
https://doi.org/10.31449/inf.v49i17.5992 Informatica 49 (2025) 95–104 95

Software Vulnerability Assessment and Classification Using Machine

Learning, Deep Learning and Feature Selection Techniques

Ali Hussein, Azri Azmi, Hafiza Abas

Faculty of Artificial Intelligence, Universiti Teknologi Malaysia (UTM), Kuala Lumpur, Malaysia

E-mail: hussein.a@graduate.utm.my

Keywords: vulnerability, deep learning, machine learning, classification, neural network, VSM, ANN, selection

techniques

Received: January 29, 2025

The detection of software defects is a critical technique for improving software quality and optimizing

testing resources. This study presents a novel approach to software vulnerability assessment and

classification using Recurrent Neural Networks (RNNs) enhanced by feature selection techniques. The

proposed methodology integrates data preprocessing, dynamic analysis methods, and vector space model

(VSM) generation, leveraging techniques such as TF-IDF and relational feature extraction to normalize

and balance datasets. Computational experiments were conducted using various real-world and synthetic

datasets, comparing the proposed RNN framework to traditional machine learning models, including

Artificial Neural Networks (ANN), Support Vector Machines (SVM), and Adaboost. The RNN model,

optimized with activation functions such as ReLU, Sigmoid, and Tanh, demonstrated superior

performance, achieving a classification accuracy of 97.5% with ReLU and outperforming other models

in precision (97.6%), recall (97.9%), and F-measure metrics. These results highlight the robustness and

effectiveness of the proposed framework in detecting vulnerabilities and mitigating software defects. This

research underscores the potential of deep learning-based approaches in enhancing software reliability

and security.

Povzetek: Članek analizira ranljivost programske opreme z uporabo globokih nevronskih mrež (RNN),

optimiziranih s tehnikami izbire značilk, kjer učinkovito obravnava neuravnotežene podatke.

1 Introduction

Recognition of vulnerabilities in source code or

software has become an emerging field of research. Even

though earlier studies have demonstrated the usefulness of

multiple detection methods, models, and software

vulnerability analysis tools in identifying source code

vulnerabilities, the enhancement of the efficiency of such

detection models and tools remains a major challenge for

researchers. Annually, thousands of security issues are

identified in virtual instruments, which are released

publicly to the general vulnerability database exposed in

obfuscated code. Threats also occur in indirect ways that

are not evident to the concerned code inspectors or the

programmers. It seems necessary to understand the

dynamics of vulnerabilities that can lead to system issues

directly from the raw data, with abundance of publicly

available source code. In this work, we present an

information approach to security technology using deep

learning. Stimulated by the success of similar research in

the area of recognizing the vulnerabilities in source

code/software, we use a theoretical framework to examine

its feasibility to aid in finding out the said vulnerabilities.

The preliminary results indicate that within the domain of

detecting attacks, the definition is feasible [1].

To bridge the domain gap, we can propose that each

feature in a program be treated in computer vision as a

neural network because fault detectors may only have to

say whether a feature is insecure and fully explain

vulnerability positions. That is, we want an intelligent

interpretation of fault management programs. On either

hand, one may recommend approaching each piece of

code (i.e., comment, in this study, the two words are used

synonymous) as a vulnerability detection unit. There are

important exceptions to this diagnosis:

(i) most comments in a program may not contain any

uncertainty, indicating that a few samples are susceptible;

(ii) multiple comments are not regarded as a whole that is

semantically linked to each other [2].

Using traditional programming by utilizing k-means

cluster analysis and the generative adversarial model, a

scheme was introduced to check bugs in large number of

random codes. To select the optimal code with an

interactive analysis framework and software code refactor

generation, k-means cluster transformation has been used.

Use of a system, described on object-oriented code

analysis documented in literature; in the instant case. The

model is verified by the tasks of conceptual relationship

analysis based on coding pairs and identification of

sentiments. Moreover, a research study centered on what

form of compilation with communication of massive

source code has helped to recognize errors for

inexperienced developers and suggest the steps needed to

be taken on source code mistakes. The investigation uses

the form of a message previously based on the coding

system and detects specific code snippets' vulnerability

[3].

