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Intelligent terminal devices have become a popular theme for research in recent years, but the 

development of intelligent terminals cannot be separated from high-quality human-computer 

interaction models. Behavioral action recognition is one of the main ways to realize human-computer 

interaction, but the current action recognition model still exists with obvious time delay and low 

recognition accuracy. In light of this, the study built an intelligent human action capture and 

recognition model using an action structured graph convolutional network in conjunction with an 

encoder-decoder architecture, long and short-term memory algorithms, and controlled experiments to 

assess the model's performance. The outcomes indicated that the loss of the proposed model after 

convergence on the test dataset was 0.56%, while the average accuracy was 95.39%, and both 

performances outperformed the control experiment. In the meantime, the suggested model's average 

F1 score was 89.79%, which was 11.13% and 3.82% higher than that of the experiment's control 

model. The suggested model exhibits some improvement in the accuracy and F1 score of action 

recognition, according to the experimental findings. Therefore, the research of the suggested behavior 

recognition model has practical value. Additionally, in the real scene behavior recognition detection 

experiments, the proposed model validates the viability of the model with higher accuracy and reduced 

delay. 

Povzetek: Prispevek predstavi izboljšan model za prepoznavanje človeških akcij s pomočjo ASGCN in 

LSTM algoritmov za natančnejšo in hitrejšo interakcijo človek-računalnik.

1 Introduction 

Human-computer interaction (HCI) usually relies on 

gesture recognition, speech recognition and action 

recognition (AR), etc. Speech recognition is very mature 

in current development, and there are quite a number of 

intelligent models that can realize the needs of daily HCI 

[1]. However, to realize more intelligent HCI, it is 

necessary to solve the algorithm's ability to understand 

the combination of action feature capture. The current 

mainstream motion capture algorithms include a series of 

machine learning algorithms such as convolutional neural 

network (CNN), graph convolution network (GCN), deep 

neural network (DNN), and so on, among which the 

effect of image and video processing is better than the 

GCN algorithm. Better is the GCN algorithm [2-3]. 

However, the traditional GCN algorithm still has obvious 

shortcomings. Shallow GCN cannot transfer labels from a 

limited amount of training data to the whole graph 

structure, and the semi-supervised performance is poor. 

Deep GCN will have excessive smoothing problems, and 

it is difficult to distinguish the features of the nodes [4]. 

An abstract idea of a deep learning model is the 

encoder-decoder (ED) architecture. An ED structure may 

compress a lot of data, which cuts down on processing 

time and space while increasing transmission and storage 

efficiency [5]. The advantages of the ED architecture are 

especially obvious when processing large files such as 

images, videos, and audios. In view of this, therefore, the 

study selects aspect-specific graph convonlutional 

network (ASGCN) to be optimized and used in the 

construction of HCI model, and the ED architecture is 

used in long short-term memory (LSTM) as a way to 

optimize the ASGCN model. The innovation of the study 

is that it introduces an LSTM-based encoder structure 

that is utilized to capture specific movements of the 

human body. The article is structured into four sections. 

Related work, the first section, concentrates on the 

theoretical analysis that came before the research. The 

second part is the methodology, which performs HCI 

model construction through advanced techniques. The 

proposed model is put through performance testing tests 

in the third section, known as "model testing," in order to 

confirm its advanced nature. The fourth part is the 
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conclusion, which summarizes the research results and 

proposes future improvement directions. 

2 Related works 

HCI is important for the development of smart devices, 

so domestic and international researchers have explored 

for how to realize intelligent HCI. Chowdary et al. used 

deep learning techniques to recognize human emotions, 

thus promoting the intelligence of the model and HCI. 

The method eliminated the original fully connected layer 

of ConvNets and added a new fully connected layer with 

weights based on the number of instructions in the task. 

The study's findings demonstrated that the suggested 

emotion identification model can identify emotions with 

an average accuracy (AverA) of 96% [6]. Liu et al. 

conducted a related study on head pose estimation and 

optimized the technique for application in HCI. Liu et al. 

solved the problem of neighboring pose information 

processing and mislabeling gap in head pose estimation. 

The model was evaluated using an open-source dataset, 

and the study found that the suggested model performed 

noticeably better than other cutting-edge techniques, 

leading to improved outcomes for the optimization 

approach [7]. Zhang et al. constructed a glove-based HCI 

system using friction electric nanogenerators in order to 

realize the intelligence of wearable devices. The system 

was also used to extract and friction electric 

nanogenerator to analyze multidimensional signal 

features for gesture visualization and manipulator control 

functions. The study applied the proposed model to five 

object classification and recognition tasks. According to 

the experimental findings, the model performed the five 

tasks with an AverA of 98.7% [8]. Zhang et al. proposed 

a gesture recognition system called WiGesID in their 

study as they found that gesture recognition technology 

can advance HCI to some extent. The system employed 

Wi-Fi sensing and radar sensing techniques to enhance 

the security of the gesture recognition system and 

computer vision techniques to realize the dynamic 

patterns of gesture recognition. The findings indicated 

that the proposed system exhibits superior performance in 

cross-domain sensing, with enhanced recognition 

accuracy compared to state-of-the-art models [9]. 

