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Modeling Link Qualities in a Sensor Network 
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Sensor networks are ad-hoc wireless networks of small, low-cost sensors, which can measure 

characteristics of their environment. Autonomous low-cost sensors often have limited battery life, and 

are prone to failures and communication losses. It is thus important to devise efficient power usage, 

communication and message routing schemes. In this work, we concentrate on estimating the link 

qualities between pairs of sensors in a natural environment. The estimation is a basic component of 

algorithms that optimize the power of radio transmission signal, communication schedules, and a 

routing scheme. Our results show that simple regression models give estimates with only 6% error. We 

also show the dimensionality reduction techniques help us understand the topology of the 

communication network and identify potential bottlenecks in the network. 

Povzetek: Z uporabo metod za zmanjšanje dimenzije podatkov in nelinearnih modelov v omrežju 

senzorjev je možno doseči zmanjšanje  napake za  6%. 

 

1 Introduction 
A sensor network node is a small autonomous unit, often 
running on batteries, with hardware to sense 
environmental characteristics, such as temperature, 
vibrations and humidity. Such nodes usually 
communicate using a wireless network. A sensor 
network is composed of a large number of sensors 
deployed in a natural environment. The sensors gather 
environmental data and transfer the information to the 
central base station with external power supply [11].  

Owing to the limited battery power of these sensors a 
very common strategy to maximize the expected lifetime 
is to use a better communication strategy. For this 
strategy to be globally optimized, we must model link 
qualities (LQs) between pairs of sensors. More precisely, 
the probability that sensor j will receive a message 
transmitted by node i. 

 

 
 

Figure 1: Sensors in the Intel Berkeley Research lab 
 
Precise models of link qualitites are the basis of many 
optimization and networking algorithms. For example, 
these models can be used to refine the communication 
protocols, or to decrease the number of packet collisions 
by tuning radio power appropriately. A proper model for 
link quality can also be used to select the density and 
positions of the sensors to ensure efficient 
communication. These models can also help us ensure 
robustness of the underlying network by finding the most 
unstable parts of the network, and the sensors which are 
critical for communication. 
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2 The Dataset 
The data comes from a deployment of 54 sensors 
positioned inside the Intel lab in Berkeley [3]. We have 
33 days worth of data. For every 30 seconds we have a 
reading of binary link qualities between all pairs of 
sensors. There are more than 2.3 million readings in total 
(1 GB of data). During the data collection period some 
nodes died and there are about 1% of readings with 
missing values. The readings from sensors are highly 
noisy and skewed due to power failures, crashes of base 
station, sensor failures and rapid changes in the 
environmental conditions. 
Figure 1 shows the map and the positions of 54 sensors 
inside the Intel Berkeley lab. The lab has a ring structure. 
The two ‘holes’ on the map correspond to the kitchen 
and the elevators. Near to the upper right corner of the 
map there was a cell phone base station. For this reason 
link qualities in the upper right part of the building are 
lower and decay faster with the distance than the link 
qualities for other parts of the building. 

 
 

 
Figure 2: Variance of link quality over time of sensor 34 
to all other sensors. Notice the small variance. 

 

3 Analysis of Link Quality  
There are two obvious variables influencing the link 
quality: one is time and the other is location.  Figure 2 
shows the variance of link qualities over time of sensor 
34 to all other sensors. We can observe that the variance 
is very low on the average. For sensors between 30 and 
35, which are closest to sensor 34, we observe that the 
variance of link quality is higher. As sensors get farther 
apart the variance of link quality also gets smaller. From 
figure 2, other experiments and measurements, we 
concluded that link qualities do not change significantly 
over time. 

We mainly concentrate on spatial link qualities. In 
this paper we try to relate physical position of the 2 

sensors with the link quality. Given the (x,y) positions of 
the sensors we model the decay of link quality with the 
distance and build a link quality map. 

 

 
 

Figure 3: Link quality of node 38 to all other nodes, 
sorted by the distance. 

3.1 Link Quality as a Function of Distance 

Theoretically the strength of radio signal should drop 
with the square of the distance, so we expected link 
quality to follow the same law. 

We analyzed a typical situation and tried to fit a 
function to the link qualities. In figure 3 we took sensor 
number 38 and plotted the link qualities to other sensors 
versus their Euclidean distance (LQ=f(d), where d is the 
distance). A quadratic function had a very poor quality fit 
(square of the correlation coefficient between the 
independent and dependent variables, R2=0.55), a power 
function (LQ(d)=d-c), with c around 2 performed even 
worse with R2=0.19. On the average the quadratic 
regression was the best, with the average R2 around 60%. 
The fits for power function were not at all very 
satisfying, having an average R2 of 20%. 