It is therefore noted that, as classification algorithms

for web application, bug identification and vulnerability

classification, most investigators have used conventional

96 Informatica 49 (2025) 95–104 A. Hussein et al.

semi-supervised classifiers, RNNsor CNNs. RNNs are far

better than the standard language models, including such

n-gram, but they have drawbacks in understanding long

sequence data. Based on faults, functional programming

identification, archive code identification, and basic error

detection, almost all of the studies are found to have used

various system software and classification models. On the

other hand, the developed scheme of ours explicitly

defines logic, grammar, and other system software errors.

Additionally, in place of the error spot, the proposed

model is used to predict the correct terms. Overall, in

pursuing unique objectives, our suggested Language

model varies from many other models [4].

This paper introduces a novel active tracking on deep

learning to automatically learn features for predicting

runtime environment weaknesses. In source code, where

contingent code components are spread far apart, For

example, combinations of code tokens that are needed to

appear simultaneously due to the configuration of the

computer program (e.g. in Java) or according to the

configuration of API use (e.g. Lock () and activate ()), but

do not accompany each other automatically are effectively

handled. The interpretation of code symbols (semantic

functionality) and the hierarchical structure of source code

are appropriately reflected by the learned features

(syntactic features). Our automated feature learning

strategy removes the need for automated feature selection

in conventional methods, which takes up much effort.

Finally, testing the framework from a huge repository on

many Java programs for the Desktop version reveals that

our methodology is highly accurate in explaining code

vulnerabilities [5]. Table 1 provides a Related Works

Summary comparing the methodologies, datasets, and

performance metrics of reviewed studies.

Table 1: Related works summary comparison
study Methodology Dataset

Size
Key
Metrics

(Accuracy,

Precision,
Recall)

Limitations

Tai et

al.
(2015)

Convolutional

Neural
Network

(CNN)

10,000+

samples

Accuracy

: 92.3%

Limited to

structured data;
scalability and

semantic feature

extraction issues.

Zhou

et al.

(2016)

Support

Vector

Machine
(SVM) +

Text

Mining

15,000+

bug

reports

Accuracy

: 89.5%,

Recall:
91.2%

Inefficient for

large datasets;

high
computational

cost.

Teshim

a et al.

(2018)

Long Short-

Term

Memory

(LSTM)
Networks

5,000+

snippets

Accuracy

: 94.2%

Struggles with

imbalanced

datasets, leading

to reduced recall.

Tong

et al.
(2018)

Stacked

Autoencode
r +

Ensemble

20,000+

entries

Accuracy

: 93.1%,
Precision

: 94.5%

High

preprocessing
cost; lacks

scalability for

diverse datasets.

Proposed
Framewor

k

Recurrent
Neural

Network

(RNN) with
TF-IDF and

2,500
(2000

training,

500
testing)

Accuracy
: 97.5%,

Precision

: 97.6%,

Efficient handling
of imbalanced

datasets; reduced

preprocessing;

relational
feature

extraction

Recall:
97.9%

automated feature
learning.

The proposed RNN framework distinguishes itself by

integrating advanced feature selection methods, such as

TF-IDF and relational feature extraction, with robust data

normalization and balancing techniques. Additionally, its

automated feature learning capabilities minimize

preprocessing requirements, and its optimized

architecture, featuring activation functions like ReLU and

Tanh, achieves superior performance. These attributes

establish the proposed framework as a novel and effective

solution, addressing gaps in the state-of-the-art while

setting new benchmarks in software vulnerability

detection. This comprehensive comparison underscores

the necessity and impact of the proposed solution in

overcoming the limitations of existing methodologies.

2 Proposed system design

Figure 1: Proposed system architecture design

shows a system overview of execution process flow,

and delineates how it works with different algorithms.

2.1 Implementation environment
The proposed framework was implemented on a

Windows operating system using JDK 1.7 and Python as

the coding language. NetBeans IDE was utilized for

development, with MySQL serving as the database for

both back-end operations and storage. The front-end was

designed using jPanel and jFrame. The hardware

environment included an Intel i3 2.7 GHz CPU, 300 GB

HDD, and 4 GB RAM, providing sufficient resources for

the experiments and ensuring replicability.

2.2 Pre-processing
the source code is separated as well as the area of the

comparison is first decided. There are three basic types of

goals in the below steps.

Software Vulnerability Assessment and Classification Using Machine… Informatica 49 (2025) 95–104 97

Eliminate section of code: In this step source code

uninteresting compared phase is removed.