GCN is a neural network designed to process images, 

but as the demand for image processing increases, the 

traditional GCN is difficult to meet the current needs, so 

many researchers have improved and optimized the GCN 

for GCN. Bessadok et al. provided a medical image 

recognition method based on learning depth graph neural 

network (GNN) structure. The method incorporated DNN 

and GNN. They used the method for the recognition of a 

comprehensive roadmap of neuronal activity in the 

human brain. According to the testing data, the suggested 

approach performs better and can obtain recognition 

accuracy of above 90% [10]. Wu et al. proposed a 

GCN-based natural language processing model, a 

taxonomy that systematically organizes existing GNN 

research on natural language processing along three axes. 

In addition, the method introduced ED techniques to 

achieve global encoding of input data. It was 

experimentally concluded that the proposed model 

possesses high accuracy and recall in natural language 

processing and classification, thus the proposed model is 

feasible [11]. Zhu et al. presented a GCN and DNN-based 

picture analysis model to address the significant 

unsupervised graph problem. The model implemented the 

recovery of cluster structure by DNN improved GCN 

pooling method and constructed an unsupervised pooling 

method inspired by the modularity metric of clustering 

quality. After multiple sets of controlled trials, the 

suggested model's overall performance was shown to be 

superior to the mainstream state-of-the-art at the time 

[12]. As a result, the proposed model is considered 

state-of-the-art. Zhu et al. found that GCN only focuses 

on the homogeneity of image nodes and ignores the 

heterogeneity among different image nodes in practical 

applications. In order to solve this problem, the 

researchers proposed a new graph convolution framework 

that contains an interpretable compatibility matrix for 

modeling the level of anisotropy or homotropy in a graph. 

Experimentally, it was concluded that the new framework 

has a significant reduction in the dependence on the 

training samples, while the accuracy of the image being 

an Oba was improved [13]. Kiningham et al. proposed a 

GNN gas pedal architecture for low-latency inference 

design, aiming to address the shortcomings of GCN's low 

efficiency for image processing. The architecture 

combined arithmetic-intensive vertex-centered operations 

with memory-intensive edge-centered operations and 

introduced a high-performance matrix multiplication 

engine. Experiments concluded that the proposed 

framework effectively reduces the sample latency and 

ensemble average [14]. 

In summary, many researchers have explored the 

application of GCN algorithm in various fields, but there 

are still more obvious shortcomings of this method for 

AR tasks. Therefore, the study selects the ASGCN 

algorithm as the core algorithm on the basis of GCN and 

introduces other advanced technologies to improve it, so 

as to construct a more perfect AR model to realize 

intelligent HCI. 

3 Intelligent Human-Computer 

interaction model based on 

optimized ASGCN algorithm 

The construction of human AR model based on LSTM's 

encoder and ASGCN algorithm is firstly discussed in 

depth, aiming to further improve the effect of HCI in 

daily life. To realize intelligent HCI, the study fuses 

LSTM with ED and adds it to the feature fusion module 

(FFM) of the HCI model in order to achieve feature 

improvement and accurate fusion. 
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3.1 Construction of human motion capture 

and recognition model based on ASGCN 
The study uses the GCN algorithm to create the human 

motion capture model because of the GCN model's 

impressive performance in a variety of domains and the 

quick growth of artificial intelligence technologies [15]. 

Given the specific needs of this research, the study 

chooses ASGCN algorithm as the core algorithm of 

human motion capture model. ASGCN is an improved 

algorithm of spatio-temporal graph convolutional 

networks (STGCN), and ASGCN adds the extraction of 

human body joint features (JFs) in the spatial domain on 

the basis of STGCN to improve the accuracy and stability 

of AR [16-17]. The ASGCN algorithm stacks 

behavior-actions together to form a fused graph 

convolution module, thus learning spatial and feature 

sequences and performing AR, the emergence of this 

fused module when GCN overcomes the difficulty of 

poor dynamic processing. Furthermore, in terms of 

flexibility and scalability, the enhanced ASGCN 

algorithm outperforms the STGCN algorithm. Figure 1 

depicts the ASGCN algorithm's recognition structure. 

 

Actional

 Links

Structural

Links
Input Action

Time

Featur Response of 

ASGCN

 

Figure 1: Schematic diagram of ASGCN algorithm recognition structure 

 

Equation (1) displays the mathematical expression for the 

convolution computation used in ASGCN's JF extraction 

for the human body, which is based on a convolution 

kernel (CK). 

( ) ( ) ( )( ), , ,
K K

out in

h w

f x f s x h w w h w=  (1) 

In Equation (1), K  denotes the CK size and x  

denotes a point in the acquisition region. ( ),h w  

denotes the height and width of the sampling region, and 

( ),W h w  denotes the weights of the sampling region. 

( ), ,s x h w  is a sampling function whose computational 

expression is shown in Equation (2). 

),(~),,( whsxwhxs +=      (2) 

In Equation (2), ( ),s h w  denotes the pixels in the 

neighborhood of point x . However, the skeletal model 

of the human body is an irregular image, so different 

weights need to be assigned for different skeletal joints in 

order to correctly analyze the behavior of the human body 

[18]. Therefore, after redefining the weights the 

convolution calculation expression of ASGCN is shown 

in Equation (3). 
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In Equation (3), iv  denotes a point in the sampling 

area, jv  denotes a sampling point adjacent to iv .  

