
https://doi.org/10.31449/inf.v49i7.5925 Informatica 49 (2025) 165–174 165

Enhancing Searchable Symmetric Encryption Performance through

Optimal Locality

Aya A. Alyousif1*, Ali A. Yassin2, Hussein M. Mohammed3

1 Department of Medical Instrumentation Engineering Techniques, Shatt Al-Arab University College, Basra, Iraq
2 Department of Computer Science, Education College for Pure Sciences, University of Basrah, Basrah, Iraq
3 Directorate General of Education Basrah, Ministry of Education, Basrah, Iraq

Email: ayah.abdulhussain@sa-uc.edu.iq1, ali.yassin@uobasrah.edu.iq2 , hussain.mazin@sa-uc.edu.iq3

*Corrsponding author

Keywords: information retrieval, searchable symmetric encryption, inverted index, locality, cloud server

Received: March 17, 2024

Both individuals and institutions place great importance on maintaining the security and privacy of their

data, when stored in the cloud server. To achieve this, they often turn to searchable symmetric encryption

(SSE), which is considered a crucial technology for safeguarding user data. However, SSE has

encountered some challenges, particularly in the case of large databases. One such issue is poor

performance, which can be attributed to poor locality. This means that the cloud server must visit a large

number of locations during the search process, resulting in slow retrieval times. The main problem

however, is not just poor locality. In many cases, optimization methods intended to improve performance

can actually lead to increased storage requirements for the encrypted index stored on the cloud server or

reduced efficiency when reading data. These issues must be addressed in order for SSE to continue to be

an effective tool for protecting sensitive information. In this paper, we introduce a secure and searchable

scheme that effectively addresses the issues mentioned above, while also enhancing the performance of

information retrieval through an improved encrypted inverted index storage mechanism. Our scheme

achieves optimal locality at 𝑂(1), and read efficiency at 𝑂(1), thereby significantly increasing the speed

of retrieval. Through experimentation with real-world data, we have demonstrated the practicality,

accuracy, and security of our approach, making it a reliable solution for secure and efficient information

retrieval.

Povzetek: Predlagana je optimizirana metoda za izboljšanje učinkovitosti iskanja v šifriranih podatkih z

uporabo izboljšanega obrnjenega indeksa, ki dosega optimalno lokalnost in povečuje hitrost ter varnost

pridobivanja informacij.

1 Introduction
In the modern age, the need for data storage has greatly

increased. With technology advancing rapidly, we are

generating data faster than ever, and businesses,

individuals, and organizations all need efficient ways to

store, manage, and access this data. Consequently, cloud

storage has become a popular choice, offering many

benefits over traditional data storage methods[1][2].

 Cloud storage refers to storing data on remote servers

accessible via the internet from any connected device.

This method allows data to be centrally stored and easily

accessed from anywhere with an internet connection.

Cloud storage is flexible, letting users adjust their storage

needs up or down as required, without the limitations of

physical storage devices. It is ideal for businesses and

individuals needing to store large amounts of data

securely. Cloud storage providers ensure high reliability

by using redundant storage systems and multiple data

centers in different locations, making data always

accessible, even during hardware failures or natural

disasters. This reliability is crucial for businesses relying

on data for critical operations, ensuring their data is secure

and available when needed.

 Despite the numerical advantages of cloud storage, it

is not without challenges, and security is the biggest

challenge for cloud storage [3]. To ensure the security of

data stored on cloud servers, various methods need to be

employed, including access control, network security, and

encryption [4]. Access control is a mechanism that

restricts access to data based on user identity, role, or

authorization. Network security involves securing the

network infrastructure used for data transmission.

Encryption, on the other hand, is the process of

transforming data into code to prevent unauthorized

access. Encryption can be applied both in transit and at

rest, thus ensuring that data remains secure during

transmission and storage.

 To secure data stored in the cloud, various encryption

techniques are used to prevent unauthorized access.

Symmetric encryption is widely used and involves a single

key for both encrypting and decrypting data. In contrast,

asymmetric encryption uses different keys for encryption

and decryption, offering more security but at a slower

speed. Hashing is another method, commonly used for

mailto:pgs.aya.alyousif@uobasrah.edu.iq1
mailto:ali.yassin@uobasrah.edu.iq2
mailto:hussain.mazin@sa-uc.edu.iq3

166 Informatica 49 (2025) 165–174 A.A. Alyousif1 et al.

securing passwords, which converts data into a fixed-size

string that cannot be reversed. A newer technique,

Searchable Symmetric Encryption (SSE) [5], allows users

to search encrypted data without exposing it. SSE comes

in two types: deterministic, which offers consistent results

but less security, and probabilistic, which provides better

security but less predictability.

Table 1: List of symbols

These encryption methods are crucial for protecting cloud

data and must be carefully implemented to prevent data

breaches or attacks.