Determine source units: By removing all the

uninteresting code, the remaining part of the source code

is divided into the arrangement of dissimilar sections

known as source units.

Determine correlation units/granularity:

Source code parts should be auxiliary divided into

smaller parts relying upon the evaluation method utilized

a tool [6].

2.3 Feature extraction
Extraction changes the program to the form that is

correct while supporting the real comparison algorithm.

Conditional upon the device, it contains are as following:

Tokenization: If there should be an event of token-

based methodologies, every source code line of the

program is more divided into tokens as shown by the

lexical regulation of the program design platforms of

importance. Apply different tokens of source code lines or

forms after that frame of token systems to compare. The

entire whitespace and comments between marks are

removed from the token groups.

Parsing: For syntactic methods, the whole source code

is described to prepare a parse tree or (potentially

clarified) abstract syntax tree (AST). The source parts to

be studied are then shown as sub-trees of the described tree

or the AST. Measurements-based methodologies can

utilize a parse tree depiction to discover clones taking into

account sizes for sub-trees.

Control and Data Flow Analysis: Semantics-related

methodologies produce program dependence graphs

(PDGs) as of the source code. The nodes of a Program

Dependence Graphs show the reports and circumstances

of a system, while edges show control and information

conditions. Source units to be matched are shown as sub-

graphs of these PDGs. Different plans then search in favor

of isomorphic sub-graphs to discover clones. A few

measurement-based methodologies use sub-graphs to

compute info with control stream measurements [6]. The

feature extraction process involves transforming raw

source code into a vector space model (VSM) using a

combination of TF-IDF, relational features, and bigram

features. TF-IDF was applied with standard parameters,

considering all terms across the dataset, to capture term

importance relative to document frequency. Relational

features were generated by analyzing dependencies

between code tokens, such as variable usages and method

invocations. For bigram features, sequential pairs of

tokens were extracted to capture context within code

snippets. The extracted features were normalized to ensure

consistency, and imbalanced datasets were balanced

through re-sampling techniques to improve classification

performance. All preprocessing steps were implemented

using Python libraries, ensuring reproducibility.

2.4 Feature selection
The various feature selection methods have been used

during module training. The function compiles entire

source code or modules with real statistics; in this method

behavior is analyzed of code for vulnerability detection. In

a broader dataset, all of the variables are less necessary to

consider; but, the greater the number of variables, the

greater the difficulty. As a result, it is often preferable to

reduce the number of variables in a dataset and to use

critical variables [17]. We may reduce the parameter and

find the variable's value in a dataset using a Function

Selection technique. During the analysis, four dynamic

analysis methods have been used, fault infusion, mutation

suitable starting, dynamic taint assessment, and dynamic

system check. To generate the vector Space Model (VSM)

from extracted features.

2.5 Vulnerability detection
The vulnerability detection has been performed based

on extracted features from the training data set. The vector

space model has been generated according to extracted

features like TF-IDF, relational features, and some bigram

features. The classification has been done with recurrent

neural networks, including long short-term memory

algorithms. This detection is also effective for of

prevention of software-as-a-service attacks for web

applications. The vulnerable code generates internal as

well as external attacks and grants unauthorized access to

external users. The major objective of detection

vulnerability is the automatic detection of exception

handling and buffer overflow attacks during code

execution. In the section proposed algorithm provides

better detection accuracy in the code snippet [16]. Detailed

Experimental Design

The synthetic dataset used in this study was generated

by augmenting real-world vulnerability datasets with

additional samples created through programmatic

transformations, such as adding redundant code blocks

and varying variable names to simulate real-world coding

diversity. The dataset comprised 2,500 samples,

partitioned into 2,000 for training and 500 for testing.

Each sample was manually labeled based on known

vulnerabilities.

The 20-fold cross-validation was chosen to ensure

robust evaluation and reduce bias in model performance

assessment. Hyperparameter optimization was conducted

using grid search to fine-tune parameters, including the

number of RNN layers (1–3), activation functions (ReLU,

Sigmoid, Tanh), and dropout rates (0.2–0.5). Data

augmentation techniques, such as oversampling of

minority classes and SMOTE (Synthetic Minority Over-

sampling Technique), were applied to mitigate the effects

of class imbalance, ensuring fair training and evaluation

of the RNN model.

