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With the advancement of human-machine hybrid intelligence technology, the importance of images in 

interaction becomes increasingly high. The accurate evaluation of image semantic quality becomes 

crucial. However, traditional evaluation models may be limited in this environment. New methods are 

needed to improve evaluation accuracy. Then, an evaluation model for gradient-based uncertainty 

calculation method was proposed. The study conducted semantic distortion perception analysis at two 

levels. Firstly, overall, the recognition ability was analyzed by analyzing the average recognition 

accuracy of the dataset. Secondly, recognition ability analysis was conducted based on the confidence 

level of a single sample. Experiments showed that machines had a higher tolerance for distortion 

compared to humans. However, these machines were weaker in terms of generalization and stability. 

The proposed method performed well on the complex CIFAR100 dataset, achieving the lowest FPR of 

95%, the highest TPR of 528%, and the lowest error detection rate of 3.65%. In addition, the accuracy 

of the proposed framework reached 68.03%, which was significantly better than 59.83% for humans 

and 40.16% for machines. The results indicated its ability to effectively combine the advantages of 

different decision-makers. This study is expected to provide new ideas for image quality evaluation, 

improving the application performance and user experience of images in multiple fields. 

Povzetek: Predlagan je model za ocenjevanje semantične kakovosti slik, ki temelji na gradientni 

metodi izračuna negotovosti, z namenom izboljšati interakcijo med človekom in strojem.

1 Introduction 

With the rapid development of social media, e-commerce, 

and digital media, people interact with a large amount of 

image content every day, including uploading, sharing, 

searching, and shopping. It is necessary to accurately 

evaluate the quality and semantic content of images to 

filter out junk images, improve the relevance of search 

results, and recommend related products to provide a 

better user experience [1]. Traditional image quality 

assessment (IQA) methods mainly focus on pixel level 

image quality, such as noise, blur, and distortion [2]. 

However, these methods often fail to capture the semantic 

content of the image and cannot determine whether the 

image meets the user's needs or contains important 

information. The gradient-based uncertainty calculation 

method, as a commonly used technique in deep learning 

and machine learning, can be used to evaluate the 

uncertainty of models [3-4]. Based on this, a subjective 

dataset is created to evaluate semantic distortion in 

monitoring distortion scenarios. Confidence measures are 

used to analyze the recognition ability of humans and 

machines on a single sample. Finally, the above content is 

applied to human-machine joint decision-making. A 

decision-making framework is designed. The research 

aims to develop more accurate and intelligent methods to 

improve the performance of applications such as 

understanding, searching, and retrieving image content. 

The innovation of the research lies in providing a new 

method suitable for human-machine collaborative 

decision-making and introducing gradient uncertainty 

calculation to more accurately estimate image quality. 

The research consists of five parts. Part 1 introduces 

the research background, problems, and solutions of the 

image semantic quality evaluation model for 

human-machine hybrid intelligence. Part 2 reviews the 

current research status of image semantic quality 

evaluation models based on human-machine hybrid 

intelligence. The existing difficulties and methodological 

shortcomings are summarized. Part 3 establishes a 

human-machine hybrid intelligent image semantic quality 

evaluation model based on gradient uncertainty. Part 4 
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evaluated the performance of the model through 

comparative experiments and efficiency validation. Part 5 

summarizes the research methods and proposes the 

shortcomings of the methods as well as future research 

directions. 

The application of human-machine hybrid intelligent 

systems is becoming increasingly prominent in computer 

vision. The evaluation of image semantic quality involves 

multiple fields such as image processing, computer vision, 

and deep learning. Ensuring the evaluation accuracy of 

image semantic quality is important for system 

performance in numerous applications such as 

autonomous driving, facial recognition, and safety 

monitoring. Traditional image quality evaluation methods 

often fail to meet the requirements of human-machine 

hybrid intelligent systems due to their neglect of the 

uncertainty of deep learning models. This may lead to 

misleading results in practical applications. Therefore, an 

urgent issue that needs to be addressed is to improve the 

performance of image semantic quality evaluation models 

for human-machine hybrid intelligence. Some scholars 

have conducted a series of studies on this topic. Sara U et 

al. proposed structured similarity index method and 

feature similarity index method to measure the structural 

and feature similarity between the restored object and the 

original object based on perceptual comparison. 

