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With the development of social economy, higher demands have been presented for indoor environment. 

Intelligent design has become a research hotspot. A Genetic Algorithm-Back Propagation Neural 

Network model is constructed based on the association between perception and behavior, combined 

with the Predicted Mean Vote index. Six factors affecting the Predicted Mean Vote indicators are 

analyzed. However, there are inherent flaws in the Back Propagation Neural Network. Therefore, 

combined with Genetic Algorithm, a optimized model is built. It had faster convergence speed than the 

unimproved model. The difference of Predicted Mean Vote was small, with better model fitting effects. 

The overall model error remained around 0.01, with a maximum error of only 0.022. The model had 

higher Accuracy, Precision, and F1-score values compared with other models, with values of 97.89%, 

96.15%, and 0.896. From the results, it has better generalization ability, which can accurately predict 

indoor temperature, achieving intelligent control. The model proposed in the study achieves intelligent 

design of indoor comfort by controlling temperature, providing a reliable foundation for further 

improving indoor intelligence in subsequent research. 

Povzetek: Članek obravnava inteligentno zasnovo notranjih prostorov na osnovi korelacije med 

zaznavanjem in vedenjem. Avtorica predstavi model genetskega algoritma in povratne nevronske mreže, 

ki vključuje kazalnik PMV in omogoča hitrejšo konvergenco in natančnejše napovedi.

1 Introduction 

With the rapid development of artificial intelligence and 

Internet of Things technology, intelligent indoor 

environment design has become a hot research field. The 

demand for comfortable, energy-saving, and intelligent 

indoor environments is constantly increasing, which 

requires advanced technology [1-3]. In the design of 

indoor intelligent environments, the Predicted Mean Vote 

(PMV) is a crucial reference standard for evaluating 

indoor comfort, which comprehensively evaluates factors 

such as humidity, constant temperature, and air 

circulation in the indoor environment. However, due to 

the complexity of indoor environments, a single factor 

often cannot comprehensively evaluate indoor comfort. 

Therefore, multiple factors should be comprehensively 

considered to predict PMV. A Genetic Algorithm-Back 

Propagation Neural Network (GA-BPNN) prediction 

method based on perception and behavior correlation is 

constructed to improve the accuracy and intelligent 

regulation ability of PMV indicators in indoor intelligent 

environment design. By analyzing the influencing factors 

of PMV indicators and combining GA and BPNN, indoor 

temperature is intelligently predicted. The research has 

four parts. The first summarizes the research on 

intelligent design and BPNN, and analyze the research 

results. The second part is to construct the model and 

introduce the improved method. The third part is to verify 

the performance through comparative experiments. The 

fourth part is to summarize the experimental results, point 

out the shortcomings in the research, and propose future 

research directions. The study will provide a feasible 

solution for the intelligent design of indoor comfort, 

providing effective theoretical and methodological 

support for improving indoor intelligent environment 

design. 

2 Related works 

Many scholars have conducted relevant research on 

intelligent design [4-6]. Wang et al. designed a new car 

following model for intelligent transportation smoking. 

Based on the dual speed difference model and the 

dynamic characteristics of traffic flow, the front distance 

memory and rear-view effect were analyzed. The linear 

stability theory was used to describe the evolution 

characteristic equation of traffic flow density waves. It 

improved the traffic flow stability and eliminated traffic 

congestion [7]. Cheng et al. built a behavior prediction 

model in intelligent butler design. Limited hardware 

devices were used to collect sufficient information. A 

Quadro-W learning was developed to predict behavior. 

This study built a model based on the obtained Quadro-W 

information. The results indicated that the proposed 

model could effectively predict the initial environment 

according to environmental changes, improving the 

flexibility of the system [8]. Huang et al. proposed a new 
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intelligent reflection/refraction system. The intelligent 

surface of high-speed vehicles assisted users in 

communication, but the rapidly changing channels in 

communication posed great challenges. The results 

indicated that the proposed system could effectively work 

in high mobile communication scenarios and improve the 

reliability of the output [9]. Zhong et al. proposed the 

Lego modeling method in the intelligent robot design. 

Then a Deep Transfer Deterministic Policy Gradient 

(DT-DPG) was proposed to optimize the efficiency. The 

results showed that the proposed method could accurately 

describe indoor layout and channel status. The training 

efficiency was improved by 30%, which exceeded the 

DPG [10].  