3 Algorithm design
The algorithms furnished below have been used

during the calculations of TF-IDF and weight score

calculations using RNN.

TF-IDF:

Input: Input test instance that contains numerous

 tokens T [i…n]

98 Informatica 49 (2025) 95–104 A. Hussein et al.

Output: TF-IDF weight for all T[i]

Step 1: Data_vector = {Data1, Data 2, Data 3…. Data

n}

Step 2: Words exist in the entire dataset

Step 3: D = {cmt1, cmt2, cmt3, cmtn} and comments

available in each document. Calculate the Tf score as

Step 4: tf (t,d) = (t,d)

 t= term

 d= document

Step 5: idf = t sum(d)

Step 6: Return tf *idf

Recurrent neural network:

Input: Training dataset TestDBList [], Train dataset

TrainDBList [] and Threshold th.

Output: Predicted class according to classification

Step 1: Read train data rules using below formula

Train[] = ∑(Attn … … … … Attk)

k

n=1

Step 2: Read test data rules using below formula

Test[] = ∑ (Attm … … … … Attk)

k

m=1

Step 3: Calculate the weight between the input and

hidden layer

Instance[w]

= ∑(Testn … … … … Testn) ∑ (Trainm … … … … Traink)

k

m=1

k

n=1

Step 4: Generate a feedback layer based on the

threshold policy

Feed_Layer[] = ∑ (Feed_Layer. optimized ())

k

m=1

Step 5: Return Feed_Layer[0]. class

4 Results and discussion
To validate the evaluation of the proposed bug

forecast procedure, we have employed RNN classification

algorithms that are gainfully utilized for fault prediction

including unlabeled datasets. The performance

evaluations of software defect prediction are based on the

confusion matrix, as shown in Table 2, which includes the

measures of precision, recall, as well as F-score.

Table 2: Confusion matrix evaluation

Actual Predictive

True TP (true positive) FN (false negative)

False FP (false positive) TN (true negative)

True positive (TP): The number of fake entities

anticipated as fake.

False negative (FN): The number of fake entities

anticipated as normal.

False positive (FP): The number of normal entities

anticipated as fake.

True negative (TN): The number of normal entities

anticipated as normal.

In this research, analytical performance procedures are

calculated as follows:

Precision: It shows the proportion of faulty identities

received adequate as faulty of all desired objects.

Recall: It is the percentage of faulty identities to all entities

that are currently faulty is the proportions of recall.

F-measure: It is the cumulative recall and precision

average, with higher estimated coefficients matching

higher predictive efficiency.

To evaluate the proposed system, we have used machine

learning classifiers like ANN, SVM, and Adaboost. Also,

we have used the deep learning framework of RNN with

LSTM by using activation functions like Sigmoid, Tanh,

and ReLU. The results of classification accuracy with

confusion matrix with 20-fold cross-validation for all

algorithms are shown in Table 3. Measures used to

compare the algorithms are Accuracy, Precision, Recall,

and Micro-score. From the observations, it can be

concluded that RNN (ReLU) gives the highest

performance among all.

4.1 Experiment using artificial neural

network
 figure 2 shows the classification accuracy of the ANN

classification algorithm. Initially, it was trained using

inbuilt functions from the weka tool. Numerous cross-

validation techniques have been used for classification,

and various parameters have been tuned for ANN during

the classification. This approach can classify each

validation according to probability function, that the

reason this algorithm has a higher error rate than other

supervised classification algorithms.

Table 3: accuracy and confusion matrix for ANN

ANN Fold 10 Fold 15 Fold 20

Accuracy 85.20 84.20 85.60

Precision 83.60 82.30 84.99

Recall 87.50 85.40 77.72

Micro-Score 85.05 83.35 81.10

The ANN model is easy to build and particularly

useful for very large data classification using supervised

FP+TP

TP
=Recall

Precision+Recall

RecallPrecision
=MeasureF


−

2

FN+TP

TP
=Precision

Software Vulnerability Assessment and Classification Using Machine… Informatica 49 (2025) 95–104 99

machine learning techniques or Artificial Intelligence

(AI). Along with simplicity, ANN is known to outperform

even highly sophisticated classification methods. The

proposed ANN predicts the possibility for individual

instances according to current values.