 Searchable symmetric encryption (SSE) presents

several challenges[6]. The process, which involves

searching encrypted data, requires creating and

maintaining an index for each keyword, making it

complex. Moreover, there are security risks, such as the

possible leakage of sensitive data. A recent challenge in

SSE is a significant drop in performance and retrieval

efficiency when dealing with large databases [7].

Researchers have found that this issue is not due to flaws

in the encryption itself but is related to how the secure

index is stored in memory. During a search, the index may

cause the cloud server to perform many continuous

memory transitions, known as "poor locality," " [[7], [8],

[9], [10], [11]] which can slow down the retrieval process

and degrade SSE performance. While some researchers

are working to improve locality to boost performance, this

can lead to increased storage requirements for the

encrypted index on the cloud server or reduce the

Character Description

𝑊 Word

𝑛𝑤 Number of 𝑊

𝑀 Words in 𝐷𝐵, 𝑀 = {𝑊1, . . . , 𝑊𝑛𝑤}

𝑖𝑑 Identifier

𝑁𝑑𝑏 Total of identifiers 𝐷𝐵

𝑛 Total of identifiers 𝑊

𝑁 ∑ |𝑑𝑏(𝑊)|𝑖=1
𝑛𝑤 where 𝑑𝑏(𝑊) = {𝑖𝑑1, . . , 𝑖𝑑𝑛 }

𝑐 Counter

𝐻_𝑇

A hash table is a data structure that allows efficient storage and retrieval of key-

value pairs. It comprises a pair of algorithms, are "Add" and "Get"[11].

𝐴𝑑𝑑 Algorithm adds pairs of (𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒) to 𝐻_𝑇

𝐺𝑒𝑡 value=Get(key)

𝑆𝑡 String

Š𝑡 Encrypted string

𝑠𝑘𝑒 Derivative key used for encryption and decryption of 𝑆𝑡

𝐿𝑎 Label is used to store and retrieve Š𝑡 in 𝐻𝑇, 𝐴𝑑𝑑(𝐿𝑎, Š𝑡),

Š𝑡 = 𝐺𝑒𝑡(𝐿𝑎)

𝐸𝑛𝑐 Function to encryption 𝑆𝑡

𝐷𝑒𝑐 Function to decryption Š𝑡

𝐿𝑖𝑑 List to store identifiers

Enhancing Searchable Symmetric Encryption Performance Through… Informatica 49 (2025) 165–174 167

efficiency of data reading. The contributions of our

approach can be summarized as follows:

 Firstly, our scheme significantly improves the

performance of information retrieval for all databases,

regardless of their size, by enhancing locality. Secondly,

our scheme achieves an optimal locality of 𝑂(1), meaning

that the cloud server only needs to access one memory

location during each search operation, as opposed to many

locations. Thirdly, our proposed scheme is highly secure,

as the server searches for the required data and sends it to

the data owner without decrypting it, thereby enhancing

resistance to various attacks that symmetric searchable

encryption is vulnerable to. Fourthly, our scheme has

better reading efficiency 𝑂(1), as the cloud server only

responds with the requested data when the user queries it.

Finally, our scheme has no significant negative impact on

the storage of the encrypted index in the cloud server.

Figure 1: Searchable symmetric encryption

Table 2: Searchable symmetric encryption algorithm

168 Informatica 49 (2025) 165–174 A.A. Alyousif1 et al.

2 Searchable symmetric encryption

(𝑺𝑺𝑬)
 SSE is a technology designed to enable searching over

encrypted data while maintaining its confidentiality [[12],

[13], [14]]. It involves three key components: the data

owner 𝐷𝑊, the cloud server 𝐶𝑆, and the users. The

process of SSE consists of several steps. Initially, the data

owner selects a secret key for encryption and decryption.

Next, they construct a secure index based on the words in

their database. This index is then encrypted with the secret

key chosen earlier. When a user wishes to search for data,

they generate an encrypted search query known as a token.

This token is encrypted using the same secret key that was

used to encrypt the index and is sent to the cloud server.

Upon receiving the token, the cloud server uses the

encrypted index to search for the requested data[15]. The

cloud server either decrypts the data and sends it to the

user or sends it encrypted so that the user can decrypt it

later. The Table 2. summarizes the steps involved in

Searchable Symmetric Encryption algorithms:

Table 3: Comparison with previous schemes based on storage, locality, and read efficiency

Algorithm Description

Key generation phase:

𝒔𝒌 ← 𝑮𝒆𝒏𝒔𝒌(𝟏𝝀)

The key generation algorithm takes the security parameter1𝜆 as input and generates

the secret key as its output.

onstructing secure C

index:

𝑺𝑰 ← 𝑬𝒏𝒄_𝑫𝑩(𝒔𝒌, 𝑫𝑩)

The secure index 𝑆𝐼 is created in this algorithm by taking the secret key 𝑠𝑘 and the

database 𝐷𝐵 as input.

