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In view of the frequent changes in the building performance scheme and the many factors affecting the 

indicators, it is difficult to achieve better application accuracy and optimization effect only based on 

the experience of architects. Moreover, due to the limitation of professional ability, it is difficult to 

analyze the architectural design process directly with the help of intelligent algorithms, and the 

interactivity is poor. Based on this, the study proposes an optimization design scheme based on 

sensitivity multi-objective decision-making, which takes the sensitivity factor into consideration, 

optimizes the design scheme based on the relationship between architectural variables, and achieves 

the calculation of the fitness function of the multi-objective problem with the help of intelligent 

optimization algorithms. The results indicated that the improved algorithm has better convergence and 

effectiveness when carrying out the selection of program indicators, and it can obtain the average 

number of performance-attained design solutions is 5.58. After the improvement of the building 

program, it was found that the influence weight of the glass heat transfer coefficient accounted for a 

larger proportion, and the error value of the indicator results was smaller, which effectively improved 

the optimization efficiency of the building. In addition, in the optimized design of the scheme, the 

number of modifications were less than 12 times, which was much smaller than the number before 

optimization. The proposed method can effectively provide reference value for architects to carry out 

program optimization. 

Povzetek: Prispevek predlaga model za optimizacijo trajnostne gradbene zmogljivosti, ki temelji na 

občutljivem večciljnem odločanju. Uporaba inteligentnih algoritmov izboljša natančnost in 

učinkovitost zasnove ter zmanjša število potrebnih sprememb.

1 Introduction 

The development of the global concept of sustainable 

development and the worsening energy crisis have made 

sustainable building (SB) has gradually become the 

mainstream selection. SB emphasizes on minimizing the 

negative impact on the environment during the whole 

cycle of building design, construction, operation and 

demolition, while ensuring the building function, comfort 

and economy, which has the characteristics and 

advantages of green environment protection, energy 

saving and emission reduction [1]. Existing SB design 

methods have made some progress in improving energy 

efficiency, utilizing renewable energy, and reducing 

resource consumption, but there are still limitations. For 

example, traditional methods often do not consider 

comprehensively enough when dealing with the 

optimization of multiple aspects of building performance 

(BP), or are inefficient in achieving the optimal design 

solution, and the multi-objective nature of BP 

optimization design makes the design process complex 

and difficult to achieve the optimal balance of various 

indicators [2]. In the construction process, the impact of 

the physical and chemical environments on the building 

should be taken into account, analyzed comprehensively, 

and the relationship between different factors should be 

grasped in order to effectively realize the embodiment of 

BP advantages [3]. Therefore, the study proposes a 

sensitivity-based multi-criteria decision-making 

algorithm (SMDA) for the SB design model in order to 

ensure the balance between multiple performance 

objectives, aiming to provide building designers with an 

effective decision support tool. The sensitivity 

measurements of the relevant parameters of the design 

solution are generally measured mostly by direct or 

indirect methods, and the specific methods involved are 

local sensitivity analysis (LSA), labeled regression 

coefficient ordering, Fourier amplitude sensitivity 

experiments, and Sobol global sensitivity analysis. LSA 

is computationally simple, easy to understand and can be 

applied to most evaluation models. The innovation of the 

study is to identify and quantify the key factors affecting 

BP through sensitivity analysis, and the application of 
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multi-criteria decision-making (MCDM) method and 

improved algorithms can also be used to optimize the 

building scheme by considering multiple performance 

indicators, thus ensuring the environmental and economic 

performance of the building. 

2 Related works 

MCDM is widely used in various industries as a scheme 

for evaluating and selecting decision objectives using 

multiple criteria. To extensively study the sensitivity of 

multi-criteria decision-making methods, scholars such as 

Nabavi and Wang proposed a method that uses eight 

multi-criteria decision-making methods fused with 

entropy methods and correlation between criteria. The 

experimental results indicated that for some of the 

multi-criteria decision-making methods such as gray 

relational analysis and example-based portfolio 

evaluation method and simple phase weighting method 

are not sensitive to three of the alternative 

decision-making schemes [4]. Scholars such as Basten 

developed a model for MCDM in order to minimize 

product maintenance time and repair cost. This model 

analyzed the total maintenance cost and total maintenance 

time after generating Pareto bounds using the ε
-constraint method [5]. To develop the ratio analysis of 

Pythagorean fuzzy multi-objective optimization with the 

addition of a full multiple-form approach to solve 

multi-criteria decision problems with completely 

unknown information about the criterion weights, Sarkar 

and Biswas devised a new distance metric model by 

combining the Hamming distance and the Hausdorff 

metric. The model verified the sensitivity of the proposed 

model by varying the criterion weights affecting the 

strategy hierarchy [6]. In the field of disposable device 

technology for biopharmaceuticals, Zurcher et al. 

proposed a multi-stage decision support method with the 

objective of reducing the process risk in the 

pharmaceutical process. This method was experimentally 

verified by the researchers, who systematically explored 

and researched the uncertainty in each stage of the 

pharmaceutical process using the proposed method [7]. In 

order to study the safe water, use in various places under 

the global warming environment, Deshbhushan and Rajiv 

proposed a centralized rainwater harvesting model 

integrating GIS and multi-criteria decision making. The 

study compared various predefined criteria by using 

criterion importance and entropy of inter-criteria 

correlation and verified in subsequent experiments that 

the proposed model is informative for practical 

application assessment [8]. 