Figure 2 shows the performance evaluation

calculation of ANN classification with 20-fold

classification. It achieves around 85.60% accuracy for the

given input dataset. We used a multinomial event model,

samples represent the frequencies with which certain

events have been generated by a multinomial probability

of that particular event, and based on that probability

system predict the final class.

Figure 2: Analysis of bug and vulnerability detection

using ANN with 20-fold data cross-validation

4.2 Experiment using support vector machine

(SVM)
Table 4 depicts the classification analysis with various

cross-validations, we conclude that 20-fold cross-

validation provides the highest 95.2% classification

accuracy for SVM.

Table 4: accuracy and confusion matrix for SVM

SVM Fold 10 Fold 15 Fold 20

Accuracy 91.20 91.70 95.20

Precision 91.35 92.10 94.80

Recall 92.30 93.10 96.20

Micro-Score 91.35 92.20 94.75

Fig. 3: Analysis of vulnerability detection using

SVM with 20-fold data cross-validation

Figure 3 describes SVM for 20-fold cross-validation.

The labeling circumstances to construct a training set

becomes moment and expensive in many machines

learning; it is also helpful to find strategies to reduce

supervised classification numbers. By improving

performance, the Kernel-Based algorithm has been used

to minimize occurrences. We classify all in this algorithm

as a point in n-dimensional spaces only with respect to a

property direction being the meaning of each

characteristic by classification technique; we detect clones

by finding the hyper-plane that separates the two groups

very well.

4.3 Experiment using adaboost
Below table 5 depicts the classification analysis with

various cross-validation, we conclude that 20-fold cross-

validation provides the highest 81.30% classification

accuracy for Adaboost.

Table 5: Accuracy and confusion matrix for adaboost

Adaboost Fold 10 Fold 15 Fold 20

Accuracy 70.60 78.50 81.30

Precision 72.30 73.50 74.50

Recall 69.90 68.50 70.30

Micro -Score 70.60 71.90 72.30

Adaboost is adaptive in that it tweaks future weak

learners in favor of cases misclassified by prior classifiers.

It may be less prone to the overfitting issue than other

learning algorithms in certain situations. Individual

learners may be poor, but as long as their performance is

somewhat better than actual guessing, the overall model

will converge to a powerful learner.

Figure 4: Analysis of vulnerability detection using

Adaboost with 20-fold data cross-validation

 figure 4 describes Adaboost classification for fake

account detection for 20-fold cross-validation. AdaBoost

is a specific training technique for boosted classifiers.

A boost classifier is a kind of classifier.

Each Ft is a weak learner that accepts an object x as

input and returns a value that indicates the object's class.

The sign of the weak learner output, for example, specifies

the predicted object class in the two-class issue, whereas

the absolute value indicates confidence in that

100 Informatica 49 (2025) 95–104 A. Hussein et al.

classification. Similarly, if the sample belongs to a

positive class, the Tth classifier is positive; otherwise, it is

negative.

4.4 Experiment using recurrent neural

network (Sigmoid)
we demonstrate the classification accuracy of RNN

(Sigmoid) using a synthetic dataset, similar experiments

have been done with various cross-validation and the

results are illustrated in Table 6. According to this

analysis, we conclude that 20-fold cross-validation

provides the highest 96.10% classification accuracy using

RNN with Sigmoid function.

Table 6: accuracy and confusion matrix for RNN

(Sigmoid)

RNN (Sigmoid) Fold 10 Fold 15 Fold 20

Accuracy 95.60 95.90 96.10

Precision 95.80 96.10 97.00

Recall 95.80 96.00 96.30

Micro-Score 94.70 95.90 96.05

Figure 5: Detection of accuracy using RNN

(Sigmoid) with 20-fold data cross-validation

The 20-fold cross-validation also achieves 96.10%

with RNN with sigmoid function, have been explained in

Figure 5, these RNN functions achieve around higher

accuracy over the traditional machine learning algorithms

during module testing.

4.5 Experiment using recurrent neural

network (Tanh)
 figure 6 shows the classification accuracy of RNN,

the similar experiments has done with various cross-

validations, and the results are illustrated in Table 7.

According to this analysis, we conclude that 20-fold cross-

validation provides the highest 97.25% classification

accuracy for RNN using Tanh.

