
https://doi.org/10.31449/inf.v48i14.6030 Informatica 48 (2024) 171–188 171 

Travel Path Recommendation Algorithm Based on Hybrid Particle 

Swarm and Ant Colony for Social Media Shared Data Mining 

 
Kun Zhu 

School of Culture and Tourism, Jilin Province Economics and Management Cadres College, Changchun 130000, 

China 

E-mail: zk1234561206@163.com 

Keywords: PSO, ant colony recommended tourist routes, social media, recommended accuracy 

Received: April 16, 2024 

The effective mining of shared data on social media can help personalized recommendations of tourist 

attractions and paths for users. This study proposes a tourism path recommendation scheme that 

combines PSO and ant colony optimization to address the issue of low recommendation accuracy 

caused by incomplete extraction of effective information in tourism path recommendation algorithms. 

The tourism path recommendation algorithm obtains a pseudo demand sequence based on the distance 

between the user's center point, and obtains attribute keywords through the user's evaluation text and 

text extraction technology. The algorithm employs the iterative operation of the particle swarm ant 

colony algorithm to determine the semantic distance and geographic distance of the target user to the 

optimal sequence, and updates the preference distance through a weighted calculation. For the four 

benchmark functions, the proposed algorithm had a longer running time under the same number of 

runs. Under the four benchmark test functions f1, f2, f3, and f4, when the maximum number of runs 

was reached, the running time of the algorithm was 36.58s, 62.96s, 90.59s, and 64.26s, respectively. 

The proposed PSO-AC travel path recommendation algorithm had lower recommendation errors 

under different running times, and the range of error values for route recommendation was 

0.005-0.089. In the training set, the confusion matrix results of the algorithm showed that the accuracy 

of tourism path recommendation for topics 1 and 5 was 81.25% and 84.26%, respectively, and the 

recommendation accuracy for the other three topics was also above 75%. The designed algorithm 

takes into account both emotional and time series dimensions, and has high recommendation accuracy. 

It has obvious advantages in the actual process of recommending tourist routes. 

Povzetek: Predlagan je nov algoritem priporočanja turističnih poti, ki združuje optimizacijo rojev 

delcev (PSO) in optimizacijo kolonije mravelj za rudarjenje podatkov z družbenih omrežij.

1 Introduction 

Social media, as an important communication medium in 

the era of new media, has significant data mining value in 

various fields such as traffic management, urban planning, 

and traffic prediction. Social media platforms cover 

various multi-modal data of user posts and evaluations. 

How to extract word feature information from text 

information for data mining is currently a hot research 

topic. At the same time, there are situations in social 

media platforms where some users do not have or only 

have partial text information, which makes it difficult to 

obtain valuable text information from historical 

information, resulting in many text analysis tasks being 

unable to be completed smoothly. The application of data 

mining and the processing of social media network 

information, including the geographical location and 

ticket prices of relevant attractions, enables the provision 

of constructive guidance for personalized tourism based 

on user preferences. This, in turn, facilitates the 

realization of the personalized needs of tourists [1-3]. The 

recommendation of tourist routes is an important service 

in tourism service information. According to data from 

tourism service websites, some tourism agencies offer 

pre-booked travel routes without considering the 

personalized needs of users. It is challenging for users to 

swiftly identify a travel route that aligns with their 

specific preferences amidst the vast array of tourism 

information. This process not only consumes a 

considerable amount of personal time but also results in a 

sub-optimal travel experience for users. A substantial 

corpus of domestic and foreign literature exists on the 

topic of personalized recommendations for tourist 

attractions and paths. However, research results have not 

yet fully explored the potential of user social media 

information, which has resulted in unsatisfactory 

recommendation outcomes. Moreover, there is no 

established algorithm model that combines user semantic 

text information to analyze recommendation schemes 

[4-6]. Particle swarm optimization (PSO) has the 

characteristic of high recommendation efficiency in path 

recommendation algorithm (PRA), and ant colony (AC) 

algorithm can compensate for the shortcomings of PSO. 

In response to the shortcomings of existing personalized 
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recommendation algorithms in user preference 

information data mining and the problems in 

recommendation scheme analysis, this study proposes a 

travel path recommendation algorithm (TPRA) that 

combines PSO and AC algorithm, namely the PSO-AC 

algorithm. The research aims to provide feasible solutions 

for fully mining effective information in social media 

shared data (SMSD). The research content is elaborated 

through four parts. Part 1 is an analysis of the present 

application status of SMSD, PSO, and AC in 

personalized recommendations. Part 2 has designed a 

recommendation plan for tourism routes based on SMSD, 

with a focus on introducing TPRA that combines PSO 

and AC algorithms. Part 3 analyzes the performance of 

TPRA for PSO and AC, and sets up comparative 

recommendation algorithms to verify the effectiveness of 

the proposed method. Part 4 summarizes the research 

results and proposes the development direction for the 

next step of research, providing suggestions for the 

proposal of practical travel path recommendation (TPR) 

schemes. 