( ) ( ) ( )| | |i i k i k i jZ v v l v l v= = , the expression 

denotes normalization, which is used to balance the 

weights of different collection points. il  denotes the set 

of mapping relationships from different collection points 

to neighboring collection points. The subset partition of 

the features to be extracted can address the issue that the 

model has to extract more JFs simultaneously because, as 

can be shown in the calculation above, a high number of 

samples supplied at once will likewise result in a huge 

amount of model computation. Figure 2 illustrates the 

commonly used subset division method in the ASGCN 

algorithm. 

 



198   Informatica 48 (2024) 195–208                                                              Y. Yang et al. 

(a) (b) (c) (d) 

 

Figure 2: Schematic diagram of subset partitioning method 

 

The subset division only solves the number of 

features extracted by the model at the same time, but it 

does not fundamentally solve the drawbacks of the 

ASGCN model, such as long time of accessing memory 

and more learning parameters. To solve the above 

drawbacks, the study adopts the displacement operation 

(DO) to simplify the learning parameters of GCN and 

ensure its computational efficiency and memory access 

efficiency. The computational expression of the DO is 

shown in Equation (4). 
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In Equation (4), O  denotes the output tensor and 

K  denotes the size of the CK. m  denotes the channel 

the output and input, and I  denotes the size of the input 

tensor. ,j i  is the dimension index of the input tensor. 

In GCN, the CK is the core of extracting the human body 

used as a feature, which can aggregate the information in 

the image, the study uses the DO mainly to shrink the CK, 

so as to reduce the amount of computation and learning 

parameters. The DO method introduces unit scales at 

specific CK index positions, allowing the model to focus 

on local features rather than global information. This 

significantly reduces the size of the convolution kernel 

while maintaining the effectiveness of feature extraction. 

This method simplifies the model parameters, reduces the 

computational burden, and promotes memory access 

efficiency, thereby making DO an effective tool for 

reducing the CK size and simplifying the model structure. 

The size of the CK after reduction is shown in Equation 

(5). 
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In Equation (5), ,m mi j  is the index, indicating that 

the size of the CK at ( ),m mi j  is 1 and the size of the 

CK at the rest of the locations is 0. The flow of the GCN 

convolution after the introduction of the DO is shown in 

Figure 3. 
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Figure 3: GCN convolution process after introducing displacement operation 

 

In Figure 3, the left side of symbol   represents 

the displacement convolution module, the right side of 

convolution symbol represents FFM, and   is used to 

connect DO and convolution channels. In the 

displacement convolution module, the DO operation 

represents the primary step of the overall process. Its 

function is to enrich the representation of features and to 

capture broader neighborhood information, thereby 

enhancing the model's perception of multi-scale 

connectivity between vertices. The input of the module 

comprises multiple layers of features, each representing a 

distinct subset of features. Through the process of DO, 

these feature subsets are able to refine their positions in 

order to enhance the model's adaptability to local 

structures. Subsequently, FFM employs the inverse 

operation of subset partitioning rules to achieve the 

recombination of these feature subsets. This process is 

not merely a restoration of existing features. Rather, it 
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entails the acquisition of more nuanced and varied feature 

representations through the precise regulation of feature 

recombination. This approach enables the model to 

enhance its representation capabilities while 

simultaneously reducing its computational complexity 

[19]. To reflect the process of feature fusion, a 

mathematical expression for human action features is 

introduced in the study, as shown in Equation (6). 
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In Equation (6), c  denotes the channel serial 

number and E  denotes the set of neighboring 

acquisition points. n  denotes the nodes of the 

neighboring collection points, v  denotes the currently 

calculated collection points, and   denotes the weight 

of each neighboring collection point. The weighted sum 

operation performed on each collection point and its 

neighborhood endows the model with the flexibility to 

identify heterogeneous connections between vertices, 

thereby improving its accuracy in identifying diverse 

human motion features and enhancing its ability to 

represent complex human motion patterns during the 

recognition process. In the context of graph convolution, 

the weight allocation of each adjacent collection point 

serves to quantify the importance of adjacent points, 

thereby ensuring that the heterogeneity of the graph 

structure is taken into account during feature aggregation. 

Therefore, the computational expression of   is shown 

in Equation (7). 

( )( )c kH D x =     (7) 

In Equation (7), ( ).L  denotes the activation 

function (AF) of the displacement convolution module, 

and the AF selected for the study is the ReLU function. 

C  denotes the proportion of the c th channel to the 

total data, and ( )kD x  denotes the parameter mapping 

relationship of the input sample x . x  denotes the input 

sample and k  denotes the number of parameters. The 

model's speed of feature extraction and recognition can 

be somewhat increased by the DO and subset division, 

but it still lacks feature fusion and AR accuracy, therefore 

other sophisticated techniques must be included by the 

study in order to fully optimize the model. 