Table 7: Classification accuracy with confusion

matrix for RNN (Tanh)

RNN (Tanh) Fold 10 Fold 15 Fold 20

Accuracy 96.90 97.50 97.25

Precision 97.00 97.40 97.60

Recall 97.30 97.50 97.30

Micro-Score 96.80 96.70 96.90

Figure 6: Detection of accuracy using RNN (Tanh)

with 20-fold data cross-validation

4.6 Experiment using recurrent neural

network (ReLU)
In this experiment we analyse the classification

accuracy of ReLU using a synthetic dataset, similar

experiments have been done with various cross-validation

and the results are illustrated in Table 8. According to this

analysis, we conclude system provides the highest 97.5%

accuracy for 20-fold cross-validation classification

accuracy for RNN.

Table 8: Classification accuracy with confusion

matrix for RNN (ReLU)

RNN (ReLU) Fold 10 Fold 15 Fold 20

Accuracy 97.20 97.90 97.50

Precision 97.40 96.90 97.60

Recall 95.60 97.20 97.90

Micro-Score 96.20 95.80 97.20

Figure 7: Detection of accuracy using RNN (ReLU)

with 20-fold data cross-validation

The above experiments describe a proposed deep-

learning classification algorithm with a machine-learning

algorithm. This figure describes the result with and

without cross-validation. we conclude that RNN with

sigmoid provides better detection accuracy than the other

two activation functions as well as the random forest

machine learning algorithm.

Table 9: Results of above experiments.
Method

/

Measur

e

AN

N

SV

M

Adaboo

st

RNN

(Sigmoi

d)

RNN

(Tanh

)

RNN

(ReLU

)

Software Vulnerability Assessment and Classification Using Machine… Informatica 49 (2025) 95–104 101

Accurac

y

85.6

0
95.2 81.30 96.10 97.25 97.50

Precisio

n

84.9

9

94.8

0
74.50 97.00 97.60 97.60

Recall

77.7

2
96.2 70.30 96.30 97.30 97.90

Micro-

Score

81.1

0

94.7

5
72.30 96.05 96.90 97.20

Figure. 8: Classification accuracy with 20-fold cross-

validation for all methods

The proposed method obtains the best predictive

performance. The suggested solution can be further tested

when used in actual software applications. The three data

splitting mechanisms have been used as 10, 15, and 20-

fold cross-validation.

Table 10: Dataset description of source code

extracted from Android APK files

Total Size 2500

Training Samples 2000

Testing Samples 500

The system describes four evaluations between this

research results and some existing systems results

calculated on similar as well as multiple datasets.

Figure 9: Comparative analysis of proposed vs.

existing classification for vulnerability detection shows

two machine learning algorithms used.

 This figure depicts the proposed RNN provides better

detection accuracy over machine learning algorithms.

A classification model is generated using this arrangement

or learning set to organize the input courses into

corresponding template files or labels. Then a test set is

used by gleaning the class labels of orthonormal courses

to validate the model. A variety of neural networks are

used to identify reviews, such as ANN, Support Vector

Machines (SVM), and Adaboost. The proposed RNN

framework demonstrates superior performance compared

to traditional and deep learning. the RNN outperformed

methods like SVM, which struggled with large datasets

and computational inefficiency, and CNNs, which lacked

robustness in handling hierarchical and semantic features.

These improvements are attributed to the RNN’s ability to

effectively model sequential data and incorporate

advanced preprocessing techniques, such as TF-IDF and

relational feature extraction, that enhance both semantic

and syntactic representation. Additionally, the

framework’s balanced dataset handling and reduced

preprocessing effort offer practical advantages for real-

world applications. This innovative combination of

features establishes the proposed RNN as a robust and

scalable solution, addressing critical gaps in existing

approaches while setting new benchmarks in vulnerability

detection. The synthetic dataset used in this study was

generated by augmenting real-world vulnerability

datasets. The dataset comprised 2,500 samples, partitioned

into 2,000 for training and 500 for testing. Each sample

was manually labeled based on known vulnerabilities.

The 20-fold cross-validation was chosen to ensure

robust evaluation and reduce bias in model performance

assessment. Hyperparameter optimization was conducted

using grid search to fine-tune parameters, including the

number of RNN layers (1–3), activation functions (ReLU,

Sigmoid, Tanh), and dropout rates (0.2–0.5). Data

augmentation techniques, such as the oversampling of

minority classes and the Synthetic Minority Over-

sampling Technique, were applied to mitigate the effects

of class imbalance, ensuring fair training and evaluation

of the RNN model.