Experiments showed that this method provided 

perceptual and saliency-based errors more easily 

understood [5]. Jang et al. proposed an automatic crack 

evaluation technique based on deep learning, aiming to 

achieve high-quality crack evaluation by utilizing 

semantic segmentation technology to process images. The 

experimental results showed that the method achieved a 

high accuracy rate of 90.92% and a high recall rate of 

97.47% [6]. Researchers such as Fu proposed an 

evaluation method that combined rules and semantic 

logic based on deep learning semantic evaluation, aiming 

to provide evaluation regularity and semantic decoding. 

The experimental results showed that this method had the 

ability to automatically evaluate regularity and semantics 

and exhibited higher validation [7]. Liu et al. proposed a 

video reconstruction and semantic quality evaluation 

method based on the characteristics of upstream 

streaming media, aiming to further improve the accuracy 

of semantic evaluation. Experiments showed that block 

compression sensing required less sensing or storage 

resources in the front-end, achieving a lightweight 

observation matrix and supporting block by block or 

parallel transmission [8]. 

On the other hand, gradient-based uncertainty 

calculation methods are widely developed and applied in 

science, engineering, and machine learning. Giraud J et al. 

proposed a workflow for integrating geological modeling 

uncertainty information to solve the geological 

uncertainty information being used for local constraints. 

This experiment showed that this method significantly 

reduced the uncertainty of interpretation [9]. Ouziala et al. 

proposed a method for detecting small-scale faults 

involving parameter uncertainty, aiming to ensure 

optimal detection performance by optimizing thresholds. 

This experiment showed that this method improved the 

sensitivity of residuals to small faults and ensured 

optimal early detection [10]. Puzyrev et al. proposed a 

deterministic gradient-based method aimed at solving 

least squares optimization problems in high-dimensional 

parameter spaces. This experiment showed that the 

method exhibited excellent performance in multiple 

aspects such as accuracy, generalization ability, and 

training cost [11]. Pevey et al. proposed a gradient 

optimization design method for nuclear reactor core 

components. This method was based on continuous and 

discrete material neutronics objectives, aiming to fully 

utilize gradient information for design optimization. This 

experiment indicated that the accompanying gradient 

calculation method had potential application prospects in 

nuclear system design optimization [12]. 

In summary, there has been some development in 

image semantic quality evaluation for human-machine 

mixing. However, there are still problems with low model 

generalization ability, high computational complexity, 

and a lack of deep semantic understanding. On the other 

hand, gradient-based uncertainty calculation methods can 

be used to estimate the uncertainty of model output, 

thereby improving the reliability and predictive ability of 

the model. Then, this study proposes a gradient-based 

uncertainty calculation oriented human-machine hybrid 

intelligent image semantic evaluation model. This model 

is expected to improve the accuracy of evaluation, 

promote human-machine collaboration, and enhance the 

interpretability of intelligent systems. The literature 

review classification is shown in Table 1. 

 

 

Table 1: Literature review classification 

Author Method Achieved goals Disadvantage 

Sara et.al 

[5] 

Structured similarity index 

method and feature 

similarity index method 

Measure structural and feature 

similarities between restored 

objects and original objects based 

on perceptual comparisons 

From representation perspective, 

SSIM and FSIM are normalized, 

but MSE and PSNR are not. 

Jang et.al 

[6] 

Automatic crack 

assessment technology 

based on deep learning 

Use semantic segmentation 

technology to process images to 

achieve high-quality crack 

assessment 

Detection time is longer. 



Image Semantic Quality Evaluation Model for Human-Machine… Informatica 48 (2024) 157–170  159 

Fu et.al [7] 

Evaluation method 

combining deep learning 

semantics and semantic 

logic 

Provide evaluation regularity and 

semantic decodability 

Pattern complexity increases 

decoding time. 

Liu et.al [8] 

Video reconstruction and 

semantic quality evaluation 

method based on the 

characteristics of upstream 

streaming media 

Improve the accuracy of semantic 

evaluation 

Detection perception accuracy is 

closely related to video quality. 

Giraud et.al 

[9] 

Workflow for integrating 

uncertainty information in 

geological modeling 

Address issues where geological 

uncertainty information is used 

for local constraints 

With all geological modeling, the 

model cannot account for 

geological units or faults that are 

not sampled by in-situ geological 

measurements, which can lead to 

biases in the final model. 

Ouziala 

et.al [10] 

A method for detecting 

micro-level faults involving 

parameter uncertainty 

Ensure optimal detection 

performance by optimizing 

thresholds 

The accuracy of residual error in 

detecting minor faults needs to be 

improved. 

Puzyrev 

[11] 

Deterministic 

gradient-based methods 

Solve least squares optimization 

problems in high-dimensional 

parameter spaces 

The inversion region has a 

significant impact on the results. 

