𝑡Add “C” to                                            

𝑠𝑘𝑒 =  𝑃𝑅𝐹𝑠𝑘(2 ‖ 𝑤)     

by AES256 Š𝑡 = 𝐸𝑛𝑐𝑠𝑘𝑒
(𝑆𝑡)     

  𝐿𝑎 =  𝑃𝑅𝐹𝑠𝑘(1 ‖  𝑊) Compute     

 𝐻_𝑇to (𝐿𝑎, Š𝑡) Add      

 
 

 

𝒕 ←  𝑻𝒓𝒑𝒅𝒓_𝑾(𝒔𝒌, 𝑾): 

 𝑊 and  𝑠𝑘1. Input  

 𝑡 =  𝑃𝑅𝐹𝑠𝑘(1 ‖  𝑊) = 𝐿𝑎2. Compute 

:Š𝒕  ← 𝑺𝒆𝒂𝒓𝒄𝒉_𝒕(𝒕 , 𝑯_𝑻)  

      Š𝒕 = 𝐺𝑒𝑡 (𝐿𝑎)  

𝑳𝒊𝒅 ←  𝑭𝒊𝒏𝒅_𝒊𝒅𝒔(𝒔𝒌, Š𝒕): 

 𝑠𝑘𝑒 = 𝑃𝑅𝐹𝑠𝑘(2 ‖ 𝑊)1.  

𝑆𝑡 = 𝐷𝑒𝑐𝑠𝑘𝑒
(Š𝒕)2.  

𝑖 = 1list and  =[]  𝐿𝑖𝑑Initialize3.  

c=0 

 For from 𝑖 = 1 to 𝑁𝑑𝑏/2              

equal “A” 𝑆𝑡[𝑖]if             

𝐿𝑖𝑑add c to c=c+1,                      

𝐿𝑖𝑑add c to c=c+1,                      

equal “D” 𝑆𝑡[𝑖]Else if            

c=c+2                     

equal “B” 𝑆𝑡[𝑖]Else if           

𝐿𝑖𝑑add c to c=c+1,                      

                    c=c+1 

equal “C” 𝑆𝑡[𝑖]Else if           

c=c+1                     

𝐿𝑖𝑑add c to c=c+1,                      
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𝑆𝑡 = 𝐷𝑒𝑐𝑠𝑘𝑒
(Š𝒕). The next step is to set up a counter 𝑐 and 

a list 𝐿𝑖𝑑  to keep track of the end result. Subsequently, 

every letter in 𝑆𝑡 is examined to ascertain if the word exists 

in the identifiers, and the identifiers are determined based 

on these cases. 

5 Security analysis 

In this part, we discussed the resistance of our scheme, the 

most famous types of attacks on SSE. 

 

•  Frequency analysis attack 

A frequency analysis attack is a well-known ciphertext 

attack. It is based on examining the frequency of 

individual letters or groups of letters in a ciphertext. [6]. 

Therefore, it exploits the frequency of encrypted data 

uploaded to 𝑆𝐼, which is either term frequency TF or term 

frequency-inverse 𝑇𝐹_𝐼𝐷𝐹. 𝑇𝐹 is defined as the number 

of times a word 𝑊 appears in a document  𝑖𝑑, and 𝑇𝐹 −
𝐼𝐷𝐹 is the product of the term frequency (𝑇𝐹) and the 

inverse document frequency (𝐼𝐷𝐹). 𝐼𝐷𝐹 is calculated by 

dividing the total number of documents   
𝑁𝑑𝑏  by the number of documents that contain the word 

𝑛. 

 

   If the cloud server 𝐶𝑆 can access this critical 

information, it can execute this attack and identify the 

keyword being searched for. 

   Based on the above, we can conclude that our work is 

secure against this type of attack because the values stored 

in the cloud server 𝐶𝑆 are encrypted and do not directly 

reveal the original identifiers. Instead, they are 

transformed into an obscure text that enables the user to 

access the identifiers later. 

 

• IKK attack  

The IKK attack utilizes disclosed partial information to 

determine the plaintext words associated with the user 

search trapdoors. Consequently, this attack primarily 

depends on the leakage of access pattern information, 

which is defined as the outcome of the cloud server's 

𝐶𝑆 search for t in  𝑆𝐼, For instance, let's consider our 

database focuses on computer science, and a user submits 

three queries as trapdoors:t1, t2, and t3, representing the 

words "Hardware," "software," and "information," 

respectively. Once the communication between the user 

and CS is completed, the CS examines the obtained 

results, which are the sets of identifiers corresponding to 

the trapdoors. The CS can then calculate the probability of 

any two of these keywords appearing in the same 

document by observing the number of documents that are 

returned for those corresponding trapdoors. By continuing 

the search and leaking the access pattern to obtain more 

probabilities, the server can determine the keywords that 

correspond to the trapdoors [6]. However, after clarifying 

this attack, we can assert that our scheme resists the IKK 

attack because the search results by the CS are encrypted, 

and the access pattern does not reveal any significant 

information. Thus, the CS cannot access the identifiers 

corresponding to the trapdoors [27]. 