Many scholars have carried out corresponding research 

on BPNN. Yu et al. designed a calibration method based 

on BPNN in multi-body dissipative particle dynamics. 

The study selected three simulation parameters: 

Attraction and repulsion coefficients A, B, and cutoff 

radius for repulsion, as well as four static and dynamic 

properties. The study compared three sampling methods. 

The proposed method was the most effective in reducing 

mean square error, which could accurately and effectively 

determine simulation parameters [11]. Sui et al. proposed 

a BPNN modeling method in the field of architecture. 

Virtual reality technology was used to construct models 

for evaluating building envelope structures and analyzing 

energy-saving building designs. Building models with 

different enclosure structures were constructed. In the 

identification of heat transfer coefficients in building 

envelope structures, the error of BPNN was less than 5%. 

It could effectively save energy, providing a theoretical 

basis for energy-saving design and evaluation of 

buildings [12]. Zhang et al. used BPNN to predict fuel 

ratios in the metallurgical field. The study first analyzed 

the 55 important production parameters in blast furnace 

operation. Finally, a comparative experiment was 

conducted using BPNN and k-nearest neighbor algorithm. 

From the results, the BPNN could keep the error within 

2% and achieve an accuracy of 93.02% [13]. Xu et al. 

developed a compensation method based on BPNN to 

solve nonlinear magnetic interference. To obtain 

sufficient data, a three-dimensional Helmholtz coil was 

used to recover the magnetic signal. It could lower the 

Root Mean Square Errors (RMSEs) of the north, east, and 

vertical components, as well as the total strength to 23.35, 

23.58, 27.42, and 29.72nT [14].  

Although there have been many achievements in 

intelligent design and BPNN in previous studies, the 

BPNN in intelligent design have inherent flaws [15-16]. 

Therefore, the GA is used to improve BPNN, effectively 

solving problems such as large errors and susceptibility to 

local minima. It is expected to update the intelligence of 

indoor environments, promoting the development and 

application of intelligent environmental design. The 

related works table is shown in table 1. 

 

Table 1: The related works table 

Study Method Technology Accuracy (%) 

Wang et al. Two-speed difference model Linear stability theory 94.16 

Cheng et al. Quadro-W Learning Intelligent butler design 93.33 

Huang et al. Intelligent reflex Refraction system 95.12 

Zhong et al. Lego modeling DT-DPG optimization 92.76 

Yu et al. BPNN calibration method Three types of simulation parameters 94.19 

Sui et al. BPNN modeling method Virtual reality technology 96.34 

Zhang et al. BPNN prediction method Blast furnace operating parameters 93.02 

Xu et al. BPNN compensation method Three-dimensional Helmholtz coil 96.74 

Research method GA-BPNN Perceived behavioral correlation 97.89 

 

3 Construction of GA-BPNN based 

on perception and behavior 

correlation 

Based on perceived behavioral correlation, six factors 

affecting human comfort indicators are analyzed. Then a 

model is constructed and optimized. 

3.1 BPNN based on perception and behavior 
Perception is the process in which a person interprets and 

gradually forms consciousness based on their own 

experience after perceiving external things. As an internal 

form of expression, it is caused by the connection 

between humans and the outside world. Behavior 

includes the internal feelings and external language 

actions that humans possess. The collaborative  

 

mechanism of perception and behavior considers humans 

as users of the environment. The characteristics and needs 

of humans directly affect the spatial characteristics 

exhibited in behavioral activities. There is a mutually 

penetrating and interconnected relationship among people, 

behavior, and space. In intelligent environment design, 

human thermal comfort is a crucial aspect. Thermal 

comfort refers to the thermal comfort state towards the 

environment, which is neither cold nor hot. It is applied 

to describe the satisfaction with indoor thermal 

environment. The widely used currently is the PMV, 

which is included in international standards. PMV covers 

almost all environmental factors that affect comfort. The 

calculation method for PMV is shown in formula (1). 
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0.036[0.303 0.028]MPMV e L−= +  (1) 

In formula (1), M  represents the metabolic rate, 

( 2/W m ). L  represents the human heat load. The PMV 

indicators describe the discrepancy in the real heat 

dissipation rate and the required heat dissipation to 

achieve a comfortable state under a given thermal 

environment. The calculation method for L  is shown in 

formula (2). 
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In formula (2), W  represents the mechanical work, 

( 2/W m ). aP  represents the partial pressure of air and 

water vapor, ( KPa ). at  represents the air temperature, 

( C ). clf  represents the clothing area coefficient. clt  

represents the outer surface temperature of clothes, ( C ). 

ch  represents the convective heat transfer coefficient, as 

shown in formula (3). 
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In formula (3), av  represents the air velocity. If the 

external work done by a person is zero, PMV can be 

expressed as formula (4). 