In terms of BP, a large number of current examples 

show that multi-objective optimization methods can 

significantly improve BP. To enhance the interaction 

between the optimization process and the architectural 

process, Lin et al. proposed a preference-based MCDM 

method to realize the designer's decision-making 

preferences during the optimization process, which makes 

the objective more reliable and improves the optimization 

efficiency at the same time. Experimental results 

demonstrated that the constructed method has better 

convergence and higher preference satisfaction, which is 

more applicable to the objective decision-making process 

in the early design stage [9]. To ensure the coexistence 

between different analysis methods used in the building 

process, Utkucu and Sozer proposed an approach using 

building information modeling and integrating the 

MCDM method and multi-criteria eugenic evaluation. 

Experimental data demonstrated that the proposed 

method is able to achieve energy savings of more than 

75% and accurately categorize the energy performance of 

different buildings based on a detailed energy analysis 

[10]. Xie and Wang used a hybrid MCDM approach to 

propose a multi-objective lightweighting and 

crashworthiness optimization design method for complex 

cross-sectional shapes and sizes of S-rails to determine 

the set of optimal solutions to weigh the optimal points. 

The experimental results showed that the total mass of the 

optimized model is reduced by 25.62% and the 

performance is improved compared to the initial 

optimized model [11]. In terms of the configuration of 

buildings, Seyed et al. proposed a robust clustering 

multi-objective method based on MCDM to address the 

uncertainty in the input variables of the pipeline 

maintenance distribution network. This method 

incorporated hydraulic simulation, pipeline failure rate 

prediction, nonlinear interval planning, and multi-criteria 

decision making. It was important to note that pipeline 

maintenance is costly and must be carried out on a 

regular basis. The method was experimentally 

demonstrated to be able to improve the physical 

performance of the network by 56% and the hydraulic 

performance by 35% when implementing optimal 

instructions, and reduce the annual deficit in node 

demand to 69% [12]. The study organized the content of 

past literature and obtained Table 1. 

 

Table 1: Compilation of past literature ideas 

References Methods Key findings Limitations 

[4] 

Using eight multi-criteria 

decision-making methods to 

integrate entropy method and inter 

criteria correlation for scheme 

selection 

Grey relational analysis and 

case analysis show poor 

sensitivity 

Lack of further definition of 

the application of limited 

methods in decision-making 

problems of different natures 

[5] 

 

Established a multi-criteria decision 

management (MCDM) model for 

This method can reduce 

maintenance time to a certain 

The application scope of the 

model may be limited to 
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products to ε- constraint method for 

generating Pareto boundaries 

extent specific maintenance 

optimization problems, and 

constraint methods may be 

difficult to consider the 

multidimensional factors of 

product management 

[6] 

A metric model combining 

Hamming distance and Hausdorff 

metric to solve multi criteria 

decision-making problems 

This model verifies the 

sensitivity of the proposed 

model by changing the 

standard weights that affect 

the policy hierarchy 

The complexity of the model 

may face difficulties in 

determining parameters in 

practical applications, and 

weight adjustments may 

overlook the consideration of 

expert knowledge and 

experience 

[7] 

Research on technical issues of 

disposable biopharmaceutical 

equipment using multi stage 

decision support method 

Reduced pharmaceutical 

process risks and validated 

the uncertainty of each stage 

in the pharmaceutical process 

through experiments 

This technology needs to be 

validated in different 

environments and technologies 

[8] 

A centralized rainwater collection 

model integrating geographic 

information systems and multi 

standard decision-making was 

proposed, which compares 

predefined standards based on the 

importance of standards and the 

correlation entropy between 

standards 

This method has reference 

value for the practical 

application evaluation of safe 

water use 

The applicability and accuracy 

of the model may be limited by 

data quality and availability. 

[9] 

A preference based architectural 

MCDM method was proposed to 

optimize the decision preferences of 

designers 

This method has better 

convergence and preference 

satisfaction, improved 

optimization efficiency, and is 

more suitable for the target 

decision-making process in 

the early design stage 

There may be an excessive 

reliance on designer preference 

information 

[10] 

Integrating MCDM method and 

multi standard eugenics evaluation 

method through building 

information modeling 

This method can achieve 

energy-saving effects of over 

75% and can be classified 

based on detailed energy 

analysis 

The complexity of the method 

is high, and the scope of 

promotion and application will 

be limited to a certain extent 

[11] 

A multi-objective lightweight and 

crashworthiness optimization 

design method is proposed for 

S-shaped guide rails using a hybrid 

MCDM method 

The total mass of the 

optimized model has been 

reduced by 25.62%, and the 

performance has been 

improved 

The specificity between 

determining the optimal 

solution and setting conditions 

makes the method difficult to 

generalize 

[12] 

A robust clustering multi-objective 

method based on MCDM was 

proposed to solve the uncertainty 

problem of input variables in 

pipeline maintenance distribution 

networks. 