Pevey et.al 

[12] 

A gradient optimization 

design method for nuclear 

reactor core components 

Leverage gradient information for 

design optimization 

Gradient-informed designs must 

scale as the dimensions of the 

design space increase. 

 

2 Building an image semantic quality 

evaluation model on the ground of 

gradient uncertainty 
A gradient-based uncertainty prediction method is 

proposed for out of distribution detection. In addition, a 

human-machine joint decision-making framework was 

designed for research. It combines the advantages of 

humans and machines in perceiving semantic distortion to 

improve decision accuracy. 

 

2.1 Semantic distortion perception analysis 

on the ground of datasets 
With the advancement of deep learning technology, 

machines are increasingly capable of semantic analysis of 

images. Machines include tasks such as object detection, 

positioning, and recognition. Nonetheless, distortion 

phenomena in images can negatively impact these 

analysis tasks. The specific effect is known as semantic 

distortion. Semantic distortion is different from 

traditional image quality distortion, which is not suitable 

for conventional image quality evaluation indicators. 

Therefore, research on this issue is particularly urgent. 

Semantic distortion is proposed for specific image 

semantic analysis tasks and needs to be explored in a 

specific application context [13]. The distortion can 

damage image quality. Therefore, IQA methods are 

needed to evaluate [14]. IQA methods are divided into 

subjective and objective categories. Subjective methods 

require human observers to evaluate, accurately but 

time-consuming and subject to interference. The 

performance of objective methods is usually measured by 

the similarity with subjective scores. The higher the 

similarity, the better the model performance. Objective 

image quality evaluation can be divided into three 

categories: full reference, semi-reference, and no 

reference [15]. The widely used objective quality 

evaluation methods currently include mean square error 

and structural similarity index. Mean square error is a 

measure of the average error at the pixel level of an 

image, and the calculation method for both is shown in 

equation (1). 
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In equation (1), refI  represents the reference image, 

stsI  represents the distorted image, and D  represents 

the range of pixel value dynamic transformation. MSE  

and PSNR  represent mean square error and structural 

similarity, respectively. Researchers have made efforts to 

improve the confidence score of deep learning models by 

conducting uncertainty predictions to reduce uncertainty. 

Therefore, the misleading high confidence predictions 

that may occur in models that do not conform to the 

distribution of training data can be addressed [16]. This is 

achieved by first classifying uncertainty and then dealing 

with it in a targeted manner. Figure 1 shows the 

classification of uncertainty. 
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Uncertain prediction Overall uncertainty

Cognitive uncertainty Random uncertainty

Uncertainty of 

heteroscedasticity

Uncertainty of 

homoscedasticity

 

Figure 1: Classification of uncertainty 

 

In Figure 1, cognitive uncertainty is caused by the 

uncertainty in the model parameter space. It can be 

reduced by increasing training data, usually caused by 

underfitting or dataset offset. After determining the 

uncertainty, this study needs to consider the perception 

differences among different populations, cultural 

backgrounds, and contexts. The semantic distortion 

perception in the dataset is further analyzed. When 

studying human semantic distortion perception, the first 

step is to select a reference image, then perform distortion 

processing on the image, followed by subjective 

experimental design, and finally eliminate outliers. In this 

study, Facenet is used for human face subset testing. 

Triplet is used to reduce intra-class spacing. The specific 

correlation loss function diagram is shown in Figure 2. 

 

Negative
Negative

Anchor

Postive

Anchor
Postive

Study

 

Figure 2: Schematic diagram of Triplet loss function in Facenet 

 

In Figure 2, the distance between the anchor sample 

and all the same negative samples is greater than the 

distance between the anchor sample and all the same 

positive samples. The specific calculation expression is 

shown in equation (2). 
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In equation (2), a  represents the ideal distance 

maintained between positive and negative samples. 
a

ia  

represents the anchor sample, 
p

ia  represents the positive 

sample, and 
n

ia  represents the negative sample.   

represents the set of all possible triples in the training set. 

The loss function calculation method is shown in 

equation (3). 
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In equation (3),   represents the value of the loss 

function. The Omni-scale network (OSNet) is used to 

conduct the pedestrian subset test after the face subset test. 

The network references the image source Market-1501 

data set. The test accuracy reaches 93%. OSNet is a 

full-scale learning structure for person re-identification, 

which contains a residual module composed of multiple 

convolution streams. Each convolution stream is 

responsible for feature detection at a certain scale. In 

addition, a new unified aggregation gate is introduced in 

the network to dynamically fuse multi-scale features with 

input-related channel weights. Its specific calculation 

formula is shown in equation (4). 