SMSD mining and TPR combined with intelligent 

algorithms have been widely reported by experts. Jamal 

et al. came up with a TPR method based on time 

extended networks, which achieves personalized 

recommendations based on the current route congestion 

situation and the conditional probability value of 

transitioning from the current node to the next node. It 

transformed the route problem into a nonlinear discrete 

optimization problem and improved it with the idea of 

dynamic programming, verifying that this method had a 

relatively accurate recommendation effect [7]. Huang and 

other scholars constructed empirical and real-time traffic 

models to expand possible paths from the current node 

and calculate the cost of these candidate nodes to their 

destination. Based on the data calculated by the model, 

combined with the A* algorithm, the optimal path could 

be selected [8]. Javed Awan et al. observed that there is a 

certain degree of consistency between users' access 

preferences for a certain location and the frequency of 

visits to other locations, and proposed a probabilistic 

category recommendation algorithm. Compared to 

common PRAs, this model had higher accuracy and recall 

[9]. Beed et al. analyzed the optimization problem of 

urban tourism routes using artificial bee colony 

optimization algorithm and PSO. This method aimed to 

maximize the tourist attractions, minimize travel costs 

and the expected browsing time deviation. The 

performance of this method had been verified through 

standard basis functions [10]. Qamar et al. solved the 

traveling salesman problem using optimal and optimal ant 

systems and PSO, and measured the arrangement quality 

and assembly time numerically. The test set results 

showed that compared to conventional AC, this method 

had stronger feasibility [11]. 

Luo and other scholars have designed a personalized 

intelligent TPR technology for improved discrete PSO 

applications. This method analyzed tourism 

recommendations based on the possible tourism 

characteristics of different tourists, and constructed a 

tourist interest model based on user preferences. The 

recommendation accuracy of this method was about 76%, 

and the recommendation time was within 0.8 seconds. 

Therefore, it could achieve real-time accurate 

recommendation [12]. González et al. proposed a strategy 

of dynamically aggregating user preference features 

based on the dynamic characteristics of search paths to 

achieve the goals of maximizing group satisfaction and 

minimizing individual satisfaction differences, and based 

on this, established a model. However, this model relied 

heavily on training datasets and had over-fitting issues 

[13]. Zhang et al. proposed that in TPR, user preference 

modeling and the density of passenger distribution in 

scenic areas were the primary topics of concern. This 

often-involved user satisfaction and travel efficiency, and 

users often chose popular points of interest (PoI) when 

traveling [14]. Zhou explored the potential interests and 

preferences of tourists by collecting photos from social 

networking sites, trained convolutional neural networks, 

and used fuzzy set theory to generate classifiers to 

classify users. This method had higher recommendation 

accuracy compared to other recommendation algorithms 

[15]. Kumar et al. proposed a selective travel strategy 

based on user needs. It discretized the spatial structure of 

scenic spots, optimized PSO using AC thinking, 

improved the rules for location updates, and quickly 

found the shortest path that met the personalized needs of 

users and included as many scenic spots as possible [16]. 

There are many research reports on the analysis of 

time label sequences in TPR, but there are few studies on 

the reconstruction of interest point sequences using AC. 

However, due to the limited flexibility of TPR in 

analyzing user social relationships, few scholars have 

been able to fully explore the textual information of users. 

This study explores user-related semantic preferences 

through existing text information, and constructs relevant 

models by utilizing AC, which has advantages in 

combinatorial planning problems, to obtain TPRs and 

provide technical support for personalized TPR for 

tourists. 

Table 1 shows the TPR methods and results of 

different researchers, and each recommendation method 

has achieved certain results in TPR. However, few 

researchers have considered the impact of time label 

sequences and interest point sequences on path 

recommendation. Meanwhile, due to the limited 

flexibility of TPRs in analyzing user social relationships, 

few scholars have been able to fully explore user textual 

information. In response to this issue, this study utilizes 

existing text information to mine user-related semantic 

preferences, and constructs relevant models using AC, 

which has advantages in combinatorial planning 

problems, to obtain TPR and provide technical support 

for personalized TPR for tourists. 
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Table 1: Summary table of related work 

Author Method Result 

Jamal et al. [7] 
A tourism route recommendation method 

based on time expansion network 

Recommendation accuracy greater 

than 70% 

Huang et al. [8] 

Build empirical traffic models and real-time 

traffic models, and use A * algorithm to 

select the best path 

The recommendation accuracy is as 

high as 77.35%, and the 

recommendation time is 0.69 seconds. 

Javed Awan et al. [9] 
Probability category recommendation 

algorithm 

The accuracy and recall rate of 

recommendations can reach over 

70%. 

Beed et al. [10] 
Artificial bee colony optimization algorithm 

and PSO algorithm 

The recommended accuracy is as high 

as 81.51%. 

Qamar et al. [11] Optimal PSO and optimal ant system 
The recommendation error rate is less 

than 5%. 

Luo et al. [12] 

Improving personalized travel route 

intelligent recommendation technology based 

on discrete PSO 

The recommendation accuracy is 

around 76%, and the recommendation 

time is within 0.8 seconds. 

González et al. [13] 
Dynamic aggregation of user preference 

features 
There is an issue of over-fitting. 

Zhang et al. [14] User preference modeling High recommendation accuracy. 

Zhou et al. [15] 
Convolutional neural networks and fuzzy set 

theory 

The recommended accuracy is 

80.65%. 

Kumar et al. [16] PSO algorithm combined with AC algorithm 

The recommended time is 0.623 

seconds, with a recommendation 

accuracy of over 80%. 

 

2 Construction of TPR models for 

PSO and AC in SMSD mining 
When tourists choose to travel to a certain city, they 

usually determine the tourist attractions through social 

media contribution data, and at the same time, develop 

travel paths based on their own preferences and needs. 