Token generator:

𝒕 ← 𝑻𝒓𝒑𝒅𝒓_𝑾(𝒔𝒌, 𝑾)

The token 𝑡 in this algorithm is created by the user to search for a specific word 𝑊 or

data.

Search:

 𝑹 ← 𝑺𝒆𝒂𝒓𝒄𝒉_𝒕(𝒕 , 𝑺𝑰)

In this algorithm, the cloud server searches for the required word in 𝑆𝐼 and returns the

result 𝑅 to the user. If the result is encrypted, the user will need to use 𝐹𝑖𝑛𝑑_𝑖𝑑𝑠

algorithm.

Find identifiers:

𝑰𝑫𝑺 ← 𝑭𝒊𝒏𝒅_𝒊𝒅𝒔(𝒔𝒌, 𝑹)

The user employs this algorithm to retrieve the final outcome, which comprises word

identifiers 𝐼𝐷𝑆 after carrying out any essential processing and decrypting 𝑅

 Related works Storage Locality Read efficiency

Curtmola et al. [14] 𝑂(𝑁) 𝑂(𝑛) 𝑂(1)

Kamara et al. [21] 𝑂(𝑁) 𝑂(𝑛) 𝑂(1)

David cash et al. [17] 𝑂(𝑁) 𝑂(𝑛) 𝑂(1)

Chase and Kamara [18] O((Max|𝑑𝑏(𝑊)|)𝑁𝑑𝑏) 𝑂(1) 𝑂(1)

P. van Liesdonk et al.[19] 𝑂(𝑛𝑤 𝑁𝑑𝑏) 𝑂(𝑛) 𝑂(1)

Kamara and Papamanthou [22] 𝑂(𝑛𝑤 𝑁𝑑𝑏) 𝑂(𝑛 𝑙𝑜𝑔 𝑁𝑑𝑏) 𝑂(𝑁𝑑𝑏 𝑙𝑜𝑔𝑁𝑑𝑏)

David cash et al. [8] 𝑂(𝑁 𝑙𝑜𝑔 𝑁) 𝑂(𝑙𝑜𝑔 𝑁) 𝑂(1)

Asharov et al. (Scheme 3) [9] 𝑂(𝑁 𝑙𝑜𝑔 𝑁) 𝑂(1) 𝑂(1)

Demertzis and Papamanthou

[10]

𝑂 (𝑁 𝑆) 𝑂(𝐿𝑑)

Where 𝐿𝑑 is a tunable

locality
𝑂(

𝑁
1
𝑠

𝐿
)

Asharov et al. (Pad-and-split

scheme) [11]

𝑂(𝑁 𝑙𝑜𝑔 𝑁/ 𝑙𝑜𝑔 𝐿) 𝑂(𝐿𝑑)

Where 𝐿𝑑 depends on the

scheme in which it is

implemented within its

framework

𝑂(1)

Alyousif et al.[23] 𝑁 = ∑ (∑ 𝑆𝑡𝑗=1
𝑛𝑞

)𝑖=1
𝑛𝑤 𝑂(𝑛𝑞) 𝑂(1)

Enhancing Searchable Symmetric Encryption Performance Through… Informatica 49 (2025) 165–174 169

3 Related works

In the year 2000, a novel technology emerged that

facilitated the searching of encrypted data without the

need for decryption [16]. The system was dubbed

Searchable Symmetric Encryption and provided users

with the ability to search for specific keywords within

encrypted data while maintaining content security. SSE's

inception marked a significant milestone in the field of

data security and privacy. Following the introduction of

this new technology, extensive research was conducted in

various areas, including performance optimization.

Studies have shown that the reduction in performance is

not due to the technology itself, but rather to the memory

positions that the server accesses while processing user

requests. As the encrypted index size grows, the number

of positions accessed also increases, resulting in a slower

response time [17]. This case is called poor locality.

Known constructions can be classified into two

approaches. The first approach has linear space and

constant read efficiency, but its poor locality is highlighted

in references [14] and [17]. This scheme involves

allocating an array of size 𝑁 and uniformly mapping 𝑁

elements from the DB into it. To retrieve a list of

identifiers that contain a specific W, the approach stores

each identifier in the array alongside a pointer to the next

identifier in the list. Unfortunately, this approach requires

the cloud server to access random positions in the array,

with the number of identifiers associated with the word,

which results in inefficiency due to the need to move to a

large number of different positions. The second approach

has excellent read efficiency and locality, but it comes at

the cost of a significant amount of extra space [[18], [19],

[20], [21]]. The basic idea behind this approach is to

allocate a sufficiently large array 𝐴 and then map each list

of W identifiers uniformly into a contiguous interval in 𝐴,

based on the length of the W identifiers. There should be

no overlaps among different lists. To retrieve a list for a

given 𝑊 efficiently, the cloud server only needs to access

one random position and read all consecutive identifier

entries, which leads to optimal read efficiency and

locality.