The physical performance of 

the pipeline network has been 

improved by 56%, the 

hydraulic performance has 

been improved by 35%, and 

the annual deficit of node 

demand has been reduced to 

69% 

The specificity between 

determining the optimal 

solution and setting conditions 

makes the method difficult to 

generalize 

Research 

method 

Propose an optimization design 

scheme based on sensitivity 

multi-objective decision-making, 

and use intelligent optimization 

algorithms to calculate the fitness 

This improved algorithm has 

good convergence and 

effectiveness, with an average 

of 5.58 design schemes 

achieving performance 

Research on different types of 

buildings is an important 

aspect of improving and 

optimizing design indicators 
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function for multi-objective 

problems. 

standards and less than 12 

modifications 

In summary, the research related to MCDM method 

has been maturely developed and widely applied in 

various industries, but in terms of building optimization 

performance, MCDM still has a large space for progress 

research, based on this, the study proposes the SB 

characteristic, introduces the sensitivity to analyze the 

variables affecting the building and improves the design 

of its design scheme. 

 

3 Construction of SMDA-based 

performance optimization model 

for sustainable building 
The MCDM algorithm, also known as the multi-criteria 

algorithm, is developed in the mid-1970s. As a decision 

analysis method, it can be useful in the phases of system 

planning, design and manufacturing, focusing on solving 

problems that may occur in the present or future. 

Conventional MCDM methods generally include two 

kinds of MCDM and multi-attribute decision making, 

which have more mature development in both theory and 

practice, and therefore the MCDM method has been more 

widely used. The study is based on the sensitivity 

multi-objective analysis to optimize the analysis of SB, 

and to explore its influence variable indicators. 

 

3.1 Construction based on the SMDA 

algorithm 
As in the real situation, architects in the construction 

industry need to coordinate the variables between 

different design objectives according to the actual needs 

in order to solve the conflict of objectives between 

multiple performances. The process is not a simple 

comparison and selection, but requires trade-offs between 

multiple objectives and related parameter adjustments. A 

SMDA is employed to investigate the design solution and 

to adjust the performance of the solution and the values 

of each parameter. The modification of the overall 

solution is carried out by comparing the values of each 

parameter's influence weight in the longitudinal direction 

of the design solution. Multi-objective performance 

design generally contains more and more complex 

attribute relationships, should be considered to use a 

higher degree of adaptation and broader sensitivity 

analysis method to optimize the BP model, considering 

the Fourier amplitude sensitivity experiments are 

relatively higher cost budget, the study uses the Sobol 

global sensitivity analysis method to calculate the 

sensitivity of the input values [13-15]. The sensitivity 

index of Sobol method is calculated as shown in Equation 

(1). 
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In Equation (1), ( )TS i  is the total sensitivity index 

of the input variable ix  and is  is the first order 

sensitivity index of the input variable. m  is the total 

number of input variables and ijs  is the sensitivity index 

between the i th input variable and the j th input 

variable. 1,2,...,ms  is the sum of the first-order sensitivity 

values of the input variables. The study modifies specific 

functional relationships in accordance with the variable 

relationship between the design objectives and design 

variables, thereby enhancing the optimization of the 

functional relationship between the input and output 

values. The comprehensive performance of the design 

scheme is identified as the entry point for analysis, with 

the various factors affecting the BP design scheme 

serving as the base point. Hierarchical analysis is used to 

calculate and analyze the sensitivity matrix values of each 

design variable in terms of the performance of the design 

objectives and to calculate the weight values of the 

performance of each parameter of the original solution 

under this condition. The computational flow of the 

hierarchical analysis method is shown in Figure 1. 
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Figure 1: The calculation process of ANP 
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In Figure 1, hierarchical analysis is required to 

analyze the decision-making problem in the calculation 

process and to analyze the correlation of the relevant 

factors involved, and to judge the independence or 

correlation between the elements. In the model 

construction process, the development of a network layer 

design containing the interrelationships of elements is 

realized based on the objectives and guidelines for setting 

up a control layer. The important feature vectors of the 

quasi-measurement layer to the target layer under a single 

scenario are calculated using the hierarchical analysis 

method, and the calculation formula is shown in Equation 

(2) [16]. 