 ( , , , , , )a r cl aPMV f M t t I v =    (4) 

Formula (4) represents the optimal comfortable 

environment for the human body. If formula (4) is not 

satisfied, it indicates that the environment is not in the 

optimal state, but it does not indicate that the 

environment has reached an uncomfortable level. The 

indicator that can represent the state of any set of 

environmental variables using a formula is called the 

average predictive response PMV. This indicator is 

divided into seven levels. The meaning of each level is 

represented in Figure 1. 
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Figure 1: Seven level of PMV thermal comfort 

 

Figure 1 is the seven level indicators of PMV thermal 

comfort. The PMV equation contains exponential terms, 

piece-wise functions, parameters, and multiple coupled 

factors. The calculation process involves multiple 

iterations of nonlinear equations. Multiple factors affect 

human thermal comfort, mainly including physical and 

human factors, as displayed in Figure 2. 
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Figure 2: Factors affecting thermal comfort of human body 

 

Figure 2 shows the specific factors. Physical factors refer 

to the surrounding environment of the human body, 

including relative humidity, open-air temperature, air 

flow rate, and mean radiation temperature. Human factors 

are related to different states of the human body, 

including metabolic rate, and clothing thermal resistance. 

The above factors comprehensively affect the human 

body. When they are in the optimal arrangement and 

combination, the most comfortable state is achieved. The 

first problem that must be solved in the intelligent design 

of indoor temperature is to solve the PMV indicators. 

Generally speaking, the BPNN is used to calculate index 

values [17-18]. BPNN is a supervised learning algorithm 

that simulates the neural network structure of the human 

brain for pattern recognition and prediction tasks. The 

model consists of an input layer, a Hidden Layer (HL), 

and an Output Layer (OL), each of which is composed of 

multiple neurons. These neurons are connected through 

weighted connections and undergo nonlinear 

transformations through activation functions to handle 

complex nonlinear relationships. The core of BPNN lies 

in its learning mechanism, which adjusts the weights and 

thresholds in the network through back propagation 

algorithms. During the learning, the network first receives 

input data and calculates the output result through 

forward propagation. Subsequently, the network 

calculates the error between the predicted output and the 

actual target value, and transmits the error signal back to 

the network through back propagation to adjust weights 

and thresholds, thereby minimizing the prediction error. 

The calculation is displayed in formula (5). 

 
1

, 1,2,...
n

k

j ij i j

i

s w a j p
=

= − =    (5) 

In formula (5), ijw  represents the connection weights 

within ( 1,1)− . j  represents the threshold. 
k

ia  

represents the input sample. js  represents the input of 

each unit. js  is applied to calculate the output of each 

unit in the middle layer, as shown in formula (6). 

 ( ), 1,2...j jb f s j p= =    (6) 

In formula (6), ( )f   represents the transfer function. jb  

represents the output of each unit in the middle layer. The 

output of each unit in the OL can be calculated through 

the output of the middle layer and the connection weights, 

as shown in formula (7). 

 
1
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p

t jt j t

j
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In formula (7), tL  represents the output of each unit in 

the OL. jtv  represents the connection weight. t  

represents the threshold. The output calculation of each 

unit in the OL is used to calculate the response of each 

unit in the OL, as shown in formula (8). 

 ( ), 1,2,...,t tC f L t q= =    (8) 

In formula (8), tC  represents the response of each unit 

in the OL. Based on the real output and the objective 

vector, the generalization error of each unit in the OL can 

be calculated, as shown in formula (9). 

( ) (1 ), 1,2,...,k k

t t t t td y C C C t q= −   − =  (9) 

In formula (9), 
k

td  represents the generalized error of 
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each unit in the OL. 
k

ty  represents the objective vector. 

Based on the connection weights, the generalization error 

of the OL, the output of the middle layer, and the 

generalization error in the middle layer can be calculated, 

as displayed in formula (10). 