However, the positions of the lists in the array reveal

information about the structure of the underlying 𝐷𝐵. To

hide this information, padding must be applied, resulting

in a polynomial increase in space usage. We have to

highlight that there is often a problem with storage

capacity, which is often large due to locality optimization,

or bad locality itself which can have a detrimental effect

on cloud server response time. And sometimes there is a

negative impact on the efficiency of reading the data as

well. It is difficult, if not impossible, to construct a

construction that is ideally locality with limited storage

space without compromising its data read efficiency. This

issue was discussed by Cash and Tessaro in 2014[8],

where they also determined the minimum tradeoff

required between these three criteria. Also, Cash and

Tessaro developed a new construction that enhances

locality to 𝑂(𝑙𝑜𝑔 𝑁) with storage capacity 𝑂(𝑁 𝑙𝑜𝑔 𝑁).

In 2016, Gilad Asharov et al. improved construction

locality for Cash and Tessaro locality, achieving locality

of 𝑂(1) [9] while maintaining the same storage capacity.

Demertzis and Papamanthou [10] developed two

constructions in 2017. The first construction offered

optimal locality and required 𝑂(𝑁 𝑆) space, where 𝑆

represents the number of levels employed to store data.

However, this construction resulted in a slight reduction in

read efficiency, and the storage space needed was still

significant. The second construction, which operated

within the same storage space as the first, allowed for

tunable locality, enabling the 𝐷𝑊 to select a parameter

through which to create their index. In 2021, Asharov et

al. achieved remarkable progress by introducing two

frameworks [11]: pad-and-split and statistical-

independence.

The last work that we will talk about is one of our

previous works [23] that aims to improve locality using

QR code technology. The work achieved good results

compared to previous works, but the locality was not ideal

O(1) rather, it depends on the number of QR codes for the

word. The following table summarizes the most important

previous works in terms of the three main important

characteristics: locality, storage efficiency, and reading

efficiency.

 where 𝑛𝑞 is number of

QR codes for the

word and 𝑆𝑡 is a

string

Our work 𝑂(𝑁) 𝑂(1) 𝑂(1)

170 Informatica 49 (2025) 165–174 A.A. Alyousif1 et al.

4 Proposed scheme

In this section, we will explain our scheme in detail.

First, the data owner generates a secret key, sk, using a

Pseudo-Random Function (PRF). A PRF is a

deterministic algorithm that produces outputs that seem

random, despite being generated from a specific input.

PRFs are commonly used in cryptography to improve

security, as their output is difficult to distinguish from true

randomness, even against powerful adversaries[[24],

[25],[26]]. The secret key, sk, will be used for both

encryption and decryption. Below, we present the

complete construction of our scheme.

 The next step involves the data owner 𝐷𝑊 creating a

secure index SI for the database 𝐷𝐵. In our approach, SI

is equivalent to 𝐻_𝑇,, which is based on the words 𝑀 in the

database and their corresponding identifiers 𝑑𝑏(𝑊) =

 {𝑖𝑑1, . . , 𝑖𝑑𝑛 }. The 𝐷𝑊 then arranges the identifiers 𝑑𝑏(𝑊)

for each word 𝑊 in the group 𝑀 in ascending order and

prepares an empty string 𝑆𝑡 = "" for the next step.

Next, we examine all identifiers in odd positions

within the database. For each of these odd-positioned

identifiers, we check the state of the corresponding word

as well as the adjacent even-positioned identifier,

recording the results in 𝑆𝑡. There are four possible

scenarios, labeled A, B, C, and D, depending on whether

the word appears in the odd or even positions.

1. Case A: If the word appears in the identifiers that is

located in the odd and even positions together.

2. Case D: The opposite of Case A is when the word

does not appear in either identifier located in the odd

and even positions.

3. Case B: If the word appears in the identifier located

in an odd position but not in the identifier located in

an even position.

4. Case C: Conversely, the opposite of Case B is when

the word does not appear in the identifier located in

an odd position but appears in the identifier located in

an even position.

 Once we have constructed 𝑆𝑡 that indicates the presence

or absence of the word in its identifiers, we will generate

two keys. The first key 𝑠𝑘𝑒 = 𝑃𝑅𝐹𝑠𝑘(2 ‖ 𝑤) will be used to

encrypt 𝑆𝑡, Š𝑡 = 𝐸𝑛𝑐𝑠𝑘𝑒
(𝑆𝑡), ensuring that it remains secure

and confidential. The second key 𝐿𝑎 = 𝑃𝑅𝐹𝑠𝑘𝑒
(1 ‖ 𝑊)

will serve as a label to identify Š𝑡 when it is stored in the

hash table.