 , ,max ,min( ) / ( )fi i i i s i ic k f f f f= − −  (2) 

In Equation (2), fic  is the importance feature 

vector and ik  is the penalty function. ik  takes the 

value of 1 when the selected performance metrics do not 

meet the requirements of the adjustment. ik  takes the 

value of -0.001 when the selected performance metrics 

meet the requirements of the desired adjustment. if  is 

the value assigned to the performance under the scenario, 

and ,i sf  is the criterion value of the i th performance 

under the individual scenario. ,minif  is the minimum 

value for the i th performance in the database. ,maxif  is 

the maximum value of the i th performance in the 

database. The hierarchical analysis method is employed 

to identify the importance eigenvectors of each variable 

in the scheme layer. Subsequently, the importance 

eigenmatrix of each parameter under a specific number of 

parameters is constructed. The resulting importance 

eigenvectors of the criterion layer and the importance 

matrix of the scheme layer are calculated to determine the 

comprehensive impact weights of all the variables on the 

original scheme. This process yields Equation (3). 
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In Equation (3), w  is the comprehensive impact 

weight of all variables on the original program, 
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 is the importance matrix under the 

program level, and the rest of the explanation is 

consistent with the meaning of the previous section. For 

the degree of contribution of the first design variable to 

the current target program, the formula is shown in 

Equation (4). 

1 2

1 2
* * ... * m

m

ff f

j f j f j f jw c c c c c c= + + +  (4) 

In Equation (4), jw  is the contribution value of the 

design variables to the degree of comprehensive 

performance improvement of the current target program, 

and the rest of the parameters are interpreted in the same 

way as before. According to the size of the obtained 

contribution value can further determine the improvement 

ability and enhancement effect on the comprehensive 

performance of the current research program when the 

reference variable changes. If the jw  value is >0, the 

value of the variable should be reduced accordingly, and 

vice versa, the value of the variable should be increased 

accordingly. 

 

3.2 Construction of SMDA-based 

performance optimization algorithm for 

sustainable building 
After constructing the completed SMDA algorithm, the 

study has been able to calculate the weighting effects of 

the parameter factors in the original scheme on the 

scheme, but this does not directly provide the architect 

with a certain performance-attainment design solution. 

Therefore, the study weighs each objective on the basis of 

multi-objective optimization problem decision making, 

fuses the SMGA algorithm with genetic algorithm (GA), 

and proposes a method of sensitivity multi objective 

decision fusion genetic algorithm (SMGA) an intelligent 

optimization algorithm that will use the objective 

expectations instead of subjective weights weighting to 

the computation of the fitness function. Since the GA 

fused with SMGA algorithm is capable of solving the 

involved problems at runtime by imitating the relevant 

principles and phenomena and using heuristics to 

optimize the problem without prior knowledge of the 

mathematical characteristics of the solution of the 

problem to be optimized, its high robustness and 

practicability have led to a wide range of applications of 

the GA in the design of building solutions, operation and 

maintenance of equipment and energy. The functional 

expression defining the multi-objective adaptation 

function ( )G x  is shown in Equation (5). 

 ( )
1

max *
m

i i

i

G x k g
=

=  (5) 

In Equation (5), ig  is the normalized fitness value 

of the i th performance objective, and ik  is the penalty 

function of each performance objective. When i  fails, 

ik  takes the value of 10000, and vice versa ik  takes the 

value of 1. At a later stage, the normalized fitness values 

ig  of all the performance objectives are summed to 

obtain the fitness function of the multi-objective problem. 

At the same time, the operator is selected for the 

unqualified performance i  and the sifting out of the 

solutions of the infeasible solution scheme is carried out. 

In the GA variation session, for the design scheme 

1 2[ , ,..., ]nx x x x=  constructed by the n  dimensional 
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decision variables, the weight vector 1 2[ , ,..., ]nw w w w=  

of the influence of each variable on the current scheme is 

calculated using the SDMA algorithm previously used in 

the study, by changing the evolution. The maximum 

variable of lucidity in the process, which in turn improves 

the objective function. Roulette is performed on the 

merged population R  thus determining the operator, 

selecting the number of individuals pN  to perform 

variation and crossover operations on R , calculating the 

fitness function ( )jF x  and normalizing it as shown in 

Equation (6). 

 
min

max min

( )
'( )

j

j

F x f
F x

f f

−
=

−
 (6) 

In Equation (6), '( )jF x  is the normalized fitness 

function of the interpretation scheme and ( )jF x  is the 

fitness function. minf  is the performance minimum of 

the explained solution and maxf  is the performance 

maximum of the explained solution. After obtaining the 

normalized fitness function of the solution, the selection 

probability of each solution is further calculated and its 

functional expression is shown in Equation (7). 

 2

1

'( )
( )

'( )

j

j Np

jj

F x
p x

F x
=

=


 (7) 

In Equation (7), pN  is the number of selected 

individuals. Using the same idea to solve the cumulative 

probability, the functional expression is shown in 

Equation (8). 