The mining of effective information in SMSD is crucial 

for personalized recommendations of tourist attractions 

and paths. In dealing with combinatorial programming 

problems, AC has significant advantages, but this 

algorithm is prone to falling into the phenomenon of fast 

convergence speed or local optima. This study proposes a 

TPRA, i.e., PSO-AC, which combines PSO and AC. 

Based on AC, this method improves the convergence 

speed through the maximization and minimization 

mechanism (Max/Min-M) and the elite ant management 

mechanism (EAMM). At the same time, the bidirectional 

encoder representation from transformers (BERT) model 

is used to analyze the sentiment of tourist evaluation texts, 

and the extracted text information is integrated into TPR. 

 

2.1 TPR and SMSD mining 
Based on a clear understanding of the set of 

recommended PoI in social media platforms, this study 

designs a travel path that meets personalized 

recommendations. This study first obtains the semantic 

vector of the sequence from the user's comment text and 

the semantic distance of the user to the PoI sequence. At 

the same time, geographic information is used to 

calculate geographic distance, and the preference distance 

is obtained through weighted processing of the two, 

which can be used to evaluate path quality. Subsequently, 

this study optimizes AC using the Max/Min-M and the 

EAMM, while combining them with PSO to perform 

combinatorial planning on the PoI recommendation point 

set. Tourist attractions can be regarded as PoI sequences 

with chronological order. TPR is considered to be the 

process of assembling elements from a collection of PoIs 

in a certain order to form a path that meets the 

personalized needs of users. The path recommendation 

problem can be quantified by selecting a point as the 

starting point in a weighted undirected graph. By 

traversing all nodes through a single access method, 

multiple paths are generated, and the path with the 

minimum total distance is given based on the preferences 

of the target user, which is the recommended path. The 

core of TPRA is to obtain a sufficient number of interest 

points within the search range based on the check-in data 

of the target user, and to obtain a quasi-demand sequence 

based on the distance from the user center point. At the 

same time, attribute keywords are obtained through user 

evaluation text and BERT technology. Then, the iterative 

operation of PSO-AC is used to obtain the semantic 

distance and geographic distance of the target user to the 

current optimal sequence, and the preference distance is 

updated through weighted calculation. The optimal path 

is the one with the shortest preferred distance, in 

accordance with the iteration termination conditions. Fig. 

1 shows the PRA structure. 
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Figure 1: The structure of path recommendation algorithm 

 

The PRA needs to combine definitions, including 

the distance from a point to a trajectory (D1), the user's 

set of quasi requirements (QRUS), sequence semantic 

vectors (SSV), the user's preferred geographic distance 

for PoI sequences (D2), the user's preferred semantic 

distance for PoI sequences (D3), and the user's preferred 

distance for PoI sequences (D4). For D1, the quantity of 

elements in the PoI set is set to N , which the elements 

can form an ordered sequence is !N . The distance 

( ),
M

d o γ  between the center point of the target user and 

the trajectory is calculated using equation (1). 

 ( ) ( ) , min ,
iM v γ i

d o γ sd o v


=  (1) 

In equation (1), the distance between point o  and 

point i
v  is ( ),

i
sd o v , and one vertex of the trajectory is 

i
v . The definition of QRUS is as follows: The PoI 

accessed by the target user i
u  forms a circular area, and 

QRUS is  1
, ,

require n
O o o= . To evaluate the 

correlation between PoI and label w , the PoI document 

is defined as p
I , with a PoI frequency of f

p , an access 

frequency of f
v , and a user frequency of f

u . The 

calculation formula for the score ( )AT w  of a certain 

PoI p
poi  on the label is equation (2). 

( )
( ) ( )

( )

, ,
max

,

f p f p

p P

f p

p I w u I w
AT w

r I w



  (2) 

In equation (2), the threshold is ( ),
f p

r I w . If the 

value exceeds the threshold ( ),
f p

r I w , it can be 

considered that the label is an attribute keyword. The 

proposed demand for SSV is represented by 

( )
1
, ,

nrequire o o
K K K= , and the semantic vector of the 

trajectory is ( )
1
, ,

nγ v v
K K K= . The semantic value 

ppoi
K  of a certain PoI p

poi  is equation (3). 

 
( )

1

p

x

ii

poi

AT w
K

x

==


 (3) 

The expression of D2 dist
S  is equation (4). 

 
( )

1
,

2
1

1
n

Mi

dist
d o γ

S

e =
−

= −


+
 (4) 

This study uses the Gerald coefficient to calculate 

D3. Fig. 2 is a schematic diagram of the geographical 

distance between the target user and the PoI sequence. 
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Figure 2: Geographical distance diagram between the target user and the sequence of PoI 

 

The expression for D3 referring to ( ),
dist require γ

T K K  

is equation (5). 
 

( )

2 2

,
dist require γ

require γ

require γ require γ

T K K

K K

K K K K

=



+ − 

 (5) 
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The calculation formula for D4 is equation (6). 

( )

( ) ( ) ( ),

,

. 1 . ,

dist

dist require dist require γ

ST require γ

λ S o γ λ T K K

=

+ −
 (6) 

In equation (6), the preference related parameter is 

γ . 

2.2 AC and elite ant management 

improvement mechanism 
AC is a probabilistic algorithm that seeks the optimal 

path, with characteristics such as heuristic search, 

positive feedback of information, and distribution 

calculation. Essentially, it can be considered a heuristic 

global optimization algorithm [17-19]. The core idea of 

this algorithm is to refer to the feasible solution of the 

problem that needs to be optimized through the walking 

path of ants. All AC paths are the solution space of the 

matter to be optimized. In the initial stage, ants in areas 

with short paths release more pheromones, while over 

time, the number of ants choosing this path increases. 