 After encrypting 𝑆𝑡 with the first key, we store the

encrypted result, Š𝑡, in a hash table using 𝐿𝑎 as a label. We

then add (𝐿𝑎, Š𝑡) to 𝐻_𝑇, which allows us to easily

retrieve Š𝑡 when needed while keeping it secure from

unauthorized access or tampering. Once 𝐻_𝑇 is

constructed, the data owner 𝐷𝑊 can upload it to the cloud

server 𝐶𝑆. When a user wants to search for a word 𝑊, they

generate a token 𝑡 using the second key 𝐿𝑎, which was

created during the index construction, and send it to 𝐶𝑆.

This step is essential for enabling secure data searches on

𝐶𝑆. When 𝐶𝑆 receives 𝑡 from the user, it uses t to retrieve

Š𝑡from 𝐻_𝑇 and then sends Š𝒕 to the user.

 After the user receives Š𝒕, he begins to decrypt it after

recalculating the first key 𝑠𝑘𝑒 = 𝑃𝑅𝐹𝑠𝑘(2 ‖ 𝑤),

CONSTRUCTION.

, = {𝑑𝑏(𝑊1), . . . , 𝑑𝑏(𝑊𝑛𝑤)}Let

𝑀 = {𝑊1, . . . , 𝑊𝑛𝑤}𝑑𝑏(𝑊) =let 𝑊 ∈ 𝑀For ;

𝐷𝐵total of identifiers is 𝑁𝑑𝑏and {𝑖𝑑1, . . , 𝑖𝑑𝑛 }

𝒔𝒌 ← 𝑮𝒆𝒏𝒔𝒌(𝟏𝝀):

 Compute 𝑠𝑘 with 𝑃𝑅𝐹

𝑯_𝑻 ← 𝑬𝒏𝒄_𝑫𝑩(𝒔𝒌, 𝑫𝑩):

 𝐻_𝑇empty 1. Initialize

 𝑊 𝜖 𝑀2. For every

𝑑𝑏(𝑊)Sort

, i=1𝑆𝑡 = " "

 For from 𝑖 𝑡𝑜 𝑁𝑑𝑏

 If 𝑖 mod 2 is not equal 0

 𝑑𝑏(𝑊)in 𝑖 + 1and 𝑖If

𝑆𝑡Add “A” to

𝑑𝑏(𝑊)not in 𝑖 + 1and 𝑖Else if

𝑆𝑡Add “D” to

and𝑑𝑏(𝑊) in 𝑖Else if

𝑑𝑏(𝑊)not in 𝑖 + 1

𝑆𝑡Add “B” to

and𝑑𝑏(𝑊) not in 𝑖Else if

𝑑𝑏(𝑊)in 𝑖 + 1

𝑆𝑡Add “C” to

𝑠𝑘𝑒 = 𝑃𝑅𝐹𝑠𝑘(2 ‖ 𝑤)

by AES256 Š𝑡 = 𝐸𝑛𝑐𝑠𝑘𝑒
(𝑆𝑡)

 𝐿𝑎 = 𝑃𝑅𝐹𝑠𝑘(1 ‖ 𝑊) Compute

 𝐻_𝑇to (𝐿𝑎, Š𝑡) Add

𝒕 ← 𝑻𝒓𝒑𝒅𝒓_𝑾(𝒔𝒌, 𝑾):

 𝑊 and 𝑠𝑘1. Input

 𝑡 = 𝑃𝑅𝐹𝑠𝑘(1 ‖ 𝑊) = 𝐿𝑎2. Compute

:Š𝒕 ← 𝑺𝒆𝒂𝒓𝒄𝒉_𝒕(𝒕 , 𝑯_𝑻)

 Š𝒕 = 𝐺𝑒𝑡 (𝐿𝑎)

𝑳𝒊𝒅 ← 𝑭𝒊𝒏𝒅_𝒊𝒅𝒔(𝒔𝒌, Š𝒕):

 𝑠𝑘𝑒 = 𝑃𝑅𝐹𝑠𝑘(2 ‖ 𝑊)1.

𝑆𝑡 = 𝐷𝑒𝑐𝑠𝑘𝑒
(Š𝒕)2.

𝑖 = 1list and =[] 𝐿𝑖𝑑Initialize3.

c=0

 For from 𝑖 = 1 to 𝑁𝑑𝑏/2

equal “A” 𝑆𝑡[𝑖]if

𝐿𝑖𝑑add c to c=c+1,

𝐿𝑖𝑑add c to c=c+1,

equal “D” 𝑆𝑡[𝑖]Else if

c=c+2

equal “B” 𝑆𝑡[𝑖]Else if

𝐿𝑖𝑑add c to c=c+1,

 c=c+1

equal “C” 𝑆𝑡[𝑖]Else if

c=c+1

𝐿𝑖𝑑add c to c=c+1,

Enhancing Searchable Symmetric Encryption Performance Through… Informatica 49 (2025) 165–174 171

𝑆𝑡 = 𝐷𝑒𝑐𝑠𝑘𝑒
(Š𝒕). The next step is to set up a counter 𝑐 and

a list 𝐿𝑖𝑑 to keep track of the end result. Subsequently,

every letter in 𝑆𝑡 is examined to ascertain if the word exists

in the identifiers, and the identifiers are determined based

on these cases.