 
1

( ) ( )
j

j rr
q x p x

=
=  (8) 

In Equation (8), r  is a member in population R  

and ( )rp x  is the selection probability of the selected 

member r . Based on the pN  explanatory schemes 

obtained from the selection operator, further mutation 

operations are carried out, and in order to prevent the 

SMGA proposed by the study from over-controlling the 

individual's best solution scheme and thus falling into a 

local optimal solution situation, the study stratifies the 

pN  explanatory schemes obtained. This is formulated as 

follows: 2/3 of the pN  explanation scheme is used for 

the previously constructed SMDA algorithm for the 

mutation operation, and the remaining 1/3 pN  

explanation scheme is used for the regular mutation 

operation. In the variation operation of SMDA, for the 
j th solution of the scheme 

1 2[ , ,..., ]n

j j j jx x x x= , the 

weight 
1 2[ , ,..., ]n

j j j jw w w w=  is calculated according to 

Equation (4) mentioned earlier in the study, which in turn 

calculates the normalized influence weight of the k th 

design variable 
k

jx . The calculation formula is shown in 

Equation (9). 

 min max min' ( ) / ( )k k

j jw w w w w= − −  (9) 

In Equation (9), 'k

jw  is the normalized impact 

weight of the design variables and 
k

jw  is the weight of 

the design variables before variance crossover. maxw  is 

the maximum value of the impact weights of all design 

variables and minw  is the minimum value of the impact 

weights of all design variables. A random number d  is 

generated for comparison for any design variable 
k

jx  in 

the closed interval from 0 to 1. If the randomly generated 

value d  is less than or equal to the normalized weights, 

the associated k th actual variable is variant. When the 

normalized weights are greater than 0, the corresponding 

design variables should be reduced in value accordingly 

and a new design variable is randomly generated at the 

min[ , ]k

jd x  as a new design variable participating in the 

mutation crossover. The conventional variation operation 

is to use a fixed rate of variation instead of normalized 

weights when performing variation operation on a single 

design solution [17]. When the value of the selected 

random number of values in the selected interval is less 

than the fixed rate of variation, the same randomly 

generates a new design variable in min max[ , ]k k  for the 

variation operation [18, 19]. The flow of the SMGA 

algorithm proposed in the study is shown in Figure 2. 
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Figure 2: Schematic diagram of SMGA algorithm flow 

 

In Figure 2, after the mutation operation and part of 

the regular operation using the SDMA algorithm, it is 

necessary to carry out the corresponding population 

crossover operation on the population after the end of the 

mutation operation. For the j th solution 
1 2[ , ,..., ]n

j j j jx x x x=  obtained using the SDMA algorithm 

a number c  is randomly generated in the interval [0,1]. 

if the selected value c  is smaller than its corresponding 

selection probability cp , a crossover operation needs to 

be carried out on it, and the parent generated by the 

crossover operation for the 1c th solution is 
1 2

1 1 1 1[ , ,..., ]n

c c c cx x x x= . subsequently, an indexed value 2c  

is randomly generated in [1, ]pN  and another crossover 

parent is generated 
1 2

2 2 2 2[ , ,..., ]n

c c c cx x x x= , and a 

randomly generated bit value cv  in [1,n] is used to 

confirm the position of the selected parent scheme at 

crossover. In turn, a new scheme 1 'cx  is obtained, 

whose functional expression is shown in Equation (10). 

1 2 1

1 1 1 1 2 2' [ , ,..., , ,..., ]vc vc n

c c c c c cx x x x x x+=  (10) 

Perform crossover operation for each solution in the 

population to get a new generation of population. Set the 

number of iterations to loop from computing the 

objective function and fitness function to the crossover 

operation. Determine whether the number of iterations 

has reached the maximum number of iterations, and thus 

determine whether to stop the optimization to output the 

optimal solution set. Finally output the optimal solution 

set and process the result database to remove the 

solutions and performances in the database that do not 

meet the set expectation and output the optimal solution 

set of the remaining solutions. 

4 Examination of the effectiveness of 

the application of sustainable 

building performance optimization 

design 
In the method design section, the research first constructs 

a multi-objective decision-making algorithm based on 

sensitivity, and calculates the matrix values and weight 

values of the target performance under the variables in 

the architectural scheme design. Concurrently, research is 

conducted on the balancing of various objectives based 

on multi-objective optimization problem decision-making, 

integrating the SMGA algorithm with the GA, and using 

an intelligent optimization algorithm to adjust weight 

values, thereby avoiding the influence of subjective 

settings on the results. To validate the efficacy of the 

proposed algorithm, a case study is conducted on a 

building in a cold climate to optimize its energy 

consumption, lighting, and other multi-objective issues. 

The requisite parameters for the algorithm are then 

defined. The study set the population size and the number 

of iterations to be 50, the variation rate to be 0.1, and the 

crossover rate to be 0.9. The algorithm is optimized for 

the population on the basis of the initial scheme in the 

same experimental environment, and the number of 

experiments is 20. During the experiment, the 

performance metrics of the GA before and after the 

improvement are collected and the results are shown in 

Table 2. 