Under positive feedback, the AC will all concentrate on 

the optimal path, and the corresponding solution is the 

optimal solution [20-22]. The conversion probability 

( )k

ij
p t  of ants at time t  at two points i  and j  is 

expressed as equation (7). 

( )

( ) ( )

( ) ( )

0

k

ij

α β

ij ij

kα β

k ij ij

p t

γ t γ t
j allowed

s allowed γ t γ t

otherwise

=

 


 




 (7) 

In equation (7), the next node that the ant can choose 

is k
allowed . s  refers to a certain node. The number of 

pheromone residues on the edge is ij
γ . a  and β  are 

information heuristic factors and expected heuristic 

factors, respectively. The update formula for pheromones 

is equation (8). 

 ( ) ( ) ( ) ( )1 ,
ij ij ij
γ t n ρ γ t γ t t n+ = − + +  (8) 

In equation (8), the volatilization coefficient of 

pheromones is ρ , and the residual coefficient of 

pheromones is 1 ρ− . For the updating of pheromones, 

this study adopts the Ant-Cycle model, which uses global 

information to complete pheromone updates. Compared 

to Ant-Density and Ant-Quantity, Ant-Cycle has 

significant advantages in analyzing global path planning 

problems. The calculation formula for Ant-Cycle is 

equation (9). 

 ( )
( ),

0

k

kij

Q
if ant pass i j

Lγ t n

otherwise




+ = 



 (9) 

In equation (10), the pheromone increment of edge 

( ),i j  is ( )ij
γ t n+ . The length of the path taken by the 

k -th ant is k
L . The intensity of pheromones is Q . Fig. 

3 shows the ant optimization path optimization process. 

FoodNest

FoodNest

FoodNest

Path

Path

 

Figure 3: Ant optimization path optimization process 

 

Due to the tendency of the algorithm to fall into the 

phenomenon of too fast convergence speed or local 

optima, this study improves the speed through the 

Max/Min-M and the EAMM. EAMM has been proven by 

scholars to increase the probability of obtaining the 

global optimal path while reducing convergence time. 

This mechanism can appropriately increase the number of 

additional pheromones to convert local optimal solutions 

into global optimal solutions. The principle for updating 

pheromones left over during ant foraging is equation (10). 

 ( ) ( ) *1
ij ij ij ij
γ t ργ t γ γ+ = + +  (10) 

In equation (10), the total amount of pheromone 

increment left by each ant passing through edge ( ),i j  is 

ij
γ . The formula for 

*γ  is equation (11). 
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( )
*

,

0

k

Q
σ if edge i j is best solution

Lγ

otherwise




= 



 (11) 

In equation (11), the number of elite ants is σ , and 

the pheromone increment that is better than the edge 

( ),i j  sought by the elite ants is 
*γ . Max/Min-M only 

updates the pheromones of the optimal ant during each 

iteration, and in this case, it can search for more solutions 

without the phenomenon of precocity [23-25]. Meanwhile, 

the mechanism sets pheromone thresholds on each path to 

balance the differences in pheromones across different 

paths. When initializing pheromone values, this 

mechanism can search for more possible excellent 

solutions. 

 

2.3 TPR Solution of PSO-AC Joint 

Algorithm 
On the basis of AC optimization, this study analyzes the 

solution of tourism path combination through PSO. PSO 

owns lots of benefits like heuristic search, strong 

robustness, distributed computing, which is often applied 

to seek the optimal route. Fig. 4 shows the principle of 

AC. 
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Figure 4: The principle of AC optimization algorithm 

 

AC mimics the ants’ capacity to find the shortest 

foraging way through information exchange. Ants secrete 

pheromones while foraging, which allows for complete 

information exchange between ant populations. The 

ranking order and weight of the ants increase as the path 

length decreases. Therefore, it is necessary to update the 

pheromone of the top w  ants using the equation (12). 

( ) ( ) ( ) ( )*

2

1 1
w

k

ij ij ij ij
k

τ t ρ τ τ t τ t
=

+ = − +  +   (12) 

In equation (12), the initial pheromone volatilization 

factor is ρ  within the interval of (0,1). The second to 
w -th ranked ants update their pheromones as ( )

2

w
k

ij
k

τ t
=

 , 

and the optimal ant updates their pheromones as ( )*

ij
τ t . 

PSO can solve many linear and nonlinear matters with 

excellent convergence velocity, but basic PSO is more 

likely to getting stuck in local optima during particle 

search, causing the limited particle diversity. To address 

it, an algorithm improvement built on PSO is suggested, 

which enhances the particle population diversity and 

avoids premature stagnation and local optima [26-28]. A 

population of 2n  particles in the M-dimensional target 

search space is randomly generated. V represents the 

particle velocity, and U is the particle position in the 

search space. The corresponding fitness can be calculated. 

( ) ( )1 2 1 2, ,..., , , ,...,i i i iM g g g gMP P P P P P P P= =  are individual 

and group extremums. During each iteration, particles 

update their velocity and location by comparing the 

fitness of new particles with that of the current individual 

and population extremum [29-30]. The velocity of the 

particle is determined by its current position and the 

particle position from the previous iteration. Equation (13) 

provides the update equation for the velocity. 