 
1

(1 )
q

k k

j t jt j j

t

e d v b b
=

 
=  − 
 
  (10) 

In formula (10), 
k

je  represents the generalized error in 

the middle layer. Formulas (5)-(10) are forward 

propagation process, followed by back propagation 

process. By adjusting the generalization error and each 

unit's output in the OL, as well as the generalization error 

and each unit's output in the middle layer, the connection 

weights and thresholds are corrected. Relying on the 

thermal comfort index, the prediction model is shown in 

Figure 3. 
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Figure 3: BPNN structure for predicting PMV 

 

Figure 3 displays the BPNN structure for predicting PMV 

indicators. The input of the model is the six factors of 

operating thermal comfort index. The output is the PMV 

indicators. The network structure contains a neuron, with 

a BPNN input layer of 6 dimensions and an OL of 1 

dimension. 

 

 

 

 

3.2 Optimization of BPNN model combined 

with GA 

There are defects in BPNN, such as long training time, 

large errors, and susceptibility to local minima. Therefore, 

GA is used to optimize it. GA is widely used in model 

optimization, because GA has better global search ability 

in discontinuous spaces [19-20]. GA follows the survival 

of the fittest. Genetic operators perform selection, 

crossover, and mutation to create a new group of 

solutions, ultimately completing optimization. The 

process of GA is shown in Figure 4. 
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Figure 4: GA basic flow chart 

 

Figure 4 shows the basic process of GA. The initial 

population of GA is generated through encoding, which is 

a prerequisite for GA solving and affects the cross 

mutation. GA first initializes the population, randomly 

generates string structured data, and uses it as the initial 

point for iteration. At the same time, the maximum 

evolutionary iteration is set and a random method is 

applied to generate the initial population. Then, the 

individual fitness function is calculated, which affects the 

optimization process and convergence speed. Afterwards, 

individuals with higher fitness are selected to generate the 

new generation of new populations. According to a 

probability of 0.5-1.0, two individuals are selected to 

cross, that is, to exchange the corresponding gene 

combinations on the individuals. After crossing, some 

individual positions are changed with a small probability. 

Finally, when the fitness stabilizes and achieves the 

global optimum, or after achieving the specified number 

of iterations, the operation stops. Based on the input data 

from BPNN, the GA-BPNN prediction model for PMV 

indicators is established, as displayed in Figure 5. 
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Figure 5: GA-BPNN flowchart 

 

Figure 5 is a schematic diagram of optimized BPNN 

model based on GA. The entire process starts from the 

input data and ensures that the data format is suitable for 

model training through data preprocessing, such as 

normalization. Next, the network topology of BPNN is 

determined, including the number of layers and the 

number of neurons in each layer. The added GA encodes 

the initial weights and thresholds of BPNN to form the 

initial population. These encoded individuals evaluate 

fitness by calculating BPNN training errors, with smaller 

errors indicating higher fitness. Based on the fitness, GA 

performs selection operations to select the best 

individuals for crossover and mutation, in order to 

generate new offspring populations, enhance the model's 

generalization ability, and avoid falling into local optima. 

During the iteration process, newly generated individuals 

are evaluated based on their fitness, and the weights and 

thresholds of BPNN are updated accordingly. This 

process is repeated until the preset termination conditions 

are met, such as reaching the maximum number of 

iterations or fitness reaching the predetermined threshold. 

In addition, the process also includes checking the 

constraints of the solution to ensure that the found 

solution not only has high fitness but also satisfies all the 

constraints of the problem. Finally, the optimized BPNN 

model is used for simulation prediction, resulting in more 

accurate prediction results. The relationship between the 

length of the encoding string and BPNN is expressed as 

formula (11). 

 S m h h n h n=  +  + +    (11) 

In formula (11), m h  represents the encoding length of 

the connection weight in the input layer and HL. h n  

represents the encoding length of the weight between the 

HL and the OL. h  represents the encoding length of the 

HL threshold. n  represents the encoding length of the 

OL threshold. According to the BPNN model, the input 

layer has 6 parameters, and the HL is 10. The OL has a 

PMV value. Therefore, the encoding length is calculated, 

and 6 10 10 1 10 1 81S =  +  + + = . The initial population 

consists of N randomly generated numerical particles. 
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The population size refers to the number of individuals 

included. Fitness measures the individual superiority or 

inferiority in GA. Individual fitness values have an 

impact on the probability they leave behind. Individuals 

with higher fitness are closer to the optimal solution. 