5 Security analysis

In this part, we discussed the resistance of our scheme, the

most famous types of attacks on SSE.

• Frequency analysis attack

A frequency analysis attack is a well-known ciphertext

attack. It is based on examining the frequency of

individual letters or groups of letters in a ciphertext. [6].

Therefore, it exploits the frequency of encrypted data

uploaded to 𝑆𝐼, which is either term frequency TF or term

frequency-inverse 𝑇𝐹_𝐼𝐷𝐹. 𝑇𝐹 is defined as the number

of times a word 𝑊 appears in a document 𝑖𝑑, and 𝑇𝐹 −
𝐼𝐷𝐹 is the product of the term frequency (𝑇𝐹) and the

inverse document frequency (𝐼𝐷𝐹). 𝐼𝐷𝐹 is calculated by

dividing the total number of documents
𝑁𝑑𝑏 by the number of documents that contain the word

𝑛.

 If the cloud server 𝐶𝑆 can access this critical

information, it can execute this attack and identify the

keyword being searched for.

 Based on the above, we can conclude that our work is

secure against this type of attack because the values stored

in the cloud server 𝐶𝑆 are encrypted and do not directly

reveal the original identifiers. Instead, they are

transformed into an obscure text that enables the user to

access the identifiers later.

• IKK attack

The IKK attack utilizes disclosed partial information to

determine the plaintext words associated with the user

search trapdoors. Consequently, this attack primarily

depends on the leakage of access pattern information,

which is defined as the outcome of the cloud server's

𝐶𝑆 search for t in 𝑆𝐼, For instance, let's consider our

database focuses on computer science, and a user submits

three queries as trapdoors:t1, t2, and t3, representing the

words "Hardware," "software," and "information,"

respectively. Once the communication between the user

and CS is completed, the CS examines the obtained

results, which are the sets of identifiers corresponding to

the trapdoors. The CS can then calculate the probability of

any two of these keywords appearing in the same

document by observing the number of documents that are

returned for those corresponding trapdoors. By continuing

the search and leaking the access pattern to obtain more

probabilities, the server can determine the keywords that

correspond to the trapdoors [6]. However, after clarifying

this attack, we can assert that our scheme resists the IKK

attack because the search results by the CS are encrypted,

and the access pattern does not reveal any significant

information. Thus, the CS cannot access the identifiers

corresponding to the trapdoors [27].

• Keyword guessing attack (KGA)

Keyword guessing attack is an attack on the encrypted

index stored on the server, where the attacker attempts to

guess the keyword being searched in order to use it later

to find its identifiers [28]. This attack can be mitigated by

various precautionary measures, such as encrypting the

keywords themselves and keeping the encryption key

secret and secure. Both of these measures are implemented

in our scheme. Therefore, we can state that our work is

resistant to KGA attacks.

• Man-in-the-middle attack

This type of attack happens when the communication

channel between the user and the CS is not secure,

allowing the attacker to impersonate one of the parties

[29].Our work resists a Man-in-the-middle attack, due to

the secret channel between the two parties (user and

server), as the copy of the secret key exists only with the

user and the server.

6 Experimental results
In this section, we evaluate our scheme using a real-

world database of Wikipedia articles. We executed our

experiments on a Windows 64-bit machine running an

Intel Core i5 CPU clocked at 1.6 GHz and 8GB RAM. The

database contains 2,050 identifiers 𝑁𝑑𝑏 = 2,050 and

525,430 words 𝑊 = 525,430. Additionally, we chose a

database that supports locality to enable us to observe the

effect on retrieval time due to its significant number of

identifiers. Python was our language of choice for the

implementation of the code, owing to its numerous

features and popularity in the scientific community.
Comparison with previous studies

In this section, we will conduct a comparative analysis

of our work with four previous studies that share a similar

objective: to improve performance through locality. These

studies are [[8], [9], [10], [30]] and we conducted all of

these works at the beginning before starting the

comparison process.

To compare the studies, we focused on the search time

required for retrieving three words that vary in the number

of identifiers. The first word, 𝑊1, has the highest number

of identifiers (𝑛 = 2025), the second word, 𝑊2, has an

average number of identifiers (𝑛 = 1015), and the last

word, W3, has a very small number of identifiers (𝑛 = 4).

The outcomes of acquiring 𝑊1 and 𝑊2 clearly

demonstrate the disparity between our work and the prior

works in terms of search speed, as shown in Fig. 2.