( )( )
( )( )

1

1 1

1 1 1 1

1

2 2 2 2

1

1

k

im

k k k k

im im im im

k k k

gm im im

V

wV c r P U U

c r P U U

 

 

+

− −

−

=

+ − + +

+ − + +

 (13) 

In equation (13), 21,2,... , 1,2,..., ,m M i n k= =  

represents the current iterations. 1 2, 0c c   is the 

acceleration factor. 1 2,r r  is a random number within 0 to 

1. w  is the inertia weight coefficient. As the iteration 

k  increases, the nonlinearity lows down, and its 

expression is equation (14). 

 ( )
2

max
ini ini end

kw w w w
k

 = − −  
 

 (14) 

In equation (14), iniw  and endw  are the beginning 
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and ending values of w . Taking 
2 1

, 1,2,
i

i

i

c
i

c

−
 =  

in the early phase and 
2 1

, 1,2,
i

i

i

c
i

c

−
 =  in the later 

stage of the algorithm, by enhancing global search and 

optimization abilities, meticulous search is achieved. The 

principle for updating particle positions is equation (15).  

1

, 11

1

, 1

2 ,

,

n
k k k k k k

im im im jm

i j jk

im n
k k k k k

im im im jm

i j j

U V d u u d

U

U V u u d

+

 +

+

 


+ + − 


= 
 + − 






(15) 

In equation (15), ( )
2

max

k

ini ini end

k
d d d d

k

 
= − −  

 
 is 

the min distance allowed between particles. inid , endd  

and kd  are the initial and final values. Fig. 5 is a 

schematic diagram of PSO-AC. Firstly, the center point 

of the target user and the pseudo demand sequence are 

calculated, and based on document p
I , the attribute 

keywords of a PoI are calculated to obtain the semantic 

distance of the generated path after each iteration. Then, 

using the iterative operation of PSO-AC, the semantic 

distance and geographic distance of the target user to the 

current optimal sequence are obtained, and the preference 

distance is updated through weighted calculation. Finally, 

when the iteration terminates, the path with the shortest 

preferred distance is set as the optimal path. In the 

optimized ant algorithm, intelligent ants will interfere 

with the degree of influence during the optimization 

process based on the current heuristic or information 

factors. When the information factor has a significant 

influence factor, ants are highly likely to stay at the 

optimal path, leading to the algorithm dropping into the 

local optimum. When the heuristic factor has a significant 

impact, the algorithm will stop iterating. 
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Figure 5: Schematic diagram of PSO-AC tourism PRA 

 

3 TPRA performance analysis of 

PSO and AC in social media data 
This study analyzed the performance of TPRA for PSO 

and AC in social media data, including the performance 

of benchmark test functions and the optimization effect of 

PSO-AC. The testing indicators included accuracy, 

running time, error value, fitness value, recommendation 

error, and confusion matrix. 

 

3.1 Benchmarking the performance of 

benchmark functions 
Experimental environment settings: The system is 

Windows 10, with processor of Inter(R) Core (TM) 

i7-6700 and 16.00GB memory. The APP version is 

MATLAB R2013B, and the hard disk size is 500GB. 

During the parameter setting process, increasing the 

number of particles and the maximum number of 

iterations can improve the search accuracy of the 

algorithm, but it will also increase the computational cost. 

Based on the complexity of the TPR problem and the 

limitations of computing resources, the number of 

particles is set to 100 and the maximum number of 

iterations is 400. The learning factors c1 and c2 are used 

to regulate the degree of influence of individual optimal 

solutions and global optimal solutions, respectively, 

affecting the velocity update process of particles. 

Considering the characteristics of the problem and the 

convergence speed of the algorithm, the learning factor is 

set to c1=c2=1.2. In addition, larger inertia weights make 

particles more inclined to move in the current direction, 

while smaller inertia weights make particles more 

inclined to be influenced by individuals and groups to 
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change their direction of movement. Taking all factors 

into consideration, the maximum and minimum values of 

inertia weight in the study are 0.7 and 0.3, respectively. 

The study compares the computational complexity of 

PSO algorithm, AC algorithm, and TPRA of PSO-AC. 

The computational complexity of the PSO algorithm is O 

(N\cdot T), where N represents the spatial dimension of 

the problem and T represents the number of iterations. 

The computational complexity of AC algorithm is O 

(V2\cdot T), where V represents the number of nodes. 

The computational complexity of the PSO-AC TPRA is a 

combination of both, namely O (N\cdot T+V2\cdot T). 

When the number of nodes V is relatively small, PSO-AC 

algorithm is more efficient than using AC algorithm 

alone or PSO algorithm. This algorithm combines the 

characteristics of two algorithms and can better adapt to 

the complexity of the problem. The study area covers 16 

administrative divisions in Beijing, and the social media 

data comes from WeChat, Tiktok, Xiaohongshu and other 

social media from 2020 to 2022. The study extracts 

geographic information, publication time, publication 

location, and text information from the data. At the same 

time, the text is classified into positive emotions, negative 

emotions, and neutral emotions through the emotion 

classification of text information. Subsequently, the text 

information is subject classified to identify content 

related to catering, accommodation, leisure, browsing, 

and weather. Tourists include both males and females. 

Taking months, weeks, and years as examples for 

statistical time. Table 2 shows the corresponding topics 

for different research topics. 