BPNN is actually the process of finding the optimal 

solution. Nonlinear transformation generates output 

values. The actual and output value errors are transmitted 

in reverse. The weights and thresholds are modified to 

ultimately output the weights and thresholds that achieve 

the minimum error. The mean square error of BPNN is 

displayed in formula (12). 
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o o
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E d k y k
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Based on the above analysis, the reciprocal mean square 

error of BPNN can serve as the fitness function of GA. It 

can distinguish individual strengths and weaknesses. The 

fitness function of GA is expressed as formula (13). 
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In formula (13), fitness  represents the fitness function. 

A higher fitness function value indicates good individual 

fitness and superior algorithm performance, while the 

opposite indicates poorer performance. The main step of 

crossover in GA is to randomly pair particles with high 

fitness in the population. Genes are crossed to form new 

individuals. Crossover operation is shown in formula 

(14). 
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In formula (14), ka  and ia  represent different 

chromosomes that undergo crossover operations at 

position j . b  represents a random number between 0 

and 10. Mutation operation is carried out after crossover 

to alter individual genes and prevent the optimization 

process from converging in the immature stage. The 

mutation form is shown in formula (15). 
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ij ij
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a

a a a f g r

+ −  
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In formula (15), ija  represents the j -th gene of the 

i -th individual. mina  represents the minimum lower 

bound of ija . maxa  represents the maximum upper 

bound value of ija . 2 max( ) (1 / )f g r g G= − . 2r  

represents a randomly generated number. maxG  

represents the maximum iteration times. g  represents 

the population iteration. r  refers to a random number 

between 0 and 1. 

4 Analysis of GA-BPNN model based 

on perception and behavior 

correlation 
The study analyzes the proposed model in two parts. 

Firstly, the BPNN model is compared to verify its 

effectiveness. Then it is compared with other models to 

verify its superiority. 

4.1 Optimization Analysis of GA-BPNN 

Model 

To test the proposed model, the topology parameters of 

the BPNN remain unchanged. The maximum iteration 

time for GA is 200, and the population size is 50. The 

fitness function takes the derivative of the prediction 

error of the BPNN, with a crossover probability of 0.4 

and a mutation probability of 0.2. The study selects a 

thermal comfort index database from a certain university, 

with a data sample of 2000 groups, which is separated 

into training and testing samples according to a 9:1 ratio. 

Firstly, all data is standardized and normalized. The 

laboratory environment settings are shown in Table 2. 

 

 

Table 2: Laboratory environment setting 

Hardware and software configuration Version model 

CPU Intel(R)Core i7-7700@3.6GHz 

Operating system Ubuntu 18.04 LTS 

CUDA 9.1 

Deep learning frameworks Pytorch1.10 

Python version 3.7 
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Table 2 displays the experimental settings in the 

laboratory. Experiments are conducted on BPNN and 

GA-BPNN. The fitness curve is shown in Figure 6. 
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Figure 6: GA-BPNN and BPNN training convergence process diagram 

 

Figure 6 (a) presents the convergence process of BPNN 

training. Figure 6 (b) presents the convergence process of 

GA-BPNN training. From the Figure, BPNN and 

GA-BPNN gradually converged with increasing training 

times. For the BPNN, it quickly converged in the first 60 

training times, then converged around 100 training times, 

and the network error stabilized at 10-3. For the 

GA-BPNN, the convergence speed was fast in the first 40 

training times, converged around 60 training times, and 

the network error stabilized at 10-3. The BPNN model 

improved by GA has a fast convergence speed. Two 

models are further experimented, as shown in Figure 7. 
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Figure 7: Comparison of actual and predicted values between GA-BPNN and BPNN 
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Figure 7 (a) displays the actual and predicted values of 

BPNN, which had a significant deviation, with poor 

fitting effect. Figure 7 (b) displays the comparison results 

of GA-BPNN. The difference of PMV was small, and the 

model fitting effect was better. The error curves of the 

two models are shown in Figure 8. 
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Figure 8: GA-BPNN and BPNN error curves 

 

Figure 8 (a) shows the BPNN error curve. From the 

Figure, the BPNN model had a large error in PMV 

prediction, with the error basically remaining around 0.1 

and the maximum error reaching 0.16. Figure 8 (b) shows 

the GA-BPNN error curve. Compared with the BPNN 

model, the GA-BPNN model generally maintained lower 

error, with an error of around 0.01 and a maximum error 

of only 0.022. The PMV had a large number of input 

samples. The BPNN model made the training objectives 

more complex, with longer runtime and lower efficiency. 