 Artificial Neural Networks (ANN), Support Vector

Machines (SVM), and Adaboost, were compared against

the proposed RNN framework. For ANN, a two-layer

architecture was used with a learning rate of 0.01 and

trained for 100 epochs. The SVM utilized a radial basis

function (RBF) kernel with a regularization parameter of

1. Adaboost employed 50 weak learners using decision

stumps. Each model was trained using the same 20-fold

cross-validation setup, with datasets split into 70%

training and 30% testing. Training times varied

significantly: RNNs required approximately 3 hours per

fold, while ANN and SVM training averaged 1 hour and

45 minutes, respectively. Detailed results of accuracy,

precision, recall, and micro-scores are provided in the

Results section, illustrating the superior performance of

RNN (ReLU), achieving an accuracy of 97.5%, precision

of 97.6%, and recall of 97.9%.

5 Conclusion and future work
Vulnerability detection is very tedious work for

imbalanced source codes; vulnerable code allows for

generating software attacks on remote users. Sometimes,

during execution, the vulnerable code also generates

internal attacks like

102 Informatica 49 (2025) 95–104 A. Hussein et al.

buffer overflow, session hijack, bypass

authentication, etc. In literature, many problems are

detected in software every year. Vulnerabilities mostly do

not appear in hidden forms that the software testers can

identify. This

system describes the method of finding drawbacks by

utilizing deep learning.

In this paper, we have developed an RNN including

LSTM for constructing code vulnerability detection and

bug triage on various platforms. Numerous tools are not

able to support a web-based application to find code

vulnerabilities. The proposed system works on different

datasets for feature extraction and is able to detect the

vulnerability. RNN provides a better result than traditional

machine learning classifiers.

In the future, developers need to detect the code triage

for runtime mobile-based application programs, because

the existing tools do not support mobile application

programs.

References

[1] Terada, K.; Watanobe, Y., "Automatic Generation of

Fill-in-the-Blank Programming Problems", In

Proceedings of the 2019 IEEE 13th International

Symposium on Embedded Multicore/Many-core

Systems-on-Chip (MCSoC), Singapore, 1–4 October

2019; pp. 187–193.
 https://doi.org/10.1109/mcsoc.2019.00034

[2] Tai, K.S.; Socher, R.; Manning, C.D., "Improved

semantic representations from tree-structured long

short-term memory networks", In Proceedings of the

53rd Annual Meeting of the Association for

Computational Linguistics and the 7th International

Joint Conference on Natural Language Processing,

Beijing, China, 26–31 July 2015; pp. 1556–1566.

 https://doi.org/10.3115/v1/p15-1150

[3] Pedroni, M.; Meyer, B., "Compiler error messages:

What can help novices?", In Proceedings of the 39th

SIGCSE Technical Symposium on Computer

Science Education, Portland, OR, USA, 12–15

March 2008; pp. 168–172.

 https://doi.org/10.1145/1352322.1352192

[4] Saito, T.; Watanobe, Y., "Learning Path

Recommendation System for Programming

Education based on Neural Networks", Int. J.

Distance Educ. Technol. (Ijdet) 2020, 18, 36–64.

 https://doi.org/10.4018/ijdet.2020010103

[5] Teshima, Y.; Watanobe, Y., "Bug detection based on

LSTM networks and solution codes", In Proceedings

of the 2018 IEEE International Conference on

Systems, Man, and Cybernetics (SMC), Miyazaki,

Japan, 7–10 October 2018; pp. 3541–3546.

 https://doi.org/10.1109/smc.2018.00599

[6] Fan, G.; Diao, X.; Yu, H.; Yang, K.; Chen, L.,

"Software Defect Prediction via Attention-Based

Recurrent Neural Network", Sci. Program. 2019,

2019, 6230953.

 https://doi.org/10.1155/2019/6230953

[7] Ohashi, H.; Watanobe, Y., "Convolutional Neural

Network for Classification of Source Codes", In

Proceedings of the 2019 IEEE 13th International

Symposium on Embedded Multicore/Many-core

Systems-on-Chip (MCSoC), Singapore, Singapore,

1–4 October 2019; pp. 194–200.

 https://doi.org/10.1109/mcsoc.2019.00035

[8] Zhou, Y.; Tong, Y.; Gu, R.; Gall, H., "Combining

text mining and data mining for bug report

classification", J. Softw. Evol. Process 2016, 28,

150–176.

 https://doi.org/10.1002/smr.1770

[9] Jin, K.; Dashbalbar, A.; Yang, G.; Lee, J.-W.; Lee,

B., "Bug severity prediction by classifying normal

bugs with text and meta-field information", Adv. Sci.