 

 

 
Table 2: Performance results of GA before and after optimization 
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Number of 

experiments 

Convergence 

speed 

Optimal solution 

size 

The diversity of decision 

space 
Effectiveness 

1 11 4 8 14 0.057 0.071 8.874 9.053 

2 12 7 7 7 0.057 0.055 4.516 7.535 

3 22 6 5 9 0.06 0.073 7.144 9.748 

4 12 6 5 11 0.05 0.054 3.962 8.741 

5 7 2 6 12 0.066 0.063 4.823 9.721 

6 13 9 6 11 0.062 0.061 7.203 10.208 

7 17 6 9 9 0.065 0.065 8.203 9.57 

8 16 6 5 8 0.06 0.055 7.027 8.128 

9 6 2 7 10 0.054 0.066 7.701 10.174 

10 2 7 10 5 0.061 0.049 5.627 7.475 

11 15 2 4 8 0.04 0.068 5.8 9.102 

12 10 3 8 11 0.057 0.071 8.086 9.065 

13 34 4 4 10 0.064 0.068 2.678 10.397 

14 12 4 6 8 0.068 0.042 10.292 9.057 

15 2 6 6 12 0.059 0.066 6.451 8.861 

16 37 6 4 12 0.052 0.077 3.869 10.351 

17 23 3 7 9 0.064 0.067 7.027 8.633 

18 18 8 5 11 0.059 0.054 7.397 9.238 

19 11 5 5 12 0.065 0.069 4.62 7.123 

20 11 4 8 14 0.057 0.071 8.874 9.053 

Average value 14 4.8 5.85 9.45 0.056 0.059 6.065 8.609 

 

In Table 2, the convergence speed of SAGA 

algorithm is significantly better than that of GA, and its 

average value reaches 4.8, which indicates that it needs 

an average of 4.8 iterations to find the attainment result in 

the program to be completed, while GA needs 14 

iterations. In addition, in the optimal solution size and 

decision space diversity, the average value of SAGA 

algorithm reaches 9.45 and 0.059, which is significantly 

higher than that of GA's 5.85 and 0.056, which indicates 

that the improved SAGA algorithm can effectively avoid 

falling into the local optimum, and its probability of 

finding the optimal solution in the global is increased.  

 

 

The SAGA algorithm can obtain the performance of the 

average number of design solutions up to the standard is 

5.58, and in the analysis of the effectiveness of the 

algorithm, the average value of the SAGA algorithm is 

8.609 is much larger than the GA's 0.065, which shows a 

better performance advantage. A comparison is to be 

made between the proposed optimization SAGA 

algorithm and the decision-making method. Two 

comparison scenarios are to be set for different 

orientations of the building. A comparison of the 

performance results of different algorithms in building 

scheme design is presented in Figure 3. 
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Figure 3: Pareto optimal solution results for different algorithms 

 

The results presented in Figure 3 demonstrate that 

the convergence of the Pareto optimal frontier solution 

demonstrated by the SAGA algorithm in southbound 

buildings is significantly higher than that observed in 

reference [10]. The discrepancy between the two 

solutions is more pronounced when the time-energy 

consumption increases. Furthermore, the solution set 

distribution in reference [10] is more dispersed, 

exhibiting poor convergence. The SAGA algorithm 

reduces the solving time by 13.25% and 5.39% compared 

to references [10] and [11], respectively, while exhibiting 

a relatively minor increase in energy consumption. In the 
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architectural design of the Northern Dynasties, the 

convergence of the SAGA algorithm is demonstrably 

higher than that of reference [10], and the discrepancy 

with reference [11] is relatively minor. This discrepancy 

may be attributed to the fact that reference [11] is capable 

of considering building parameters to a certain extent, yet 

its resource consumption during calculation is relatively 

high. In conclusion, the SAGA algorithm proposed in the 

study demonstrates satisfactory convergence performance. 

The decision diversity of the SAGA algorithm is further 

analyzed to obtain the variance of different decision 

variables, and the results are shown in Figure 4. 
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Figure 4: The variance results of two algorithms on decision variables 

 

In Figure 4, overall, it seems that the SAGA 

algorithm has less variance results than the GA for the 

building target variables, in which the SAGA algorithm is 

more sensitive to the sill height, shading angle, shading 

member angle and material, and glass heat transfer 

coefficient (GHTC)) variables, and the diversity in the 

optimal solution is lower. Improving GA can effectively 

increase the sensitivity of the building variables. The 

study first analyzes the extraction effect on the acquired 

sample data and examines the variable extraction effect 

of the improved algorithm proposed in the study, and the 

results are shown in Figure 5. 
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Figure 5: Variable extraction effect of improved algorithm 

 

In Figure 5, the improved algorithm shows a better 

sample accuracy effect, and its overall node distribution 

is more uniform, which can better identify the data 

features. The study takes the standard floor building in 

the cold northern region as an example, and optimizes its 

energy consumption and lighting with the help of Energy 

Plus software and Radiance software. Application results 

supplement: The proposed method will be used to 

analyze the error rate of variable data for buildings of 

different heights, as shown in the Figure 6. 
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Figure 6: Error rate of variable data for buildings with different floor heights 

 

The results presented in Figure 6 indicate that in 

mid- to low-rise buildings, the error rate value of the 

analysis of building parameter variables in the study 

shows a decreasing trend. Furthermore, there is a small 

error amplitude between the analysis and the actual 

effective value, with the minimum error value less than 

10-4. In high-rise buildings, the algorithm proposed in the 

study is capable of obtaining building variable data with a 

minimum error value of less than 10-2. The research is 

based on the building model construction platform, in 

which the parameter programming platform is 

Grasshopper, with the help of Honeybee+ and other 

plug-ins for performance simulation and analysis, and the 

rest of the programming language is Python. The initial 

variable design of the building model is shown in Table 

3. 