 
Table 2: Corresponding topics for different research topics 

Theme Related topics Tourist Data sources 

Data 

volume/10000 

pieces 

Catering 

"Fried Liver", "Happy Tea", "Hot 

Pot" Restaurant/Food 

"Expensive", "poor service 

quality", service quality 

"Spicy", "Bad", "hungry", 

"unable to eat", "food allergy" 

Male, 

Female 

Sina Weibo, The 

Xiaohongshu,  

Tiktok, etc. 

4.56 

Stay 

"Internet", "Hot Room", "Cold 

Room", "Poor Catering" 

Facilities 

"Poor service" 

Male, 

Female 

Sina Weibo, The 

Xiaohongshu,  

Tiktok, etc. 

5.12 

Leisure 

"Airport Shopping" and "Beijing 

Marathon" 

"Watching shows, playing 

games, shopping, National 

Theatre, drinking coffee, and 

Strawberry Music Festival" 

Male, 

Female 

Sina Weibo, The 

Xiaohongshu 
6.18 

Browse 

Flag raising, mountain climbing, 

ticket buying, check-in, and 

queuing activities 

"Cold", "Hot", "Snow", "Rain", 

"Wind", "Haze" 

Male, 

Female 
Tiktok 5.19 

Weather 

Snow, strong wind, sun, bad 

weather, flag raising, blue sky, 

sun exposure, lake freezing, 

sandstorms 

Male, 

Female 
Others 5.64 

 

Fig. 6 shows the statistical results of research data 

for different months. The peak tourist season in Beijing is 

in January, February, June, August, September, October, 

and December. Analyzing the reasons, this may be due to 

the relatively easy work tasks for tourists during this time 

period, while students are in the holiday phase. 
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Figure 6: Statistical situation of research data in different research areas 

 

Fig. 7 shows the statistical data of male and female 

tourists in different months. The number of information 

pieces for male tourists is significantly less than that for 

female tourists, accounting for only about 1/4. This is 

partly due to the fact that female tourists enjoy recording 

their travel experiences and experiences, and there is also 

an objective phenomenon of a higher number of female 

tourists. 
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Figure 7: Statistics on male and female tourists in different months 

 

This study analyzes the performance of TPRA, 

comparing algorithms such as Probabilistic Matrix 

Factorization with User and Item relationships (PMFUI) 

algorithm, SoRec method, and Probabilistic Matrix 

Factorization (PMF). Simultaneously, four benchmark 

testing functions are utilized to accurately evaluate the 

algorithm performance. Among them, the f1 function is 

used to evaluate the performance of the algorithm in 

recommending paths based on user preferences. User 

preferences for paths are mainly influenced by the 

number and type of attractions in the path. The f2 

function simulates the user's preferences for time and 

distance in the travel process, with the objective of 

evaluating the performance of the algorithm when 

considering time and distance factors. The f3 function 

simulates the user's preference for the correlation 

between various attractions in the path, used to evaluate 

the performance of the algorithm when considering the 

correlation between attractions. The f4 function simulates 

the comprehensive evaluation of the overall quality of the 

path by users during the tourism process. Figures 8 (a) - 8 

(d) show the performance of different TPRAs under 

different benchmark test functions and runs, respectively. 

Overall, for the four benchmark functions, PSO-AC has a 

longer runtime under the same number of runs. Under the 

four benchmark test functions f1, f2, f3, and f4, when the 

maximum runs are reached, the running time is 36.58 s, 

62.96 s, 90.59 s, and 64.26 s, respectively. Taking Fig. 8 

(a) as an example, when the run reaches 30, the running 

times of PMF, SoRec, PMFUI, and PSO-AC are 15.26 s, 

18.19 s, 23.49 s, and 36.27 s, respectively. Compared to 

the other three types of TPRA, the increase in operating 

time of PSO-AC is 114.26%, 101.32%, and 58.29%, 

respectively. Therefore, under the same number of runs, 

the PSO-AC algorithm has a longer running time, but the 

difference in running time is significant. 
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Figure 8: Performance of different TPRAs under different benchmark testing functions and running times 

 

Figures 9 (a) - 9 (d) show the accuracy and error 

values of four different TPRAs under different 

benchmark test functions. Overall, the error of TPRA 

decreases continuously with the increase of data size, and 

tends to stabilize when the data size reaches around 5, 

while the accuracy shows the opposite trend of change. In 

Fig. 4 (a), the convergence errors of PPMF, SoRec, 

PMFUI, and PSO-AC are 0.410, 0.309, 0.256, and 0.145, 

respectively, with accuracy of 91.26%, 93.56%, 95.21%, 

and 98.26%, respectively. In Fig. 4 (b), the convergence 

errors of PMF, SoRec, PMFUI, and PSO-AC are 0.512, 

0.465, 0.326, and 0.198, with accuracy of 87.25%, 

89.65%, 92.26%, and 93.58%. Therefore, the accuracy of 

PMF, SoRec, PMFUI, and PSO-AC is higher than that of 

other optimization algorithms, while the error is lower. 
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Figure 9: Accuracy and error values of four different TPRAs under different benchmark test functions 

 

Figures 10 (a) - 10 (d) show the fitness values of 

four different TPRAs under different benchmark test 

functions. Compared to other algorithms, PSO-AC has 

better optimal fitness and average fitness. This is because 

the computational complexity of AC does not overly 

value the dimensions of optimization problems, and it has 

high search accuracy and strong generalization ability. 

The introduction of Max/Min-M and EAMM in AC can 

effectively solve the convergence speed, making it more 

conducive to obtaining the global optimal solution. 