 

• Keyword guessing attack (KGA)  

Keyword guessing attack is an attack on the encrypted 

index stored on the server, where the attacker attempts to 

guess the keyword being searched in order to use it later 

to find its identifiers [28]. This attack can be mitigated by 

various precautionary measures, such as encrypting the 

keywords themselves and keeping the encryption key 

secret and secure. Both of these measures are implemented 

in our scheme. Therefore, we can state that our work is 

resistant to KGA attacks. 

 

• Man-in-the-middle attack 

This type of attack happens when the communication 

channel between the user and the CS is not secure, 

allowing the attacker to impersonate one of the parties 

[29].Our  work resists a Man-in-the-middle attack, due to 

the secret channel between the two parties (user and  

server), as the copy of the secret key exists only with the 

user and the server. 

6   Experimental results   
In this section, we evaluate our scheme using a real-

world database of Wikipedia articles. We executed our 

experiments on a Windows 64-bit machine running an 

Intel Core i5 CPU clocked at 1.6 GHz and 8GB RAM. The 

database contains 2,050 identifiers 𝑁𝑑𝑏 = 2,050  and 

525,430 words 𝑊 = 525,430. Additionally, we chose a 

database that supports locality to enable us to observe the 

effect on retrieval time due to its significant number of 

identifiers. Python was our language of choice for the 

implementation of the code, owing to its numerous 

features and popularity in the scientific community. 
Comparison with previous studies 

In this section, we will conduct a comparative analysis 

of our work with four previous studies that share a similar 

objective: to improve performance through locality. These 

studies are  [[8], [9], [10], [30]] and we conducted all of 

these works at the beginning before starting the 

comparison process.  

To compare the studies, we focused on the search time 

required for retrieving three words that vary in the number 

of identifiers. The first word, 𝑊1, has the highest number 

of identifiers (𝑛 = 2025), the second word, 𝑊2, has an 

average number of identifiers ( 𝑛 = 1015), and the last 

word, W3, has a very small number of identifiers ( 𝑛 = 4). 

The outcomes of acquiring 𝑊1 and  𝑊2 clearly 

demonstrate the disparity between our work and the prior 

works in terms of search speed, as shown in Fig. 2. 

Meanwhile, the results of retrieving W3  demonstrate that 

while our approach enhances the search of words with a 

substantial number of identifiers, it does not adversely 

impact the search of words with fewer identifiers as shown 

in Fig. 3. To ensure a fair comparison with previous works 

that did not include a 𝐹𝑖𝑛𝑑_𝑖𝑑𝑠 phase, we have included 

the time required for this phase along with the research 

time.  
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Figure 2: Comparing the search time required to find 𝑊1 and 𝑊2 in our scheme to that of previous schemes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6   Discussion The primary reason for these promising results is the 

locality enhancements we integrated into our scheme, 

Figure 3: Comparison of search time for W3 in our scheme versus previous 

schemes. 
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which significantly decreased the number of memory 

locations the cloud server needs to access to respond to a 

user's query. For example, in the work of Cash et al. [30], 

the cloud server had to traverse 2025 different memory 

locations to retrieve identifiers for the first word, whereas 

in our scheme, it only needs to access one location. 

Furthermore, the improved locality results in fewer 

decryption operations. In our scheme, decryption is 

performed once to obtain the identifiers, whereas in other 

schemes, multiple decryptions are required, affecting the 

overall speed of the results. Another factor contributing to 

these positive outcomes is that the cloud server in our 

schemes interacts with a single hash table, while in 

Asharov et al. (Scheme 3) [9], Cash and Tessaro [8], and 

Demertzis and Papamanthou [10], it manages multiple 

hash tables. 

7   Conclusions 
Our primary goal for this work is to enhance the 

overall performance of SSE. We are addressing a problem 

related to large DB, specifically the issue of poor locality 

caused by the many moves in memory by the cloud server 

during the search phase. We have made changes to 𝑆𝐼 

storage mechanism, resulting in a significant improvement 

in the search performance. Our modification has 

optimized the locality to 𝑂(1) without impacting the 

reading efficiency, which remains at 𝑂(1). Additionally, 

this change has not resulted in significant increase in the 

storage space of the encrypted index. 

Our work provides a high level of security since the server 

does not decrypt the data. Instead, it sends the encrypted 

data to the user, who decrypts it. Moreover, the values 

stored on the server are all equal in size and do not reveal 

the identifiers themselves. These values serve as evidence 

to obtain the identifiers later. 
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