 

, . . ( )y x x s t x F x= + =       (4) 

 

In equation (4), x  represents the given input value, 

F  represents the mapping function, and x represents 

the learning residual. Figure 3 shows the convolutional 
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comparison of Lite3*3 in OSNet, which is a standard 3*3 

convolutional kernel, after introducing a row aggregation 

gate. 
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Figure 3: Comparison intention between standard 3*3 convolution and Lite3*3 convolution in ONet 

 

In Figure 3, unlike the standard 3*3 convolution 

layer, the Lite3*3 convolution layer uses depthwise 

separable convolution to reduce the amount of network 

parameters. The scale of the feature is represented by an 

index to achieve multi-scale feature learning. All 

convolution streams are dynamically fused through a 

unified aggregation gate. The weights of different scales 

are dynamically adjusted according to the input samples. 

The residual expression that the network needs to learn is 

shown in equation (5). 

1

( ( )) ( )
T

t t

t

x G F x F x
=
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In equation (5),  represents the Hadamard 

product, and ( ( ))tG F x  represents the channel weight 

coefficient. After pedestrian recognition, the study further 

conducted license plate detection and recognition. 

 

2.2 Analysis of single sample semantic 

distortion perception on the ground of 

gradient uncertainty calculation method 
In Section 2.1, semantic distortion is evaluated by 

computing the recognition accuracy on a specific dataset. 

Although this method is simple to operate, it has some 

obvious limitations. For example, accuracy is a statistical 

result based on a large number of samples, which cannot 

reveal subtle differences between individual samples. The 

results of accuracy are easily affected by the 

characteristics of the selected data set. Then, the study 

proposes to introduce confidence as a new metric to 

measure semantic distortion. Confidence represents the 

probability of prediction correctness. Confidence not only 

reflects the strength of the recognition ability, but also 

can be directly calculated based on the model's prediction 

of the current input sample. Confidence provides the 

possibility of in-depth analysis of a single sample [17]. At 

the human level, confidence is defined by calculating the 

proportion of individuals in the population that correctly 

identify the sample. At the machine level, confidence is 

related to the uncertainty predictions of the deep learning 

model. Therefore, the experiment proposes a new 

gradient-based uncertainty prediction method specifically 

for outlier detection. In addition, the research proposes a 

joint decision-making framework that integrates human 

and machine perception. This method aims to utilize the 

complementary advantages of the two on different 

samples to improve the overall decision-making accuracy. 

The formula for calculating human confidence is shown 

in equation (6). 
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In equation (6), H  represents the human subject 

population, y  represents the label corresponding to the 

sample, and ih  represents the recognition result of the 

i -th human subject. This study uses a deep learning 

model to predict human confidence in different data types. 

The model is adjusted to output a scalar value 

representing human confidence. The training process uses 

random gradient descent and sets some hyperparameters. 

During data processing, data augmentation operations 

that may affect human confidence are avoided. The study 

uses human confidence in subjective datasets as the true 

score and the output of the model as the predicted value. 

The main evaluation indicator for model performance is 

the correlation between the true and predicted values, 

usually using Spearman rank correlation coefficient 

(SROCC) and Pearson linear correlation coefficient 

(PLCC). SROCC is a nonlinear correlation coefficient 

used to measure the correlation between two variables, 

whose values are obtained by ranking the data. 

Specifically, the SROCC calculation method is shown in 

equation (7). 
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In equation (7), ( )irank x  represents the 

arrangement order of x  in all sequences. PLCC is a 

widely used linear correlation coefficient used to measure 

the linear relationship between two sets of data. The 

calculation expression is shown in equation (8). 
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i ii
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− −

=
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
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In equation (8), ix  represents the true score of the 

i th image, and iy  represents the test value of the i th 

image. ,x y  represent the average values corresponding 

to both. In practical applications, this study needs to first 

perform nonlinear fitting between the test scores and the 

true values. In this experiment, a logistic regression 

model is used for fitting, as shown in equation (9). 
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In equation (9), x  represents the predicted score 

before fitting. y  represents the predicted score after 

fitting. The fitting parameters are represented by 

{ | 1,2,3,4,5}i i = . A gradient-based uncertainty 

prediction method is proposed to address the high 

complexity and impracticability of deterministic 

prediction methods in machine semantic distortion 

perception. The study first observes the feature sparsity of 

out of distribution samples, and then further utilizes the 

Jacobian matrix to analyze the relationship between 

feature sparsity and gradient norm. Then, the network 

output is obtained based on the network input and the 

network linear layer, as shown in equation (10). 