PSO-AC is stable and efficient, and the average fitness of 

the two different TPRAs, SoRec and PMFUI, is better 

than PMF. 
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Figure 10: Fitness values of four different TPRAs under different benchmark test functions 

 

3.2 Optimization effect of PSO-AC 
To analyze the optimization effect of PSO-AC, this study 

explores the fitness value and recommendation error. 

Figures 11 (a) and 11 (b) show the relationship between 

fitness values, running time, and recommendation error at 

different iterations. PSO-AC reaches its optimal value 

after approximately 600 iterations, with a running time of 

7.452 seconds and an optimal fitness value of 0.475. The 

iteration error of other TPRAs is higher, and the running 

time is also around 7.5 seconds. For recommendation 

accuracy, PSO-AC has lower recommendation errors 

under different running times, with TPR error values 

ranging from 0.005 to 0.089, while PMF has the lowest 

recommendation accuracy, with TPR error from 0.154 to 

0.268. The recommendation accuracy of SocRec and 

PMFUI TPRA is in the middle, with values from 0.098 to 

0.189 and 0.078 to 0.105. 
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Figure 11: The relationship between fitness value, running time, and recommendation error under different iteration 

times 

 

To further validate the effectiveness of the improved 

AC method, this paper compares it with the pre-improved 

TPRA. Figures 12 (a) and 12 (b) show the convergence 

values and running times. In Fig. 12 (a), the error values 

and iteration times of the two algorithms are inversely 

related, and the final convergence times are about 200 

and 210. The stable error value of PSO-AC is 0.014, 

which is 28.36% higher than that of a single algorithm. In 

Fig. 12 (b), the stable values are 2.9s and 2.8 s, indicating 

that the iterative process of PSO-AC is still within a 

reasonable numerical range and there is not much 

difference in values compared to the improved TPRA. 

Therefore, PSO-AC is excellent in optimizing time and 

error values. 

 



Travel Path Recommendation Algorithm Based on Hybrid… Informatica 48 (2024) 171–188 183 

0.002

0.000
0 50

E
rr

o
r 

v
al

u
e

100 200 250 350

(a) Improve JAYA

150 300

Iterations/time

R
u

n
 t

im
e/

s

0

0.4

0.8

1.2

1.6

2.0

2.4

2.8

3.2Error value

Run time

0.004

0.006

0.008

0.016

0.002

0.000
0 50

E
rr

o
r 

v
al

u
e

100 200 250 350

(b) Adaptive JAVA

150 300

Iterations/time

R
u

n
 t

im
e/

s
0

0.4

0.8

1.2

1.6

2.0

2.4

2.8

3.2Error value

Run time

0.004

0.006

0.008

0.016
 

Figure 12: Convergence values and runtime of two algorithms 

 

Fig. 13 shows the confusion matrix results of 

PSO-AC before and after improvement on the training set. 

1-5 refers to five different themes. Fig. 13 (a) shows that 

the TPR accuracy for themes 1 and 5 is 71.25% and 

72.26%, respectively, while the TPR accuracy for the 

other three themes is around 70%. The confusion matrix 

results in Fig. 13 (b) show that the TPR accuracy for 

themes 1 and 5 is 81.25% and 84.26%, respectively, and 

the TPR accuracy for the other three themes is also above 

75%. The improved TPR accuracy of PSO-AC is 

significantly better, with an improvement rate of about 

15%. Common types of TPR errors include 

recommended travel paths that do not match the user's 

actual interest topics, and recommended travel paths that 

fail to consider the user's personalized needs. The reason 

for the former is that the algorithm did not correctly 

recognize the user's preferences, or the user's interest 

topics were misunderstood during the recommendation 

process. The latter may be due to a lack of sufficient 

understanding of user preferences, or errors in the data 

collection and analysis process. The improved PSO-AC 

algorithm has significant advantages in both aspects. 
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Figure 13: The confusion matrix results of PSO-AC improved TPRA on the training set 

 

Fig. 14 shows the confusion matrix results of 

PSO-AC on the training and testing sets. The PSO-AC in 

the training set showed that the TPR accuracy for themes 

1 and 5 was 81.25% and 84.26%, respectively, and the 

TPR accuracy for the other three themes also reached 

over 75%. This may be due to the fact that these two 

themes are favored by tourists and there is a large amount 

of textual information for evaluation. In the test set, the 

TPR of PSO-AC in themes 1 and 5 were 85.26% and 

87.25%, respectively, and the TPR accuracy of the other 

three themes reached over 78%. Therefore, the accuracy 

of the proposed TPRA is relatively high, and the accuracy 

of the TPRA improved by the AC improvement scheme 

has been improved. This recommendation method has 

certain feasibility in TPR. 
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Figure 14: Confusion matrix results of PSO-AC TPRA on test and training sets 

 

To further evaluate the performance of the proposed 

algorithm, accuracy, recall, and F1 value are used as 

performance evaluation indicators, and compared with 

the improved TPRA. The performance evaluation 

indicators of each algorithm under different iteration 

times are shown in Fig. 15. As shown in Fig. 15 (a), the 

highest accuracy of the pre improved TPRA is only 

67.91%, while the accuracy of the improved TPRA is as 

high as 83.64%. As shown in Fig. 15 (b), the improved 

TPRA has a recall rate of 77.91%, which is 33.01% 

higher than before the improvement. From Fig. 15 (c), the 

F1 value of the improved TPRA is as high as 83.41%, 

which is significantly higher than the original 

recommendation algorithm. The improved PSO-AC 

TPRA has significant performance advantages. 
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Figure 15: Performance evaluation indicators of various algorithms under different iteration times 