Meanwhile, the results of retrieving W3 demonstrate that

while our approach enhances the search of words with a

substantial number of identifiers, it does not adversely

impact the search of words with fewer identifiers as shown

in Fig. 3. To ensure a fair comparison with previous works

that did not include a 𝐹𝑖𝑛𝑑_𝑖𝑑𝑠 phase, we have included

the time required for this phase along with the research

time.

172 Informatica 49 (2025) 165–174 A.A. Alyousif1 et al.

Figure 2: Comparing the search time required to find 𝑊1 and 𝑊2 in our scheme to that of previous schemes.

6 Discussion The primary reason for these promising results is the

locality enhancements we integrated into our scheme,

Figure 3: Comparison of search time for W3 in our scheme versus previous

schemes.

Enhancing Searchable Symmetric Encryption Performance Through… Informatica 49 (2025) 165–174 173

which significantly decreased the number of memory

locations the cloud server needs to access to respond to a

user's query. For example, in the work of Cash et al. [30],

the cloud server had to traverse 2025 different memory

locations to retrieve identifiers for the first word, whereas

in our scheme, it only needs to access one location.

Furthermore, the improved locality results in fewer

decryption operations. In our scheme, decryption is

performed once to obtain the identifiers, whereas in other

schemes, multiple decryptions are required, affecting the

overall speed of the results. Another factor contributing to

these positive outcomes is that the cloud server in our

schemes interacts with a single hash table, while in

Asharov et al. (Scheme 3) [9], Cash and Tessaro [8], and

Demertzis and Papamanthou [10], it manages multiple

hash tables.

7 Conclusions
Our primary goal for this work is to enhance the

overall performance of SSE. We are addressing a problem

related to large DB, specifically the issue of poor locality

caused by the many moves in memory by the cloud server

during the search phase. We have made changes to 𝑆𝐼

storage mechanism, resulting in a significant improvement

in the search performance. Our modification has

optimized the locality to 𝑂(1) without impacting the

reading efficiency, which remains at 𝑂(1). Additionally,

this change has not resulted in significant increase in the

storage space of the encrypted index.

Our work provides a high level of security since the server

does not decrypt the data. Instead, it sends the encrypted

data to the user, who decrypts it. Moreover, the values

stored on the server are all equal in size and do not reveal

the identifiers themselves. These values serve as evidence

to obtain the identifiers later.

References

[1] M. Malathi, “Cloud computing concepts,” in 2011

3rd International Conference on Electronics

Computer Technology, 2011, vol. 6, pp. 236–239.

doi: 10.1109/ICECTECH.2011.5942089.

[2] G. Boss, P. Malladi, D. Quan, L. Legregni, and H.

Hall, “Cloud computing,” IBM white Pap., vol. 321,

pp. 224–231, 2007.

[3] T. Dillon, C. Wu, and E. Chang, “Cloud computing:

issues and challenges,” in 2010 24th IEEE

international conference on advanced information

networking and applications, 2010, pp. 27–33. doi:

10.1109/AINA.2010.187.

[4] J. R. Vacca, Cloud computing security: foundations

and challenges. CRC press, 2016.

[5] Y. Wang, J. Wang, and X. Chen, “Secure searchable

encryption: a survey,” J. Commun. Inf. networks,

vol. 1, pp. 52–65, 2016, doi:

https://doi.org/10.1007/BF03391580.

[6] D. V. N. Siva Kumar and P. Santhi Thilagam,

“Searchable encryption approaches: attacks and

challenges,” Knowl. Inf. Syst., vol. 61, no. 3, pp.

1179–1207, 2019, doi:

https://doi.org/10.1007/s10115-018-1309-4.

[7] G. Sen Poh, J.-J. Chin, W.-C. Yau, K.-K. R. Choo,

and M. S. Mohamad, “Searchable symmetric

encryption: designs and challenges,” ACM Comput.

Surv., vol. 50, no. 3, pp. 1–37, 2017, doi:

{10.1145/3064005}.

[8] D. Cash and S. Tessaro, “The locality of searchable

symmetric encryption,” in Annual international

conference on the theory and applications of

cryptographic techniques, 2014, pp. 351–368. doi:

https://doi.org/10.1007/978-3-642-55220-5_20.

[9] G. Asharov, M. Naor, G. Segev, and I. Shahaf,

“Searchable symmetric encryption: optimal locality

in linear space via two-dimensional balanced

allocations,” in Proceedings of the forty-eighth

annual ACM symposium on Theory of Computing,

2016, pp. 1101–1114. doi:

{10.1145/2897518.2897562}.

[10] I. Demertzis and C. Papamanthou, “Fast searchable

encryption with tunable locality,” in Proceedings of

the 2017 ACM International Conference on

Management of Data, 2017, pp. 1053–1067. doi:

{10.1145/3035918.3064057}.

[11] G. Asharov, G. Segev, and I. Shahaf, “Tight

tradeoffs in searchable symmetric encryption,” J.

Cryptol., vol. 34, no. 2, pp. 1–37, 2021, doi:

https://doi.org/10.1007/s00145-020-09370-z.