 

1 1 1 1( ) ( ( ... ( )))L L m L aF a W W W− −=     (10) 

 

In equation (10), a  represents the network input, 

( )F a  represents the output, ,1..., ,{ | [ ]}
i ii i i W dW W W=  

represents the network linear layer, and { | 1,..., }i i L =  

represents the nonlinear layer. The linear correction unit 

layer is shown in equation (11) by combining the 

relationship between gradient norm and network 

nonlinear layer analysis feature sparsity. 

 

Re( ) ( ) max(0, ), 1,..., 1i ULz z z i L = = = − (11) 

 

In equation (11), ReUL  represents the activation 

layer. The nonlinear layer derivative expression in the 

Jacobian matrix is shown in equation (12). 
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In equation (12), in backpropagation, the zero value 

of the Jacobian matrix is positively correlated with the 

sparse matrix output by the ReLU layer. The gradient 

norm is negatively correlated with the sparse matrix 

output [18]. Usually, backpropagation requires label data 

to calculate the gradient of the loss function, but no labels 

are available during the testing phase. To address this 

issue, the study considers introducing a loss function for 

gradient retrieval in the unlabeled case. Firstly, this study 

perturbs the output to a small amplitude of ε. Then, a new 

loss function is introduced, as shown in equation (13). 
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In equation (13), W  represents the channel total 

coefficient corresponding to the output shape. This study 

designs a loss function for adaptive adjustment of input 

samples, especially when dealing with "out of 

distribution" samples. The disturbance of the loss 

function directly affects the gradient size of 

backpropagation. Previous studies have shown that 

predicting probability distributions to some extent reflects 

uncertainty [19]. Therefore, the disturbance amplitude   

is not a uniform value for all samples, which is related to 

the network output F(x). The expression for calculating 

disturbance amplitude is shown in equation (14). 

 

( ( ))A F x =          (14) 

 

In equation (14), ( ( ))A F x  represents the scalar 

statistic of the predicted probability distribution. This 

method is based on the correlation between input gradient 

and "out of distribution". That is, the larger the input 

gradient, the greater the sample difference, which is used 

to measure the "out of distribution" probability [20]. This 

method uses backpropagation to calculate the input 

gradient, as shown in equation (15). 

 

( ) [ ( )]W

W
U x E

x


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

       (15) 

In equation (15), W  represents the calculated 

mean of the weight coefficients. This study focuses on 

the size of the gradient norm. However, the mutual 

cancellation of positive and negative gradients in 

backpropagation may reduce the gradient norm. This 

reduces the significance of analyzing the differences 

between in distribution and out of distribution samples 

[21]. To address this issue, this study uses a 

backpropagation optimization strategy. It is based on the 

directed backpropagation method, which separates 

positive and negative gradients by truncating the gradient 

flow. The specific schematic diagram is shown in Figure 

4. 



Image Semantic Quality Evaluation Model for Human-Machine… Informatica 48 (2024) 157–170  163 

 

1 -1 5

2 -5 -7

-3 2 4

1 -1 5

2 -5 -7

-3 2 4

(a)  Forward pass

 

-2 0 -1

6 0 0

0 -1 3

-2 3 -1

6 -3 1

2 -1 4

(b) Backward pass:backpropagation

 

-2 3 -1

6 -3 1

2 -1 3

(c) Backward pass:guidedbackpropagation

0 0 0

6 0 0

0 0 3

 

Figure 4: Schematic diagram of guided backpropagation 

method 

 

In Figure 4, the core idea of the directed 

backpropagation method is to truncate the negatively 

activated gradient in the ReLU layer, making it zero in 

backpropagation and no longer affecting gradient 

propagation. Deep learning technology develops rapidly 

in different fields. Due to the uncertainty of models, 

decisions in practical applications are not always reliable, 

especially in situations where high accuracy is required. 

Therefore, this study proposes a new human-machine 

joint decision-making framework, as shown in Figure 5. 
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Figure 5: Schematic diagram of human-computer 

interactive decision-making process 

 

In Figure 5, the proposed human-computer hybrid 

decision-making method includes a deep neural network 

and an external decision maker (DM), which is usually a 

human. The decision-making flow is in the form of a 

cascade and is divided into two steps. First, the DNN 

model can give a prediction result or choose to reject it. If 

choosing to reject, the second step is carried out. 

Otherwise, the system outputs the model prediction result. 