3.2 Construction of action recognition model 

based on Ed improvement 

The ASGCN model needs to subset the collected features 

during the construction process, although the model 

exists a FFM to splice the extracted features, it lacks a 

correction module. The correction module can check the 

features spliced by the ASGCN model degree and return 

the wrong features to the fusion module to be spliced 

again when wrong splicing is found [20]. The accuracy of 

the AR model can be increased by adding the correction 

module, which can also substantially increase the 

efficiency of feature fusion. In this study, the subset 

division rule is used as the input to the encoder, which in 

turn yields the corresponding coding sequence for the 

entire subset. The study's encoder is based on the LSTM 

method, which computes the positional characteristics of 

various subsets according to their weights at each 

encoding step while accounting for the subset's global 

location. LSTM has hidden state (HS) and memory state 

(MS) inside to record the historical data, so this algorithm 

can record the connection between different subsets better. 

And the HS and MS of LSTM is realized by three 

important structures of input gate (IG), forgetting gate 

(FG) and output gate (OG), which are defined as shown 

in Equation (8). 
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In Equation (8),   denotes the standard deviation, 

and , ,t t tf i o  denotes the FG, IG and OG, respectively. 

t  denotes the moment, and , ,f i oW W W  the three 

parameters denote the overall weight matrix of the FG, 

IG and OG, respectively. tx  denotes the input data of 

the t  moment. In the calculation of MS and HS also 

need to carry out the calculation of candidate MS, the 

calculation expression is shown in Equation (9). 

1( [ ; ])t c t tC W h x −=         (9) 

In Equation (9), 
tC  is the candidate MS and th  is 

the HS. cW  denotes the weight matrix of the candidate 

MS. The candidate MS is the current moment MS, 

including the new candidate information and parameters 

added in the LSTM at this time [21]. After obtaining the 

candidate MS, it is also necessary to calculate the MS and 

HS of the LSTM, and its calculation expression is shown 

in Equation (10). 
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In Equation (10),   denotes a multiplication 

operation between each dimension of the same feature. 

tC  is the memorized state and th  is the HS. In LSTM 

state computation, the AFs used are all Sigmoid (.) 

function. LSTM is based on FGs, IGs and OGs to form a 

hidden unit which is the core of the LSTM algorithm [22]. 

The structure of the hidden unit is shown in Figure 4. 



200   Informatica 48 (2024) 195–208                                                              Y. Yang et al. 

 

ht

xt

x

x xσ

σ tanhσ

tanhσ

ht+1

xt+1

x+1

x+1 x+1σ

σ tanhσ

tanhσ

Hidden unit t
Hidden unit t+1

 

Figure 4: LSTM hidden unit structure diagram 

 

The ED architecture with the introduction of LSTM 

algorithm can record the position information of the 

whole subset by memorizing the state. In addition, in the 

encoder, the expression for positional feature calculation 

is shown in Equation (11). 

t ts s

s

S h=           (11) 

In Equation (11), ts  denotes the weight of the 

subset at s  when the time step of the encoder is t . sl  

denotes the features of this subset. Where ts  is defined 

as shown in Equation (12). 
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In Equation (12), tq  denotes the state of the 

encoder in the hidden layer of the LSTM algorithm at 

time step t . ( ),t sF q l  denotes the correlation 

between tq  and sl . The calculation of correlation 

mainly consists of two forms: multiplication and addition, 

in order to avoid excessive model computation, the study 

adopts the method of addition for the correlation 

calculation of tq  and sl , whose computational 

expression is shown in Equation (13). 

1 2( , ) tanh( )t

t s a a t a sF q l v W q W l= + (13) 

In Equation (13), ( )tanh .  denotes the hyperbolic 

tangent function. 
t

av  denotes the output sequence of the 

OG of the LSTM algorithm at the moment t . W  

denotes the weight matrix of tq  and sl . The structure 

of ED is shown in Figure 5. 
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Figure 5: Schematic diagram of encoder-decoder architecture 
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Once the computation of the encoder is completed, 

the decoder can then be checked against the output of the 

encoder after going through a subset of the decoder 

feature fusion method. The study incorporates the 

decoder into the FFM so that the decoder becomes a 

submodule of the FFM, and after this operation, the FFM 

has the ability to check. During the encoder and decoder 

training process, some parameters of the hidden layer and 

maxSoft  classifier of the LSTM algorithm can be 

migrated to the decoder for training, and the encoder is 

obtaining the trained parameters by inverse operation. 

The ED model's capacity to generalize its parameters and 

its computing efficiency can both be enhanced via 

parameter migration training. The structure of the AR 

model fusing the encoder and decoder is shown in Figure 

6. 
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Figure 6: Schematic diagram of the action recognition model structure integrating encoder and decoder 

 

The study's construction of an intelligent HCI model 

is almost complete, and for the convenience of 

subsequent experiments, the study replaces the proposed 

model with the acronym L-ASGCN model. 

4 L-ASGCN model performance 

testing and analysis 

ASGCN, STGCN, and GCN are used as control models 

for controlled experiments in the study in order to verify 

the complexity of the intelligent HCI model that is 

suggested. The equipment required for the experiment is 

a computer with Intel Xeon w9-3495X CPU, 16GB of 

running memory, and RTX 2080 Ti graphics card. The 

experiments mainly used NTU RGB-D dataset, 

Interaction Action RGB-D dataset and Kinetics dataset. 