 

 
Table 3: Variables of building models 

Variable Initial plan First improvement Second improvement 

A 1 1 1 

B 0 0 0 

C 4.5 4.5 3.7 

D 0.48 0.48 0.48 

E 0.36 0.36 0.36 

F 0.48 0.48 0.48 

G 0.36 0.36 0.36 

H 1 1 1 

I 1 1 1 

J 1 1 1 

L 1 1 1 

M 0 0 0 

N Aluminum alloy Aluminum alloy Aluminum alloy 

O 2.4 1.2 2.4 

 

On the initial building scheme, its storey height and 

GHTC are optimized and designed respectively. In the 

first improvement, the GHTC is adjusted downward from 

2.4 to 1.2, and in the second improvement, the storey  

 

height is varied from 4.5 to 3.7. The results of the 

performance of the scheme under the improvement are 

obtained and shown in Figure 7. 
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Figure 7: Performance results of the improved scheme 

 

In Figure 7, after the improvement of the initial 

scheme, the energy consumption of the building is 

significantly reduced, and its value is reduced to reach 

89.89 KWh/m2 and its performance is up to standard. 

Among them, the sDA indicator has a small decrease 

after the program modification, but it is still in the range 

of meeting the standard. The above results show that the 

modified program is effective. Subsequently, the variable 

impact weights of the program are analyzed and the 

results are shown in Table 4. 

 

 

 

 
Table 4: Variable influence weights of improvement plans 

Variable Initial plan First improvement Second improvement 

A -0.00689 -0.002564 -0.03809 

B 0.000064 0.00439 -0.031136 

C 0.152747 0.157073 0.121547 

D 0.050189 0.054515 0.078989 

E 0.046116 0.050442 0.014916 

F 0.0923524 0.0966784 0.0611524 

G 0.132656 0.136982 0.101456 

H -0.000253 0.004073 -0.031453 

I -0.000286 0.00404 -0.031486 

J -0.000006 0.00432 -0.031206 

L -0.000031 0.004295 -0.031231 

M 0.002013 0.006339 -0.029187 

N -0.008959 -0.004633 -0.040159 

O 0.227903 0.272229 0.296703 

 

In Table 4, the values of GHTC for the scheme 

design with the help of SADA algorithm have weighted 

values of 0.272229W/m2K and 0.296703W/m2K for the 

first improvement and the second improvement, 

respectively. The solar coefficient of the glass has a more  

 

 

obvious impact in the optimization of the scheme design, 

so the influence of this indicator should be paid attention 

to in the future research. The predicted results of the sDA 

indicator are analyzed and the results are shown in Figure 

8. 
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Figure 8: Fitting results 

 

In Figure 8, the sDA indicator is analyzed in the 

prediction, which has a high consistency with the actual 

value, and its value is basically distributed on both sides 

of the curve. The proxy results of ASE indicators are 

further analyzed, and their results are shown in Table 5. 

 
Table 5: Proxy of ASE indicators 

Variable 1 2 3 4 5 

R2 
0.689 0.668 0.637 0.648 0.627 

0.605 0.584 0.553 0.564 0.543 

RMSE 
0.076 0.055 0.024 0.035 0.014 

0.81 0.789 0.758 0.769 0.748 

MAE 
0.059 0.038 0.007 0.018 -0.003 

0.064 0.043 0.012 0.023 0.002 

 

In Table 5, the error results of ASE results under 

different number of experiments are small and the fitted 

values are less than 0.70 in both training and test sets, and 

the mean values of RMSE and MAE values reach 0.078 

and 0.063 in the training set, and 0.061 and 0.067 in the 

test set. A total of 30 architectural professionals and 

engineers are also invited to modify the initial under test  

 

The design solutions are modified, and their modification 

criteria are based on their subjective experience in 

obtaining the rest of the metrics, except for the three 

properties mentioned in the study. The modification idea 

of the comparison is to modify the design variables by the 

system modification suggestions generated by the SADM 

algorithm, and the data statistics of the modifications 

under the two approaches are shown in Figure 9. 
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Figure 9: Number of modifications with and without the guidance of SADM method 

 

In Figure 9, when the testers optimize the scheme 

without system recommendations, the number of 

modifications are more than 15 times, of which the 

maximum value is 43 times, and the average number of 

modifications is 22 times. While in the program 

recommended optimization suggestions, the tester's 

modification times are significantly reduced, the overall 

curve of the large fluctuations are significantly reduced, 

the number of modifications are less than 12 times, the 

minimum number of modifications is reached 3 times. 