Second, if choosing to reject, the system redirects the 

input to the external decision-maker for a second 

judgment and outputs the prediction result of the external 

decision-maker. Although this modeling method is simple, 

it can still describe a large part of the decision-making 

system including multiple decision-makers. To better 

control the decision-making process, the study proposes a 

"human-computer hybrid decision-making framework", 

which requires the confidence of human and deep neural 

network models to be calibrated in order to compare their 

confidence. The relevant framework and confidence are 

shown in Figure 6. 
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Figure 6: The proposed resolution intention and confidence alignment diagram 

 

In Figure 6, the study needs to calculate the 

confidence scores of the human and deep neural network 

models for each input sample separately, which are 

adjusted to the same measurement scale. Then, decision 

rules are designed to generate the final decision result 

based on these two confidence scores. It ensures that the 
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confidence and accuracy distributions of human and deep 

neural network models are as consistent as possible on 

specific datasets. 

 

3 Performance verification of a 

human-machine hybrid intelligent 

image semantic quality evaluation 

model on the ground of gradient 

uncertainty calculation method 
The aim of this study is to create a comprehensive 

monitoring scene dataset that includes faces, pedestrians, 

and license plates. Three different distortion methods: 

JPEG compression, BPG compression, and motion blur 

are considered. The main objective of the study is to 

require participants to identify target objects in distorted 

images while excluding abnormal data to ensure the 

reliability of the obtained data. 

 

3.1 Verification of semantic distortion 

perception performance on the ground of 

gradient uncertainty and datasets 
This study conducted facial and pedestrian recognition 

tasks. Participants needed to select images from a 

template library that match the faces or pedestrians in 

distorted images. For facial recognition, this study 

divided the images into 10 groups, including different 

hairstyles and genders, to exclude other interfering 

factors. For pedestrian recognition, this study divided the 

images into 8 groups based on the color of the clothing. 

As for the license plate recognition task, the study used a 

single choice experiment, requiring participants to input 

complete license plate numbers, including province 

abbreviations, letters, and numbers. It was only 

considered correct recognition when the input matched 

the actual license plate perfectly. Figure 7 shows the 

trend of the average recognition accuracy of human 

subjects and deep neural network models as the distortion 

increases under different tasks and distortions. 
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Figure 7: The average recognition accuracy of human and 

DNN models varies with distortion 
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Figure 7(a) shows the results of image processing 

using the BPG compression method. As the image 

distortion value increased, the obtained image accuracy 

gradually changed from high accuracy to low accuracy. 

At the beginning of the experiment, the accuracy of the 

image reached 1.0. When the distortion value reached 

more than 40, the accuracy of the image was less than 0.5 

and approached 0. Figure 7(b) shows the results of JPEG 

compression on image processing. When the image 

quality decreased, the accuracy of the image also shrank 

from the initial 1.0 and approached 0.0, not equal to 0.0. 

Figure 7(c) shows the results of image processing by 

three methods of motion blur. As the model kernel size 

became larger, the accuracy of the model on the image 

showed a trend of fluctuation. When the kernel size was 

40, the accuracy of the image began to level off. It is 

worth noting that the DNN model performed better than 

humans in facial recognition and pedestrian recognition 

tasks under the three processing methods, especially in 

cases of severe image distortion. However, in the task of 

license plate recognition, the advantage of DNN model 

was relatively small. This indicates that the DNN model 

is more robust in dealing with image distortion. Figure 8 

shows the differences in recognition accuracy among 

some different human participants. 
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Figure 8: Human individual recognition accuracy curve 

and subjective recognition threshold distribution graph 

 

Figures 8 (a), 8 (c), and 8 (e) represent the average, 

maximum, and minimum recognition accuracy of human 

individuals under QP. Figures 8 (b), 8 (d), and 8 (f) 

represent histograms of the distribution of subjective 

recognition thresholds for human individuals. Under the 

same level of distortion, the recognition accuracy of 

different individuals varied greatly, indicating that 

different individuals had different impacts when facing 

image distortion. In summary, machines are more robust 
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in dealing with image distortion compared to humans. 

However, they may be relatively weak in terms of 

generalization and stability. In addition, there are 

significant differences between human individuals. 