The Kinetics dataset comprises a diverse range of Internet 

videos, encompassing a multitude of daily activity 

scenarios. Its diversity and scale render it the benchmark 

dataset for behavior recognition algorithms. The 

Interaction Action RGB-D dataset is designed to record 

the interaction behavior between two individuals, 

providing detailed multimodal data on human actions and 

interaction scenarios. The NTU RGB-D dataset 

represents a comprehensive behavior recognition dataset 

that encompasses a diverse array of human activities, 

thereby providing a wealth of human behavior 

recognition scenarios for deep learning models. The 

selected dataset facilitates the deep feature learning of the 

model, particularly in the context of bone and joint data, 

thereby enhancing the accuracy of human pose estimation. 

In terms of evaluation indicators, accuracy, loss rate, 

recall rate, and F1 score are key measures of model 

performance. The accuracy of a model reflects its ability 

to predict correctly. The loss represents the accumulation 

of prediction errors during the training process. The recall 

measures the model's ability to recognize positive 

instances. The F1 score is the harmonic average of 

accuracy and recall, which can be used to evaluate the 

overall performance of the model. 
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Figure 7: Comparison of loss and accuracy of different models 

 

Accuracy and loss rate are important indicators of 

model performance, the study used NTU RGB-D dataset 

to train the STGCN model and L-ASGCN model for 30 

min respectively, and then used the Interaction Action 

RGB-D dataset as the input to conduct the comparison 

experiment of accuracy and loss rate. Figure 7(a) shows 

the evolution of the loss rates for the STGCN and 

L-ASGCN models. Based on the figure's trend of curves, 

it is evident that both models' loss rates drop as the 

iterations increases. However, the loss rate curve of the 

STGCN model shows obvious oscillations before 

convergence, while the L-ASGCN model has no obvious 

oscillations before convergence. In addition, the loss rate 

of the STGCN model after convergence is about 0.91%, 

while the loss of the L-ASGCN model after convergence 

is only 0.56%, so the proposed model has some 

advantages in loss rate. Figure 7(b) represents the 

comparison of the accuracy rates of the STGCN model 

and the L-ASGCN model. The results presented in Figure 

7(b) suggest that, initially, the L-ASGCN model's 

accuracy is not as high as the STGCN models. However, 

after a few iterations of the model, the accuracy of the 

suggested model grows significantly. The AverA of the 

proposed model, when the two models converge, is 

95.39%, which is 1.41% greater than the AverA of the 

STGCN model. Additionally, the suggested model's 

accuracy smoothness is superior to that of the control 

model. 
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Figure 8 Comparison diagram of confusion matrices for different models 

 

The confusion matrix (ConM) of the STGCN and 

L-ASGCN models are compared in Figure 8, with Figure 

8(a) showing the ConM the STGCN model produced 

using the Interaction Action RGB-D dataset. The ConM 

produced by the suggested model using this dataset is 

shown in Figure 8(b). The average score obtained by the  

 

 

 

 

 

 

proposed model is about 87.86, and the average score of 

the STGCN model is 86.57. By contrasting the 

aforementioned findings, it is evident that the proposed 

model of the study has some development because its AR 

effect on the same dataset is superior to that of the control 

model. 
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Table 1: Comparison of output times of different models on the Kinetics dataset for each module 

Model name 
Feature extraction 

time (s) 

Characterized recombination 

time (s) 

Action recognition 

time (s) 
Total Time (s) 

L-ASGCN 3.1 0.7 0.3 4.1 

ASGCN 3.5 1.1 0.4 5.0 

STGCN 3.7 1.1 0.6 5.4 

GCN 4.2 1.7 0.8 6.7 

 

Table 1 presents a comparison of the output time and 

total elapsed time for each module on the Kinetics dataset. 

It can be observed that the total elapsed time is lowest for 

the L-ASGCN model, followed by the ASGCN model, 

the STGCN model, and the GCN model. With regard to 

the time required for the output of each module, the 

feature recombination time consumption of the ASGCN 

model and the STGCN model is identical. This is due to 

the fact that the ASGCN model is not optimized for 

feature recombination during the process of improvement. 

Consequently, the feature recombination module of the 

ASGCN model and the feature recombination module of 

the STGCN model are both subject to the same time 

constraints. The research-proposed model performs best 

across all modules and in terms of the overall output 

elapsed time, according to the experimental data, 

demonstrating its superior computational and 

feature-processing capabilities. 

 

Table 2: Comparison of actual scene recognition performance between L-ASGCN model and ASGCN model 

Behavior 
Accuracy (%) Recognition time (s) 

L-ASGCN ASGCN L-ASGCN ASGCN 

Raise hands flat 94.5 90.2 1.13 1.51 

Lift left hand 95.9 87.3 1.21 1.39 

Lift right hand 94.7 86.9 1.26. 1.40 

Cross hands 91.2 91.1 0.91 1.11 

Lift left foot 92.3 88.6 1.22 1.29 

Lift right foot 92.1 88.4 1.22 1.31 

Squat down 90.1 90.8 1.08 1.33 

Punching 89.6 88.1 1.39 1.45 

Jump 94.9 90.2 1.21 1.30 

Wave 87.2 89.9 1.29 1.26 

 

To test the effectiveness of the model's application 

in real life, the study randomly selects 10 volunteers for 

testing, each action is done 30 times during the test, and 

the behavioral actions of the volunteers are inputted into 

the experimental model in video form. The L-ASGCN 

model has the highest recognition rate for the 

hand-raising action, and a lower AR rate for the 

hand-waving, but the overall recognition rates of the 

model are all around 90%. Additionally, a comparison of 

the L-ASGCN and ASGCN models' findings reveals that 

the former has better accuracy and requires less time to 

recognize an action, which supports the suggested 

model's AR efficiency. 
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Figure 9: Comparison of the change in recall of each model on different datasets 
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Figure 9 represents the recall comparison of 

L-ASGCN model, ASGCN model, and STGCN model on 

Kinetics dataset and Interaction Action RGB-D dataset. 