There is over fitting during the training process, resulting 

in poor model prediction performance. GA improves the 

BPNN model by optimizing weights and thresholds, 

reducing unnecessary training, and achieving good fitting 

results, which is an effective improvement. 

4.2 Performance analysis of GA-BPNN 

model 

The proposed method is compared with other intelligent 

environment design methods that can be used to combine 

PMV indicators in experiments. The selected comparison 

models include Support Vector Machine (SVM), 

Convolutional Neural Network (CNN), Recurrent Neural 

Network (RNN), and GA-Recurrent Neural Network 

(GA-RNN). The SVM is a supervised learning strategy 

commonly used for data classification and regression 
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analysis. SVM classifies data by mapping it to a 

high-dimensional space and finding a hyperplane that 

maximizes the interval. The core of the CNN is a network 

structure that includes three layers. It extracts features 

from input data through convolutional operations, reduces 

the feature map dimensionality through pooling 

operations, and finally performs classification or 

regression tasks through fully connected layers. The RNN 

has a recurrent neural network structure, which can 

handle serialized data and preserve previous information. 

The GA-RNN combines GA and RNN. The GA is 

adopted to upgrade the parameters of RNN, which can 

find the optimal RNN structure and hyper-parameters to 

optimize the performance. The study selects Accuracy, 

Precision, F1-score, RMSE, and R-squared as model 

validation indicators. Accuracy is the most intuitive 

performance indicator, which represents the proportion of 

correctly predicted samples in the model to the total 

number of samples. Precision measures the proportion of 

positive classes predicted by the model, that is, how many 

of the predicted positive categories are accurate. The 

F1-score is the harmonic mean of precision and recall 

(accuracy), which strikes a balance between the two. It is 

a comprehensive indicator that considers both precision 

and recall. A high F1-score indicates higher precision and 

recall of the model. RMSE is a commonly used indicator 

to measure the error between model predictions and 

observations. R-squared is the determination coefficient 

that represents the degree to which the model explains the 

variability of observations. The proposed method is 

compared with comparison models in the laboratory. 

Figure 9 displays the results. 

 

SVM

Sample size

R
M

S
E

GP-BPNN

0 20 40 60 80 100 120 140 160 180 200

CNN

RNN

GP-RNN 

10

11

12

13

14

15

9

8

A
C

C
 

90

92

94

96

98

100

88

0 20 40 60 80 100 120 140 160 180 200

GP-BPNN

RNN

CNN

SVM

GP-BPNN

(a)RMSE comparison of multiple algorithms

(b) Accuracy comparison of multiple algorithms

Sample size

 

Figure 9: Comparison of RMSE and Accuracy of various models 

 

Figure 9 (a) displays the RMSE results of multiple 

algorithms. From the Figure, the proposed model had the 

lowest RMSE, while the SVM had the highest, indicating 

that the difference was small, and the predictive ability 

was good. The SVM model had a significant difference, 

with poor predictive ability. Figure 9 (b) shows the 

Accuracy comparison results of multiple algorithms. The 

proposed model had high Accuracy. In addition, the 
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GA-RNN model also had high Accuracy. Table 3 

presents the results of other indicators. 

 

 

Table 3: Comparison results of multiple models 

Model Accuracy  Precision  F1-score RMSE R-square 

SVM 88.23% 89.71% 0.714 14.29 0.73 

CNN 91.94% 89.97% 0.753 12.54 0.81 

RNN 93.67% 91.02% 0.787 11.60 0.76 

GA-RNN 95.62% 92.36% 0.815 10.73 0.93 

GA-BPNN 97.89% 96.15% 0.896 10.03 0.92 

 

Table 3 compares other indicators of multiple models. 