 
 

 
Figure 4: For all possible pairs of nodes we plot link 
quality versus the distance between the sensors. 
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Investigating even further we tried to fit a second degree 
polynomial to the link quality vs. distance between each 
pair of sensors. Figure 4 shows the amount of noise in 
the data. We plot the link quality versus the distance. 
Each point on the plot is a pair of sensors at some 
distance having some link quality. Observe the high 
noise in the data. The distance itself is not a good 
predictor of the link quality between a pair of sensors in 
the environment. 
 
 

 
 

Figure 6: Comparison of predictive accuracy using the 3 
distance metrics: distance in 3 dimensional PCA space 
(top), graph with each node have degree 4 (middle), and 
graph in which all sensors within a constant radius of a 
node are connected (bottom). 
 
 
We also used distance metrics other than Eucledian 
distance. We connected the sensors into a graph similar 
to one shown of Figure 1. We explored few different 
techniques to connect the nodes into a graph based on 
sensor positions and link qualities. We then measured the 
shortest path distance between the nodes in the graph. 

Figure 6 shows the comparison between various 
distance metrics. We compare 3 different distance 
metrics: distance in 3 dimensional space obtained from 
Principal Component Analysis (PCA) [2].(top), graph 

where each node has degree 4 (middle), and graph in 
which all sensors within a constant radius of a node are 
connected (bottom). The results show that the 3 different 
approaches are pretty much the same, though the 
threshold distance metric is in most of the cases equal or 
better than the others. 

Our reasoning was that two nodes can be really close 
together but if there is a wall in between they won’t be 
able to hear each other. Using a graph distance we would 
prevent this kind of problem. Unfortunately this did not 
improve the results. 

3.2 Dimensionality Reduction 

So far we have been working with full 54 by 54 who-
talks-to-whom link quality matrix. One way to reduce the 
amount of noise in the data is by using dimensionality 
reduction techniques.  
 
 

 
 
 
Figure 7: The projection of link quality data on first 3 
principal components. Notice the two rings very similar 
to actual map of the lab. 
 
 
We perform PCA on 54 by 54 link quality matrix. We 
essentially do a metric multidimensional scaling [1] on 
the data to learn the underlying coordinates in a 3-

Positions of pairs 
of sensors in the 

environment
 

3 dimensional
latent space 

locations 

Link qualities of each 
sensor to 53 other 

sensors 

Reconstruct the 
original link quality 

vector using the 
principal components 

Regression 

Figure 5: The 2 level model. We learn 3 regression models to map from (X,Y) positions to latent 

space positions. We then use principal components to map from the latent space to the link qualities. 
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dimensional Euclidean space, namely the latent space. 
The first 3 eigenvectors explain around 70% of the 
variance of the data. Increasing the latent space to 4 
dimensions it covers additional 5% more variance so we 
decided to continue experimenting with 3 dimensional 
latent space.  

Figure 7 shows the latent coordinates of the sensors 
in a 3-dimensional space. We can clearly observe the two 
rings we had seen on the map of the lab (Figure 1). This 
means we are able to reconstruct the map of the lab using 
only the link quality data. This also implies that the 
sensor locations should be good attributes for modeling 
the link qualities. Notice also the big gaps in the rings. 
This shows two “holes” mentioned in Section 2 and 
suggests deploying more sensors in that part of the lab to 
avoid a potential bottle neck in the communication 
network. 

A close inspection of Figure 8 reveals a set of nodes 
outlining a big hole in the graph. If any two of these 
nodes die, the communication between two halves of the 
network might be seriously ruptured. For example nodes 
5, 52 and 14 connect the left and right halves of the 
sensor network. These nodes are critical for the 
communication of the network. This suggests that one 
needs to deploy more sensors in this part of the lab to 
increase the robustness of the network. Thus we see that 
the multidimensional scaling approach reveals some very 
important and interesting patterns in the data, besides 
matching the true map of the sensor locations.  

 
 

 

Figure 8: This is same as Figure 7, with the only 
difference that we have connected nodes if they are 
within a certain distance from one another in the 3-
dimensional latent space. This distance was chosen 
empirically so that the graph is fairly connected, midway 
between dense and sparse. 

3.3 Link Qualities via Dimensionality 

Reduction 

Now we use the notion of latent space to construct a 2 
level model for link quality prediction. We will first learn 
a regression model to map from lab coordinates(x, y) of a 
sensor to the 3 dimensional latent space position. We 
then use the principal components to map from 3 
dimensional latent space to the original 53 dimensional 

vector of link qualities. Figure 5 more clearly depicts the 
idea. 