 

3.2 Verification of semantic distortion 

perception performance on the ground of 

gradient uncertainty and single sample 
The relationship between out of distribution samples and 

gradients was analyzed to validate the design based on 

gradient uncertainty. Firstly, starting from the sparsity of 

ReLU output features, the study investigated the 

correlation between feature sparsity and out of 

distribution samples. Subsequently, the connection 

between feature sparsity and gradient was established 

through the network Jacobian matrix. The experiment 

used CIFAR-10 and CIFAR-100 as in distribution 

datasets. TinyImageNet, LSUN, and iSUN were used as 

out of distribution datasets. The evaluation adopted 

indicators such as FPRat95% TPR, Detection Error, and 

AUROC. Table 1 shows the performance comparison 

between the proposed uncertainty prediction method and 

the complex method. 

 

 
Table 2: Performance comparison of the proposed uncertainty prediction method with that of current high-complexity 

methods 

Method Knowledge Complexity Detection error AUROCT 
FPR@ 

95%TPR 

ODIN OOD Val Black-box 24 91 44 

Malahanobis IND Val White-Box 7 97 13 

Ours None White-Box 3 96 5 

Margin-based 

ensemble 

IND Train+00D 

Val 
Retraining 8 97 16 

Outlier exposure  OOD Val Retraining / 83 57 

 

In Table 1, the study further compared the proposed 

method with the more complex DenseNet model, using 

CIFAR-100 as the in-distribution dataset and LSUN (r) as 

the out of distribution dataset. On the more challenging 

CIFAR-100 dataset, the studied method achieved the 

lowest FPRat95% TPR and detection error rate, which 

performed best among all methods. The experiment used 

confidence interval analysis to quantify the uncertainty of 

the evaluation results to enhance the credibility of the 

results. Specifically, the experiment calculated a 95% 

confidence interval for each performance indicator, 

ensuring the consistency and reliability of the evaluation 

experimental results. Then, the performance of the model 

was robust even under different experimental conditions. 

The method was applied to different data sets for training 

and testing, which effectively enhanced the generalization 

ability of the model and the repeatability of experiments. 

Figure 9 shows the complexity comparison of the 

proposed method with methods such as ONID, 

Mahalanobis, Softmax, etc. 
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Figure 9: Complexity comparison between the proposed method and other methods 

 

According to Figure 9, the proposed method 

achieved similar or even better performance while 

significantly reducing complexity compared with the 

state-of-the-art method. In addition, the study further used 

the constructed semantic dataset to simulate human 

predictions. The study randomly selected the predicted 

results of 20 human subjects as human predictions in 

actual scenarios. To eliminate the impact of randomness, 

each image was tested multiple times and the average 

value was taken as the final result. Table 2 shows the best 
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performance comparison between the proposed method 

and the refusal learning framework. 
 

 
Table 3: The optimal performance comparison of the proposed framework and the rejection learning framework 

 

In Table 2, the optimal accuracy of the framework 

reached 68.03% when humans were superior to machines. 

The result was significantly higher than the accuracy of 

59.83% for humans and 40.16% for machines. This 

indicates that the framework can effectively combine the 

advantages of different decision-makers. In contrast, the 

optimal accuracy of rejecting learning frameworks was 

59.84%, which was only slightly higher than the accuracy 

of 59.83% in humans. This indicates that its performance 

limit does not exceed the performance of a single human 

or machine decision-maker, which cannot reflect the 

advantages of human-machine collaboration.  

This study further conducted accuracy analysis. Figure 10 

shows the accuracy of the proposed framework and 

refusal learning framework under different thresholds. 
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Figure 10: Accuracy rates of the proposed framework and 

rejection learning framework under different thresholds. 

 

Figure 10(a) shows the changes in human superiority 

over machines. The optimal accuracy of this framework 

was significantly higher than human accuracy and 

machine accuracy. The accuracy of this framework was 

always better than that of the rejection learning 

framework under the same ratio of human judgments. 

Figure 10(b) shows the curve change of machines 

outperforming humans. Since the human accuracy was 

lower than the proposed model, the performance of the 

framework might inevitably show an overall downward 

trend as the proportion of human decisions increased.  

However, the accuracy of the proposed framework 

was always better than the rejection learning framework. 

Nonetheless, the framework still showed significant 

performance improvements compared to machines, a 

level that rejection learning frameworks could not 

achieve. Finally, the model was applied to the quality 

evaluation of a certain graphic semantics to analyze the 

impact of different factors on the accuracy of the model. 

The results are shown in Figure 11. 