From the data in the table, the proposed model achieved 

higher Accuracy, Precision, and F1-score, with values of 

97.89%, 96.15%, and 0.896. Compared with the 

GA-BPNN, the GA-RNN presented a decrease in 

Accuracy, Precision, and F1-score. In terms of RMSE, 

the GA-RNN and GA-BPNN had lower values of 10.73  

 

 

and 10.03, respectively. For the R-square, the GA-RNN 

model reached the highest, at 0.93, while the GA-BPNN 

decreased slightly but also maintained a high level. This 

indicates that the GA-BPNN and GA-RNN can 

effectively explain the changes in observed data, thereby 

accurately predicting comfort feelings under different 

environmental conditions. The comparison of network 

fitness is shown in Figure 10. 
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Figure 10: Multiple model network fitness curves 

 

Figure 10 shows the fitness curves. The GA-BPNN 

model exhibited significant changes in 0-20 iterations, 

gradually stabilizing at 40 iterations and finally 

stabilizing at 0.26. The GA-RNN model showed 

significant changes in 0-60 iterations. Thereafter, its 

fitness remained stable at 0.24. The fitness of RNN, CNN, 

and SVM was relatively low, which stabilized at 0.12, 

0.13, and 0.17. The GA-BPNN model has good 

generalization ability and better predictive performance. 

The performance of RNN, CNN, and SVM is not ideal 

enough to achieve prediction results. 

5 Conclusion 

A GA-BPNN prediction model based on perception and 

behavior correlation was constructed to achieve 

intelligent environment design in indoor spaces. PMV is a 

crucial component in indoor intelligent environments. 

The factors affecting PMV were analyzed. Then the 

BPNN model was introduced to predict PMV indicators. 

However, the BPNN model has drawbacks such as long 

training time, large errors, and the tendency to fall into 

local minima. Therefore, the GA was introduced to 

improve it, and the GA-BPNN model was constructed. 

The effectiveness of the improvement was verified. Then 

the superiority of the model through comparative 

experiments was proved. The experimental results 

showed that the GA-BPNN converged faster than the 

BPNN. The difference of PMV was small, with better 

model fitting effects. The BPNN had a significant error in 

PMV prediction, with an error of around 0.1 and a 

maximum error of 0.16. The overall error of the 

GA-BPNN remained at a relatively low level, with an 

overall error of around 0.01 and a maximum error of only 

0.022. Compared with other models, the GA-BPNN had 

higher Accuracy, Precision, and F1-score, with values of 
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97.89%, 96.15%, and 0.896, respectively. The GA-BPNN 

showed significant changes in fitness during the first 20 

iterations, with the fitness value ultimately stabilizing at 

0.26, indicating good generalization ability and predictive 

performance. The proposed model achieves intelligent 

design of indoor comfort by controlling temperature. 

However, the factors that affect PMV indicators are not 

limited to temperature. In subsequent research, the 

optimal combination of environmental parameters can be 

adjusted to improve indoor intelligence. 

6 Discussion 

The GA-BPNN model based on perception and behavior 

correlation proposed in the study has demonstrated 

advantages in the intelligent indoor environment design. 

By comparing with relevant works in existing literature, 

the contributions and advantages of this study can be 

more clearly identified. Compared with the car following 

model proposed by Wang W J et al. in intelligent 

transportation systems, the designed model focuses on 

predicting the thermal comfort of indoor environments. 

Although both adopt simulation and optimization 

strategies, the research method combines the global 

search ability of GA and the learning ability of BPNN, 

particularly targeting the optimization of PMV indicators, 

which is an innovative application in indoor environment 

design. Compared with the behavior prediction model 

proposed by Cheng et al. in intelligent butler design, the 

proposed model not only predicts user behavior, but also 

further predicts the impact of these behaviors on indoor 

environmental comfort. The BPNN optimized by GA 

shows faster convergence speed and higher accuracy in 

predicting PMV indicators, which is clearly reflected in 

the comparison results of Figure 6 and Figure 7. In 

addition, the designed model outperforms the intelligent 

reflective/refractive surface assisted high mobility 

communication system proposed by Huang Z et al. in 

terms of accuracy, precision, and F1-score. In Table 2, 

the GA-BPNN model has higher reliability and 

effectiveness in predicting indoor environmental comfort, 

with scores of 97.89%, 96.15%, and 0.896 on these 

indicators, respectively. Compared with the BPNN-based 

multi-body dissipative particle dynamics calibration 

method proposed by Yu X et al., the GA-BPNN model 

exhibits stronger robustness and adaptability in dealing 

with nonlinear problems and multivariate optimization. 

Through GA optimization, the model not only avoids 

getting stuck in local minima, but also improves the 

accuracy and efficiency of indoor environment control. 

Overall, the GA-BPNN model proposed in the study 

provides a new solution for intelligent design of indoor 

environments. This model not only improves the 

accuracy of PMV indicator prediction, but also provides 

strong technical support for achieving automation and 

intelligence of indoor comfort through intelligent 

temperature control. 
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