 

4 Discussion 

In terms of runtime, the PSO-AC TPRA reaches its 

optimal value after approximately 600 iterations, with a 

runtime of 7.452 seconds. The recommendation time of 

the personalized travel route intelligent recommendation 

technology designed by Luo et al. [12] with improved 

discrete PSO is within 0.8 seconds, slightly higher than 

the method proposed in the study. The reason is that the 

PSO-AC algorithm has a lower algorithm complexity and 

uses an efficient heuristic search strategy, which can find 

the optimal solution in a shorter time. In terms of 

recommendation accuracy, the proposed PSO-AC TPRA 

has lower recommendation errors under different running 

times. The range of error values for TPR is 0.005-0.089, 

while the PMF TPRA has the lowest recommendation 

accuracy, with the range of error values for TPRs being 

0.154-0.268. The recommendation accuracy of the 

SocRec and PMFUI is in the middle, with values ranging 

from 0.098 to 0.189 and 0.078 to 0.105, respectively. The 

recommendation error rate of the optimal PSO and 

optimal ant recommendation system proposed by Qamar 

et al. [11] is less than 5%. Compared with the proposed 

PSO-AC, its recommendation error rate is at a 

disadvantage. The reason is that the PSO-AC algorithm 

has strong global search ability and strong adaptability, 

which reduces the recommendation error rate. In the 

confusion matrix results of five different themes, the 

accuracy of TPRs for themes 1 and 5 is 81.25% and 

84.26%, respectively, and the accuracy of TPRs for the 

other three themes is also above 75%. The accuracy of 

the probability category recommendation algorithm 

proposed by Javed Awan et al. [9] is only 71.62%. 

Researchers such as Beed R [10] proposed the artificial 

bee colony optimization algorithm and PSO algorithm to 

obtain a maximum TPR accuracy of 81.51%. Compared 

with the maximum recommendation accuracy of the 

PSO-AC, it has a higher recommendation accuracy, 

which is 12.64% and 2.75% lower, respectively. The 

reason is that PSO algorithm excels in global search, 

while AC algorithm performs well in local search and 

information transmission. The two complement each 

other, allowing PSO-AC algorithm to achieve higher 

accuracy in TPR. In addition to its applicability to 

tourism itinerary planning, the PSO-AC can be extended 

to other fields, such as logistics distribution and 

transportation planning. This enables the provision of 

efficient path planning and optimization solutions for 

related fields. 

5 Conclusion 

In response to the shortcomings of existing personalized 

recommendation algorithms in user preference 

information data mining on social media platforms, as 

well as the problems in personalized recommendation 

scheme analysis, this study designed a TPRA that 
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combined PSO and AC. Meanwhile, it optimized AC 

using Max/Min-M and EAMM. The error of TPRA 

decreased continuously with the increase of data size, and 

tended to stabilize when the data size reached about 5, 

while the accuracy showed the opposite trend of change. 

For benchmark function f1, the convergence errors of 

PPMF, SoRec, PMFUI, and PSO-AC were 0.410, 0.309, 

0.256, and 0.145, respectively, and the accuracy was 

91.26%, 93.56%, 95.21%, and 98.26%, respectively. The 

optimal fitness and average fitness of PSO-AC were 

better. PSO-AC reached its optimal value after 

approximately 600 iterations, with a running time of 

7.452 seconds and an optimal fitness value of 0.475. The 

iteration error of other TPRA was higher, and the running 

time was also around 7.5 seconds. The stable error value 

of TPRA improved by AC was 0.014, which is 28.36% 

higher than the original algorithm. The stable values of 

the TPRA algorithms before and after AC improvement 

were 2.9s and 2.8s, respectively. The confusion matrix 

results of TPRA before and after PSO-AC improvement 

showed that the TPR accuracy of topics 1 and 5 was the 

highest, but the improved values were higher, with an 

improvement rate of 15%, and the TPR accuracy of the 

other three topics was around 70%. This TPRA not only 

effectively shortens the recommendation time for the best 

route, but also enables personalized and accurate 

recommendation of recommended routes, which is 

superior to other TPRAs currently available. However, 

there are still certain limitations. The data collected in the 

experiment is only a portion of the fixed area of the user's 

travel trajectory, and the sparsity of the data itself will 

affect the accuracy of the recommendation, which may 

reduce the accuracy of the results. In future research, it is 

necessary to further optimize the PSO-AC tourism 

recommendation algorithm by introducing more user 

features and preference information to improve 

recommendation accuracy. In the case of larger datasets, 

it is necessary to consider the time and spatial complexity 

of the algorithm. By optimizing the internal data structure 

and computational logic of the algorithm, as well as 

utilizing parallel computing to improve the efficiency of 

the algorithm, it is possible to enhance the overall 

performance of the algorithm. Considering the 

differences in different geographical regions, it is 

necessary to consider using region specific parameter 

settings or model adjustments. In addition, it is necessary 

to apply the PSO-AC algorithm to practical applications. 

It is recommended to recruit some actual users, including 

travel enthusiasts and ordinary travelers, and provide 

them with PSO-AC recommended travel paths, collect 

their user experience and satisfaction feedback, and 

verify the practicality of the algorithm. 
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