The experimental outcomes of the three models on the 

Kinetics dataset are shown in Figure 9(a). The average 

recall of L-ASGCN model, ASGCN model and STGCN 

model are 93.06%, 91.71% and 87.86% respectively. 

Figure 9(b) represents the trend of the recall of each 

model on the Interaction Action RGB-D dataset. Based 

on the results in Figure 9(b), the average recalls of 

L-ASGCN model, ASGCN model and STGCN model are 

calculated as 89.46%, 87.92% and 86.11%, respectively. 
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Figure 10: Schematic of F1 scores vs. average F1 scores for each model 

 

Figure 10 shows a comparison of the F1 scores and 

average F1 scores of three models, L-ASGCN, ASGCN, 

and STGCN, on the Interaction Action RGB-D dataset. 

Figure 10(a) illustrates the relationship between the F1 

scores of the three models and training time. The F1 

scores of each model increase as the training time 

increases. Among the experimental models, the F1 score 

of the L-ASGCN model is the highest. Figure 10(b) 

shows the average F1 scores of each model after 

repeating the experiment three times. The L-ASGCN 

model achieved an average F1 score of 89.79%, followed 

by the ASGCN model with 85.97%, and the STGCN 

model with 78.66%. 

5 Discussion 

In the field of human behavior recognition, GCN has 

emerged as an effective data analysis tool. In order to 

achieve more precise and efficient action recognition 

capabilities and to promote the intelligent development of 

HCI technology, an L-ASGCN model was studied and 

constructed. The loss rate of the L-ASGCN model after 

convergence was 0.56%, with an overall recognition rate 

of approximately 90%, an average recall rate of 93.06%, 

and an average F1 score of 89.79%. The model 

demonstrated significant advantages over STGCN and 

ASGCN in multiple performance indicators. The primary 

rationale for this outcome was that L-ASGCN streamlines 

the convolutional kernel of the model through the 

utilization of displacement operations, thereby reducing 

the overall computational complexity and enhancing 

operational efficiency. In comparison to the studies 

conducted by Ahmad et al. [21] and Tong et al. [22], the 

enhanced performance of the L-ASGCN algorithm in 

processing human motion data represented a significant 

advancement in the application of GCN in the field of 

motion recognition. In particular, with regard to recall 

and model efficiency, L-ASGCN offered a more refined 

feature extraction and recombination mechanism than the 

dynamic virtual network embedding algorithms explored 

by Zhang et al. [23]. This was because it not only 

processes features but also suppresses performance loss 

caused by excessive computation, thereby optimizing 

model performance. Nevertheless, the L-ASGCN 

algorithm employed in this study is not without its 

limitations. Chief among these was the fact that the 

model is unable to capture global physical dependencies 

between joints, and that the motion capture is based on 

fixed skeletons. Future work should aim to enhance the 

generalization ability of models for different types of 

actions and to optimize real-time action recognition 

technology. In conclusion, the L-ASGCN model has 

considerable potential for application in human behavior 

recognition tasks, and can be applied in the fields of 

medical rehabilitation, intelligent monitoring, and 

interactive media. Furthermore, L-ASGCN has 

established a foundation for more efficient real-time 

action recognition in various dynamic environments in 

the future. 

6 Conclusion 

In the contemporary era where intelligent development 

has become mainstream, HCI is an important part of the 

development of intelligent terminal devices. An excellent 

HCI model can facilitate the intelligent terminal's 

understanding of human commands so as to better serve 

humans. In view of this, the study adopts the ASGCN 

algorithm and the LSTM-based ED module for fusion, so 

as to construct an intelligent AR model. The outcomes 

indicated that the L-ASGCN model achieved a loss of 

only 0.56% after convergence on the test dataset, with an 
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AverA of 95.39%. Additionally, the study tested the 

recall of the proposed model, and the results showed that 

the average recall of the L-ASGCN model was 93.06%, 

which is 1.35% higher than the ASGCN model and 

5.20% higher than the STGCN model. Regarding the test 

experiments on F1 scores, the L-ASGCN model achieved 

an average F1 score of 89.79%, while the ASGCN model 

and the STGCN model achieved average F1 scores of 

85.97% and 78.66%, respectively. These results indicated 

that the model proposed in the study had a higher overall 

performance. Meanwhile, the study also tested the 

proposed model for AR in real-life scenarios. The 

outcomes revealed that the proposed model has an overall 

recognition rate of around 90% for routine actions, 

indicating its feasibility and advancement. At the same 

time, there are some shortcomings in this study, such as 

the proposed model only captures the local physical 

dependence between joints and motion capture based on a 

fixed skeleton, so the model needs to be further optimized 

to address the shortcomings. 