 

Method Framework Effectiveness of human decision Accuracy Human decision rate 

License 

Human / 24.2 / 

Ours 54 86.6 19 

Rejection learning 49 78.3 5 

Machine / 75.8 / 

Person 

Human / 59.8 / 

Ours 34 68.0 81 

Rejection learning 19 59.8 100 

Machine / 40.1 / 
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Figure 11: Impact of human factors 

 

In Figure 11, as the decision-making rate of different 

factors increased, the accuracy of the model under the 

influence of the corresponding factors also showed 

different growth rates. When the decision rate reached 1.0, 

the model accuracy rate under the influence of all factors 

had the highest value. The education level between 

different statistical populations had the greatest impact on 

the image semantic quality evaluation of accuracy. The 

children born to different statistical populations had the 

greatest impact. The impact of quantity on accuracy was 

smaller than other factors. This may be because human 

beings' education level directly affects human beings' 

understanding and discrimination of different things and 

changes their views on things. There was overlap 

between the impact of human-machine decision-making 

factors on accuracy and human factors. The final model 

accuracy was less than 0.70. However, the connection 

between human-machine decision-making factors and 

human factors was very close. The accuracy obtained was 

higher than that under the influence of human factors. 

This can also be directly shown from the accuracy 

obtained. Therefore, human-machine decision-making 

factors can be used to evaluate the semantic quality of 

images. 

4 Discussion and conclusion 

4.1 Discussion 
The image semantic quality evaluation model based on 

the proposed gradient-based uncertainty calculation 

method was tested in different scenarios. The 

performance was compared with different methods. The 

proposed method showed superior performance than 

traditional methods in key indicators such as accuracy 

and distortion recognition perception. The proposed 

model showed stronger robustness, especially in the face 

of complex background and noise interference. When 

humans were better than machines, the best accuracy of 

the proposed model framework reached 68.03%, which 

was significantly higher than the accuracy of humans of 

59.83% and the accuracy of machines of 40.16%. This 

framework could effectively combine different decisions 

with the advantage of the person. In contrast, the best 

accuracy of the rejection learning framework was 59.84%, 

which was only slightly higher than the human accuracy 

of 59.83%. Its performance upper limit did not exceed the 

performance of a single human or machine 

decision-maker and could not reflect the advantages of 

the human-machine collaboration. For example, the 

automatic IQA model based on hybrid deep neural 

network was proposed by Chan K et al. Although the 

average correlation of the model reached 0.57, the image 

accuracy was not as good as the proposed model [22]. In 

addition, although the IQA algorithm based on the HCL 

framework and NR-IQA proposed by Wang et al. had 

strong generalization capabilities, there were still certain 

challenges in extracting distorted image information [23]. 

The performance difference may be mainly due to 

the fact that the proposed model is better able to handle 

blurred and discontinuous regions in the image by 

introducing gradient-based uncertainty calculation, 

thereby improving the accuracy of the evaluation. In 

addition, the computational efficiency of the proposed 

model was optimized. Compared with traditional methods, 

the proposed model reduced computational time while 

maintaining high accuracy, which had important practical 

significance in real-time application scenarios. The 

proposed model provides new contributions to image 

semantic quality assessment, especially in terms of the 

rationality of using confidence as a measure of semantic 

distortion. The resulting model is applied in a 

human-machine joint decision-making framework and 

achieves superior performance. 

 

4.2 Conclusion 
With the explosive growth of digital media content, 

automated image quality evaluation is important for 

content management such as automatic sorting, filtering, 

and recommendation systems. It is worth noting that the 

current semantic evaluation models have problems such 

as weak noise resistance, insufficient diversity and 

universality. This study selected monitoring scenarios and 
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selected three common objects: faces, pedestrians, and 

license plates to further improve the accuracy of image 

semantic quality evaluation. Three common distortion 

types: JPEG compression, BPG compression, and motion 

blur to test the accuracy of human recognition of these 

objects were selected. Then, a subjective perception 

database of semantic distortion was built. In addition to 

recognition accuracy, this study also introduced 

confidence to measure the recognition ability of human or 

deep neural network models for individual samples. This 

is to provide a deeper analysis of the perceptual effects of 

semantic distortion. The experimental results showed that 

machines were more robust in distortion compared to 

humans, but performed poorly in generalization and 

stability. The study adopted fine-grained semantic object 

classification, which meant that local detail features were 

more crucial, explaining why machines were more robust 

than humans. The research method achieved an optimal 

accuracy of 68.03%, significantly higher than human 

accuracy of 59.83% and machine accuracy of 40.16%. 

This indicates that the proposed method can effectively 

combine the advantages of different decision-makers. 

This study may lack in-depth research and evaluation of 

user subjective experience. Understanding users' 

expectations and preferences for image quality can 

provide important references for model improvement. 

Future research can enhance the design of user surveys 

and subjective evaluations. 
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