[12] E.-J. Goh, “Secure indexes,” Cryptol. ePrint Arch.,

2003.

[13] Y.-C. Chang and M. Mitzenmacher, “Privacy

preserving keyword searches on remote encrypted

data,” in International conference on applied

cryptography and network security, 2005, pp. 442–

455.

[14] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky,

“Searchable symmetric encryption: improved

definitions and efficient constructions,” in

Proceedings of the 13th ACM conference on

Computer and communications security, 2006, pp.

79–88. doi: {10.1145/1180405.1180417}.

[15] R. Zhang, R. Xue, and L. Liu, “Searchable

encryption for healthcare clouds: A survey,” IEEE

Trans. Serv. Comput., vol. 11, no. 6, pp. 978–996,

2017, doi: 10.1109/TSC.2017.2762296.

[16] D. X. Song, D. Wagner, and A. Perrig, “Practical

techniques for searches on encrypted data,” in

Proceeding 2000 IEEE symposium on security and

privacy. S&P 2000, 2000, pp. 44–55. doi:

10.1109/SECPRI.2000.848445.

[17] D. Cash, S. Jarecki, C. Jutla, H. Krawczyk, M.-C.

Roşu, and M. Steiner, “Highly-scalable searchable

symmetric encryption with support for boolean

queries,” in Annual cryptology conference, 2013, pp.

353–373. doi: https://doi.org/10.1007/978-3-642-

40041-4_20.

[18] M. Chase and S. Kamara, “Structured encryption and

controlled disclosure,” in International conference

174 Informatica 49 (2025) 165–174 A.A. Alyousif1 et al.

on the theory and application of cryptology and

information security, 2010, pp. 577–594. doi:

https://doi.org/10.1007/978-3-642-17373-8_33.

[19] P. Van Liesdonk, S. Sedghi, J. Doumen, P. Hartel,

and W. Jonker, “Computationally efficient

searchable symmetric encryption,” in Workshop on

Secure Data Management, 2010, pp. 87–100. doi:

https://doi.org/10.1007/978-3-642-15546-8_7.

[20] K. Kurosawa and Y. Ohtaki, “How to update

documents verifiably in searchable symmetric

encryption,” in c, 2013, pp. 309–328. doi:

https://doi.org/10.1007/978-3-319-02937-5_17.

[21] S. Kamara, C. Papamanthou, and T. Roeder,

“Dynamic searchable symmetric encryption,” in

Proceedings of the 2012 ACM conference on

Computer and communications security, 2012, pp.

965–976. doi: {10.1145/2382196.2382298}.

[22] S. Kamara and C. Papamanthou, “Parallel and

dynamic searchable symmetric encryption,” in

International conference on financial cryptography

and data security, 2013, pp. 258–274. doi:

https://ia.cr/2013/832.

[23] A. A. Alyousif and A. A. Yassin, “Locality

Improvement Scheme Based on QR Code Technique

within Inverted Index,” Informatica, vol. 47, no. 7,

2023.

[24] M. Bellare, R. Canetti, and H. Krawczyk, “Keying

hash functions for message authentication,” in

Advances in Cryptology—CRYPTO’96: 16th Annual

International Cryptology Conference Santa

Barbara, California, USA August 18–22, 1996

Proceedings 16, 1996, pp. 1–15. doi:

https://doi.org/10.1007/3-540-68697-5_1.

[25] J. Katz and Y. Lindell, Introduction to modern

cryptography. CRC press, 2020.

[26] Y. Watanabe et al., “How to make a secure index for

searchable symmetric encryption, revisited,” IEICE

Trans. Fundam. Electron. Commun. Comput. Sci.,

vol. 105, no. 12, pp. 1559–1577, 2022, doi:

10.1587/transfun.2021EAP1163.

[27] D. Cash, P. Grubbs, J. Perry, and T. Ristenpart,

“Leakage-abuse attacks against searchable

encryption,” in Proceedings of the 22nd ACM

SIGSAC conference on computer and

communications security, 2015, pp. 668–679. doi:

{10.1145/2810103.2813700}.

[28] Y. Miao, Q. Tong, R. H. Deng, K.-K. R. Choo, X.

Liu, and H. Li, “Verifiable searchable encryption

framework against insider keyword-guessing attack

in cloud storage,” IEEE Trans. Cloud Comput., vol.

10, no. 2, pp. 835–848, 2020, doi:

10.1109/TCC.2020.2989296.

[29] S. Gangan, “A review of man-in-the-middle

attacks,” arXiv Prepr. arXiv1504.02115, 2015, doi:

https://doi.org/10.48550/arXiv.1504.02115.

[30] D. Cash et al., “Dynamic searchable encryption in

very-large databases: Data structures and

implementation,” Cryptol. ePrint Arch., 2014, doi:

10.14722/ndss.2014.23264.