Subsequently, the energy consumption and lighting test 

results of the proposed algorithm are analyzed. Three 

cities are selected for analysis: Beijing, Harbin, and 

Changchun. The results are shown in the Figure 10. 
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Figure 10: Test results of mean square error of SAGA algorithm in typical cold regions 

 

Figure 10(a) depicts the mean square error of the 

energy consumption prediction results. It can be observed 

that the SAGA algorithm exhibits high accuracy in 

testing building energy consumption in three cities, with 

the error value between the test results and actual results 

tending to be close to 0. In the lighting results (Figure 

10(b)), the SAGA algorithm also demonstrated favorable 

test results, with a maximum mean square error of 4 and a 

minimum value of 1.6. Specific analysis of the energy 

consumption of the building after optimization, the 

results are shown in Figure 11. 
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Figure 11: Water temperature change and energy consumption in hydronics 

 

When the outdoor temperature fluctuates greatly 

with obvious nodal ups and downs, the temperature 

difference between the inside and outside of the building 

decreases, resulting in lower energy consumption. This 

also leads to a smaller overall volatility of the curve, 

effectively ensuring the building's low energy 

consumption. 

5 Discussion 

This research examines the optimization of SB 

performance design based on sensitivity multi-objective 

decision-making and its subsequent application analysis. 

The results presented in Table 2 and Fig. 3 demonstrated 

that the proposed SAGA algorithm exhibits superior 
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convergence compared to traditional GA and other 

comparative algorithms. The SAGA algorithm required 

only 4.8 iterations to reach the optimal value, whereas the 

GA requires more than 10 iterations. The GA exhibits a 

tendency to converge poorly due to its proclivity to fall 

into local optima. In response to the limitations of the GA, 

scholars such as Saryazdi SME have also combined the 

GA with artificial neural networks to achieve 

construction design optimization [20]. References [10] 

and [11] employed multi-objective decision-making 

methods based on decision-maker preferences and 

building information model fusion for the evaluation of 

BP. Nevertheless, their reliance on subjective expert 

decision-making and high resource consumption resulted 

in suboptimal overall convergence of the two references. 

The Pareto solution set distribution in reference [10] was 

relatively dispersed, and the SAGA algorithm reduced the 

solution time compared to references [10] and [11] by 

13.25% and 5.39%, respectively. In the context of data 

processing, the SAGA algorithm demonstrated superior 

accuracy in sample extraction when the variance of the 

building target variable was less than that of the GA. 

Moreover, the variable data was smaller in buildings of 

different heights, and the minimum error values were less 

than 10-4 and 10-2 in mid-to-low-rise and high-rise 

buildings, respectively. This outcome can be attributed to 

the fact that a sensitivity-based analysis of building 

parameters allows for a more comprehensive 

consideration of factors such as lighting, floor height, and 

building materials, which in turn ensures a high degree of 

consistency between test results and actual outcomes. 

This result was analogous to that presented in literature 

[13], which demonstrated the efficacy of multi-objective 

decision analysis on variables in improving the 

effectiveness of design outcomes. Following the 

implementation of an enhanced initial plan, the energy 

consumption of the building was reduced to 89.89 

kWh/m2, thereby meeting the established performance 

standards. The predictive analysis of sDA indicators 

demonstrated a high degree of consistency with the actual 

values. The results of the building energy consumption 

analysis demonstrated that the optimized plan effectively 

ensures low energy consumption of the building. This 

result was consistent with the findings of previous 

literature. Among these, literature [21] employed the 

simulated annealing algorithm and sensitivity analysis to 

address multi-objective issues in architectural design, 

while literature [22] utilized an enhanced Garson 

algorithm and sensitivity based on parameter design to 

quantify building envelope structures. Both studies have 

demonstrated the efficacy of sensitivity analysis in the 

context of building parameters. 

6 Conclusion 

The study introduces SMDA to analyze the performance 

optimization of SB and examine the effectiveness of its 

application. The results indicated that the convergence 

speed of SAGA algorithm was significantly better than 

that of GA, and its average value reached 4.8, which 

indicated that it needed an average of 4.8 iterations to be 

completed to find the attainment result in the program. 

Furthermore, in terms of optimal solution size and 

decision space diversity, the average value of the SAGA 

algorithm reached 9.45 and 0.059, which is significantly 

higher than that of the GA, which is 5.85 and 0.056. The 

SAGA algorithm was more sensitive to sill height, 

shading angle, shading member angle, and material, as 

well as GHTC variables. In the case study, after the 

improvement of the initial scheme, the energy 

consumption of the building was significantly reduced, 

and its value reduction reached 89.89 KWh/m2. The 

values of the building's GHTC were weighted with values 

of 0.272229W/m2K and 0.296703W/m2K for the first 

and second improvements, respectively. The predicted 

results of the sDA metrics exhibited a high degree of 

consistency with the actual values, the fitted values of the 

ASE were less than 0.70 in both the training and test sets, 

and the mean values of the RMSE and MAE values 

reached 0.078 and 0.063 in the training set and 0.061 and 

0.067 in the test set. The efficiency of the testers in 

carrying out the programmed multi-objective 

optimization was significantly improved with the 

suggested modifications of the algorithm. The proposed 

method of the study can effectively improve the 

performance of optimal building design and its 

performance for multi-objective optimization problems is 

better. Enriching the types of buildings studied and 

further supplementing the variable indicators are 

important elements for the study to focus on in the future. 
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