Note that we learn 3 separate regression models, 
each from mapping from (x,y) lab location to of the 
sensors to a particular latent space dimension. We use 
linear, quadratic and cubic regression. Also note that we 
have only 54 training instances. We performed leave one 
out cross validation and report the mean absolute error. 
Table 1 shows results on test and training set for the 3 
models. Notice that the quadratic model performs best 
and the cubic model overfits the data. Quadratic model 
gains from 15% to 2% on test accuracy in comparison to 
the linear one. 

 
 

Regression type 
Training Set 

Mean Error 
Test Set 

Mean Error 

Linear 

    LS dimension 1 0.073 0.078 

    LS dimension 2 0.229 0.244 

    LS dimension 3 0.124 0.131 

Quadratic 

    LS dimension 1 0.045 0.051 

    LS dimension 2 0.078 0.090 

    LS dimension 3 0.071 0.083 

Cubic 

    LS dimension 1 0.038 0.050 

    LS dimension 2 0.077 0.098 

    LS dimension 3 0.062 0.099 

 
Table 1: Performance of the regression mapping from 
XY lap sensor positions to the latent space positions. 
Quadratic regression performs best, cubic overfits. 
 
 

Figure 9 shows the scatter plot of predicted latent 
space position and true latent space position of a 
particular sensor for a quadratic model. We observe 
similar plots also for other latent space dimensions. We 
observe that the residuals are well distributed, and 
concluded that the quadratic model is suitable. 

So far we build the model to map from physical 
sensor positions to 3 dimensional latent space positions. 
The last step of the procedure shown on figure 5 is to use 
principal components to map from 3 dimensional latent 
space to original 53 dimensional vectors of link qualities. 
Using quadratic regression model and 3 dimensional 
latent space the final mean square error of link qualities 
is 0.14. If we increase the number of dimensions in the 
latent space to 4, the error increases to 0.145. Increasing 
the number of dimensions further to 10, gives the 
average mean error of 0.20. 

Notice we are observing an interesting interplay 
between the two stages of our model. As we pick more 
latent space dimensions the mapping from latent space to 
the link quality gets more accurate. On the other hand the 
mapping from (x,y) positions gets less accurate and the 
combination of both results in worse performance. The 
problem with learning mapping to higher latent space 
dimensions is that they contain more noise, so the 
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regression gets unstable with large errors. Using cross 
validation we get the best results when using 3 
dimensional latent space.  

Figure 10 shows the performance of predicting the 
2nd, 3rd, and 4th principal component (dimension of latent 
space). Notice that we can very well fit 2nd and 3rd 
dimension, while accuracy on 4th latent dimension drops 
significantly. 
 

 

 
 

Figure 9:  Scatter plot of true and predicted latent space 
positions for the quadratic model and the 3rd latent space 
dimension. 
 
 

 
 

Figure 10: Fit of the regression to the data for the 2nd, 
3rd, and 4th best principal component. Figure plots the fit 
of regression versus sensor id. Notice that we can very 
well fit 2nd and 3rd dimension, while accuracy on 4th 
latent dimension is much worse. 

3.4 Direct Approach 

We also considered a more direct approach. Instead of 
using Principal Component Analysis to reduce 
dimensionality of the class and reduce the noise we learn 
the link quality between a pair of sensors given the lab 
coordinates of them, using a regression model. In this 
case we have 2862 (54 squared) training examples each 
having 4 real attributes (locations of the two sensors). 

We perform 10 fold cross validation and report average 
mean error on training and test set. 

We compared 3 classes of algorithms: normal least 
squares polynomial regression, a variant of logit 
transform and regression Support vector machines 
(SVM) [4] using polynomial and radial kernels. For the 
logit transformation our idea was to transform the link 
qualities (which are probabilities and thus reside on 
interval (0,1)) to the whole real space. Our hypothesis 
was that it may be easier to learn the link qualities spread 
out over the whole real space. In this case we 
transformed the link quality LQ with the equation LQ’ = 

log(LQ/(1-LQ)). We then learned the regression model, 
performed the inverse logit transform and measured the 
mean error. 

 
 

Regression type 
Training set 

Mean Error 
Test set 

Mean Error 

Normal  

  Linear 0.108 0.108 

  Quadratic 0.087 0.088 

  Cubic 0.086 0.088 

Logit transform 

  Linear 0.409 0.409 

  Quadratic 0.412 0.412 

  Cubic 0.411 0.411 

SVM 

  Linear 0.119 0.119 

  Quadratic 0.093 0.093 

  Cubic 0.090 0.090 

  6 deg polynomial 0.082 0.083 

  Radial 0.061 0.062 

 
Table 2: The performance of various regression 
techniques. 