 

Reference 

[1] Stephan Diederich, Alfred Benedikt Brendel, Stefan 

Morana, and Lutz Kolbe. On the design of and 

interaction with conversational agents: An 

organizing and assessing review of human-computer 

interaction research. Journal of the Association for 

Information Systems, 23(1): 96-138, 2022. 

https://doi.org/10.17705/1jais.00724 

[2] Barbara Rita Barricelli， Daniela Fogli. Digital twins 

in human-computer interaction: A systematic review. 

International Journal of Human–Computer 

Interaction, 40(2): 79-97, 2024. 

https://doi.org/10.1080/10447318.2022.2118189 

[3] Li Xiaofei, Jiang Miao, Du Yiming, Ding Xin, Xiao 

Chao, Wang Yanyan, Yang Yanyu, Zhuo Yizhi, 

Zheng Kang, Liu Xianglan, Chen Lin, Gong Yi, 

Tian Xingyou, Zhang Xian. Self-healing liquid 

metal hydrogel for human–computer interaction and 

infrared camouflage. Materials Horizons, 10(8): 

2945-2957, 2023. 

https://doi.org/10.1039/d3mh00341h 

[4] Rajdeep Ghosh, Souvik Phadikar, Nabamita Deb, 

Nidul Sinha, Pranesh Das, Ebrahim Ghaderpour. 

Automatic eyeblink and muscular artifact detection 

and removal from EEG signals using k-nearest 

neighbor classifier and long short-term memory 

networks. IEEE Sensors Journal, 23(5): 5422-5436, 

2023. https://doi.org/10.1109/JSEN.2023.3237383 

[5] Anitha Rani Inturi, V. M. Manikandan, Vignesh 

Garrapally. A novel vision-based fall detection 

scheme using keypoints of human skeleton with 

long short-term memory network. Arabian Journal 

for Science and Engineering, 48(2): 1143-1155, 

2023. https://doi.org/10.1007/s13369-022-06684-x 

[6] M. Kalpana Chowdary, Tu N. Nguyen & D. Jude 

Hemanth. Deep learning-based facial emotion 

recognition for human–computer interaction 

applications. Neural Computing and Applications, 

35(32): 23311-23328, 2023. 

https://doi.org/10.1007/s00521-021-06012-8 

[7] Liu, Hai, Liu, Tingting, Zhang, Zhaoli, Sangaiah, 

Arun Kumar, Yang, Bing, Li, Youfu. Arhpe: 

Asymmetric relation-aware representation learning 

for head pose estimation in industrial 

human–computer interaction. IEEE Transactions on 

Industrial Informatics, 18(10): 7107-7117, 2022. 

https://doi.org/10.1109/TII.2022.3143605 

[8] Zhang, Hao, Zhang, Dongzhi, Wang, Zihu, Xi, 

Guangshuai, Mao, Ruiyuan, Ma, Yanhua, Wang, 

Dongyue, Tang, Mingcong, Xu, Zhenyuan, Luan, 

Huixin. Ultrastretchable, self-healing conductive 

hydrogel-based triboelectric nanogenerators for 

human–computer interaction. ACS Applied 

Materials and Interfaces, 15(4): 5128-5138, 2023. 

https://doi.org/10.1021/acsami.2c17904 

[9] Zhang, Ronghui, Jiang, Chunxiao, Wu, Sheng, Zhou, 

Quan, Jing, Xiaojun, Mu, Junsheng. Wi-Fi sensing 

for joint gesture recognition and human 

identification from few samples in human-computer 

interaction. IEEE Journal on Selected Areas in 

Communications, 40(7): 2193-2205, 2022. 

https://doi.org/10.1109/JSAC.2022.3155526 

[10] Alaa Bessadok, Mohamed Ali Mahjoub, Islem Rekik. 

Graph neural networks in network neuroscience. 

IEEE Transactions on Pattern Analysis and Machine 

Intelligence, 45(5): 5833-5848, 2022. 

https://doi.org/10.48550/arXiv.2106.03535 

[11] Lingfei Wu, Yu Chen, Kai Shen, Xiaojie Guo, 

Hanning Gao, Shucheng Li, Jian Pei, Bo Long. 

Graph neural networks for natural language 

processing: A survey. Foundations and Trends® in 

Machine Learning, 2023, 16(2): 119-328. 

https://doi.org/10.48550/arXiv.2106.06090 

[12] Qian Wang, Youfa Liu. Energy Levels Based Graph 

Neural Networks for Heterophily. Journal of Physics 

Conference Series. 1948(1): 012042. 

https://doi.org/10.1088/1742-6596/1948/1/012042 

[13] Qian Wang, Youfa Liu. Energy Levels Based Graph 

Neural Networks for Heterophily. Journal of Physics 

Conference Series. 1948(1): 012042. 

https://doi.org/10.1088/1742-6596/1948/1/012042 

[14] Kevin Kiningham, Philip Levis, Christopher Ré. 