Technol. Lett. 2016, 129, 19–24.

 https://doi.org/10.14257/astl.2016.129.05

[10] Goseva-Popstojanova, K.; Tyo, J., "Identification of

security related bug reports via text mining using

supervised and unsupervised classification", In

Proceedings of the IEEE International Conference on

Software Quality, Reliability and Security, Lisbon,

Portugal, 16–20 July 2018; pp. 344–355.

 https://doi.org/10.1109/qrs.2018.00047

[11] Kukkar, A.; Mohana, R., "A Supervised bug report

classification with incorporate and textual field

knowledge", Procedia Comp. Sci. 2018, 132, 352–

361.

 https://doi.org/10.1016/j.procs.2018.05.194

[12] Tong, H.; Liu, B.; Wang, S., "Software defect

prediction using stacked denoising auto encoders and

two-stage ensemble learning", Inf. Softw. Technol,

96, 94–111.

 https://doi.org/10.1016/j.infsof.2017.11.008

[13] Yogesh Kene, Uday Khot, Imdad Rizvi " A Survey

of Image Classification and Techniques for

Improving Classification Performance " arXiv 2019,

arXiv:1608.06048.

 https://doi.org/10.2139/ssrn.3349696

[14] Jun Wang, Beijun Shen, Yuting Chen., "

Compressed C4.5 Models for Software Defect

Prediction ", IJCSI Int. J. Comput. Sci. Issues 2012,

9, 288–296

 https://doi.org/10.1109/qsic.2012.19

[15] Neuhaus, S.; Zimmermann, T.; Holler, C.; Zeller, A.

"Predicting Vulnerable Software Components", In

Proceedings of the 14th ACM conference on

Computer and Communications Security,

Alexandria, VA, USA, 28–31 October 2007; pp.

529–540.

 https://doi.org/10.1145/1315245.1315311

[16] Markad Ashok Vitthalrao, Mukesh Kumar Gupta,

"Software Vulnerability Classification based on

Machine Learning Algorithm", International Journal

of Advanced Trends in Computer Science and

Engineering (IJATSCE), ISSN 2278-3091, Volume

9, No.4, July – August 2020, Page No.6653-6659.

 https://doi.org/10.30534/ijatcse/2020/358942020

[17] Markad Ashok Vitthalrao, Mukesh Kumar Gupta,

"Software Vulnerability Classification based on

Deep Neural Network", International Journal of

https://doi.org/10.1109/mcsoc.2019.00034
https://doi.org/10.3115/v1/p15-1150
https://doi.org/10.1145/1352322.1352192
https://doi.org/10.4018/ijdet.2020010103
https://doi.org/10.1109/smc.2018.00599
https://doi.org/10.1155/2019/6230953
https://doi.org/10.1109/mcsoc.2019.00035
https://doi.org/10.1002/smr.1770
https://doi.org/10.14257/astl.2016.129.05
https://doi.org/10.1109/qrs.2018.00047
https://doi.org/10.1016/j.procs.2018.05.194
https://doi.org/10.1016/j.infsof.2017.11.008
https://doi.org/10.2139/ssrn.3349696
https://doi.org/10.1109/qsic.2012.19
https://doi.org/10.1145/1315245.1315311
https://doi.org/10.30534/ijatcse/2020/358942020

Software Vulnerability Assessment and Classification Using Machine… Informatica 49 (2025) 95–104 103

Engineering and Advanced Technology (IJEAT),

ISSN: 2249-8958 (Online), Volume-9 Issue-1,

October 2019, Page No.3146-3150.

 https://doi.org/10.35940/ijeat.a9746.109119

https://doi.org/10.35940/ijeat.a9746.109119

104 Informatica 49 (2025) 95–104 A. Hussein et al.