 
 

Table 2 shows the results for the 3 classes of regression 
algorithms we tested. Our first observation is that even 
simple linear regression outperforms our 2 level model 
by 4%. We observe a 2% improvement of quadratic and 
cubic model over the linear model. Next observation is 
that logit transform performs far the worse. It performs a 
bit better than random guessing which has the mean error 
of 0.5. The SVM with polynomial kernels have similar 
performance as normal least squares regression using the 
same degree polynomial as in SVM kernel. We observe 
that even very high degree polynomial kernel of degree 6 
does not help to fit the data very well. 

The radial kernel outperforms all other techniques 
with a mean error of around 6% on both training and test 
set. Radial kernel is especially appropriate for this task, 
since it has a bell shape, which means that a link quality 
basically decays in a bell shape with the distance. 

3.5 Link Quality Map 

Having built the model we can now look at the link 
quality map for a particular sensor. We fix the location of 
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the first sensor and then for every position of the second 
sensor we use the model to obtain the link quality. We 
call this the link quality map. 

Figures 11 and 12 show the two examples of link 
quality maps generated using the SVM radial kernel. 
Figure 11 shows the case when we positioned the sensor 
in the center of the lab. We observe a bell shape decay of 
link qualities. Notice how the link qualities are very low 
on the left middle part of the figure. Notice also that on 
the left side in the top corner link quality is better than 
left middle and left bottom corner. This is because left 
bottom part is further away and better hidden behind the 
wall. There is also a cell-phone base station on the left 
part of the map, which further decreases link qualities. 

 
 

 
 

Figure 11: Link quality map for a sensor in the center of 
the Intel lab. 
 
 
 

 
 

Figure 12: Link quality map for a sensor in the corner of 
the lab. 
 
 
 
One would falsely expect that link qualities in the holes 
of the two rings (kitchen and the elevator) should be 
close to zero. This is not the case since we have no 
training or test data points inside those rings and the link 
quality just gets interpolated over that empty space.  

Figure 12 shows the case when the sensor is 
positioned into a corner of the lab. We observe a similar 
bell like decay of link quality away from the sensor. 
Notice faster decrease in link quality towards the left part 
of the lab where the mobile phone base station was 
located. 

4 Related Work 
Power efficiency plays a central role in sensor networks. 
A lot of work has been done on estimating link quality, 
most of which focus on modeling reception rate over 
time. In [12] the authors derived analytical expressions 
for expected link lifetimes, rate of new link arrivals, and 
probability distributions  for the above  quantities, both 
of which are crucial for the understanding the underlying 
communication structure. Authors in [13] discuss 
different experiments to measure packet delivery 
performance. This work also models the spatial 
correlation between packet loss among individual 
receivers. A generic nonparametric statistical procedure 
for establishing a mapping between two characteristic 
properties of a sensor network is discussed in [14]. For 
example in this paper the authors model a probability 
density function of the reception rate and the distance 
between the two sensors, demonstrating the spatial 
correlation aspect of link qualities.  

People also have investigated scalable and power-
efficient protocols [5], power management [6], efficient 
routing [7] and querying in sensor networks [8]. The 
ones most related to our work are [9] and [10]. Our 
findings are in accordance to conclusions in [9] that the 
link characteristics are far from the theoretical models. 
However, most of these works survey the detailed link 
stability but not its effect on positioning, while our work 
concentrates in modeling link qualities in a natural 
environment and how they change with positions of the 
sensors.  

The question we have not addressed here is obtaining 
the XY positions of the sensors. If sensors are deployed 
inside a building or some other controlled environment 
then obtaining coordinates of each sensor is realistic. On 
the other hand if sensors are scattered (electronic dust) 
then obtaining their positions is a nontrivial problem. 

5 Conclusion 
In this work, we showed exploratory results on the 
modeling of link qualities in a sensor network. Since link 
qualities are often invariant with respect to the time, we 
focused on the spatial aspect.  

In our experiments simple regression techniques 
were quite effective. However, in our comparisons, 
support vector regression with radial kernel was the best 
performing approach. Intuitively, link qualities decay 
with distance, a property captured effectively by this 
model.  
We also showed how dimensionality reduction 
techniques can be used to analyze link qualities, 
identifying critical nodes and sparsely connected parts of 
the sensor network. 
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