GRIP: A graph neural network accelerator 

architecture. IEEE Transactions on Computers, 

72(4): 914-925, 2022. 

https://doi.org/10.1109/TC.2022.3197083 

[15] Adem Aylin, akt Erman, Dadeviren Metin. Selection 

of suitable distance education platforms based on 

human–computer interaction criteria under fuzzy 

environment. Neural Computing and Applications, 

34(10): 7919-7931, 2022. 

https://doi.org/10.1007/s00521-022-06935-w 

[16] Milani Alireza Sadeghi, Cecil-Xavier Aaron, Gupta 

https://doi.org/10.1088/1742-6596/1948/1/012042


206   Informatica 48 (2024) 195–208                                                              Y. Yang et al. 

Avinash, Cecil  J, Kennison Shelia. A systematic 

review of human–computer interaction (HCI) 

research in medical and other engineering fields. 

International Journal of Human–Computer 

Interaction, 40(3): 515-536, 2024. 

https://doi.org/10.1080/10447318.2022.2116530 

[17] Xie Yaochen, Xu Zhao, Zhang Jingtun, Wang 

Zhengyang, Ji Shuiwang. Self-supervised learning 

of graph neural networks: A unified review. IEEE 

Transactions on Pattern Analysis and Machine 

Intelligence, 45(2): 2412-2429, 2022. 

https://doi.org/10.48550/arXiv.2102.10757 

[18] He Jinbao, Yang Jie. Network security situational 

level prediction based on a double-feedback Elman 

model. Informatica, 46(1): 87-93, 2022. 

https://doi.org/10.31449/inf.v46i1.3775 

[19] Utkin Lev V, Zhuk Kirill D. Improvement of the 

deep forest classifier by a set of neural networks. 

Informatica, 44(1):1-13, 2020. 

https://doi.org/10.31449/inf.v44i1.2740 

[20] Yuan Hao, Yu Haiyang, Gui Shurui, Ji Shuiwang. 

Explainability in graph neural networks: A 

taxonomic survey. IEEE Transactions on Pattern 

Analysis and Machine Intelligence, 45(5): 

5782-5799, 2022. 

https://doi.org/10.1109/TPAMI.2022.3204236 

[21] Ahmad Tasweer, Jin Lianwen, Zhang Xin, Lai 

Songxuan, Tang Guozhi, Lin Luojun. Graph 

convolutional neural network for human action 

recognition: A comprehensive survey. IEEE 

Transactions on Artificial Intelligence, (2): 128-145, 

2021. https://doi.org/10.1109/TAI.2021.3076974 

[22] Tong Houjie, Qiu Robert C, Zhang Dongxia, Yang 

Haosen, Ding Qi, Shi Xin. Detection and 

classification of transmission line transient faults 

based on graph convolutional neural network. CSEE 

Journal of Power and Energy Systems, 7(3): 

456-471, 2021. 

https://doi.org/10.17775/CSEEJPES.2020.04970 

[23] Zhang Peiying, Wang Chao, Kumar Neeraj, Zhang 

Weishan, Liu Lei. Dynamic virtual network 

embedding algorithm based on graph convolution 

neural network and reinforcement learning. IEEE 

Internet of Things Journal, 9(12): 9389-9398, 2021. 

https://doi.org/10.48550/arXiv.2202.02140 

 

 

 

 

 

 

 

Appendix 
 
Table A summarizes the content of the above research. 

Table A: Summary of related work 

Research 

contents 
Researchers Key findings Potential Shortcomings 

Human-compute

r interaction 

Chowdary et 

al. [6] 

Using deep learning techniques to recognize 

emotions and promote intelligent 

human-computer interaction 

Not taking into account the 

differences in emotional expression 

across different cultural 

backgrounds 

Liu et al. [7] 

Solving the problem of adjacent pose 

information processing and mislabeling gap in 

head pose estimation 

Robustness in ever-changing 

environments may need to be 

improved 

Zhang et al. 

[8] 

Constructing a glove based human-machine 

interaction system using a frictional electric 

nanogenerator. Extracting and analyzing 

multidimensional signal features to achieve 

gesture visualization and robotic arm control 

More data support may be required 

for the recognition of complex 

gestures 

Zhang et al. 

[9] 

Dynamic mode of gesture recognition using WiFi 

and Radar sensing technology 

System complexity and power 

consumption may be obstacles in 

practical applications 

GCN research 

contents 

Bessadok et 

al. [10] 

Medical image recognition based on learning 

deep graph neural networks; Combining DNN 

and GNN for identifying human brain neuronal 

activity 

Unknown generalization ability for 

large-scale image datasets 

Wu et al. [11] 

A natural language processing model based on 

GCN; Introduced ED technology to achieve 

global encoding of input data 

Adjustments may be needed to 

adapt to different natural language 

processing tasks 
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Zhu et al. [12] 

Unsupervised image analysis based on GCN and 

DNN; Improving GCN pooling method through 

DNN to achieve cluster structure recovery 

Further validation is needed to 

evaluate the effectiveness of 

unsupervised methods on diverse 

datasets 

Zhu et al. [13] 

Develop a new graph convolutional framework 

to address the homogeneity assumption problem 

of GCN; Introducing interpretable compatibility 

matrices to model heterogeneity in graphs 

Insufficient scalability of the 

framework 

Kiningham et 

al. [14] 

GNN gas pedal architecture with low latency 

inference design; Combining vertex and edge 

operations, introducing a high-performance 

matrix multiplication engine 

Further consideration is needed for 

real-time performance and 

computational resource 

consumption 
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