
 https://doi.org/10.31449/inf.v48i17.6096                                                                                             Informatica 48 (2024) 77–94    77 

ML-Based Stroke Detection Model Using Different Feature Selection 

Algorithms 

Hussein Abdel-Jaber1, Ahmed Abdel-Wahab*1, Anas Abdualqader Hadi1, Nesrine Atitallah1, Ali Wagdy Mohamed2 

Email:  habdeljaber@arabou.edu.sa, a.rakha@arabou.edu.sa,  a.hadi@ arabou.edu.sa, n.atitallah@ arabou.edu.sa, 

aliwagdy@gmail.com  
1Faculty of Computer Studies, Arab Open University (AOU), Riyadh, Kingdom of Saudi Arabia. 
2 Operations Research Department, Faculty of Graduate Studies for Statistical Research, Cairo University, Giza, 

Egypt. 

*Corresponding author 

Keywords: decision tree, k-nearest neighbours, multilayer perceptron, naïve bayes, random forest, support vector 

machine  

Received: April 20, 2024 

Stroke occurs in the brain due to the blockage of blood flow carrying oxygen and nutrients or due to 

sudden bleeding within the brain. Delaying stroke treatment can lead to serious consequences, including 

death. This paper proposes a model based on classification algorithms in machine learning to detect 

whether a stroke has occurred. The classification algorithms used in this study are k-nearest neighbours, 

decision tree, random forest, naïve Bayes, multilayer perceptron and support vector machine. These 

algorithms were applied to the classification task using different feature selection methods, namely: all 

features, select K best (SelectKBest), select percentile (SelectPercentile), select false-discovery rate 

(SelectFdr), select false-positive rate (SelectFpr) and select family-wise error (SelectFwe). This paper 

compares the performance of the above algorithms using the different feature selection methods to 

determine which algorithm provides the best classification results in terms of accuracy, recall, precision 

and F1-score. The decision tree algorithm shows the highest performance in accuracy, precision and F1-

score, regardless of the feature selection method used. Both decision tree and random forest yield the 

highest and identical recall results when the ‘all features’ selection method is applied. For the other 

feature selection methods, decision tree consistently provides the highest recall results. Performance 

evaluation was conducted by comparing the proposed model to the most relevant works using different 

machine learning algorithms. The results indicate that the proposed model outperforms other approaches, 

particularly with the decision tree algorithm. Statistical results, including means, standard deviations and 

95% confidence intervals for all features and the target variable in the stroke dataset, were obtained. 

Trade-offs between precision and recall results for the compared algorithms are also presented. 

Povzetek: Razvita je nova metoda za zaznavanje možganske kapi, ki temelji na algoritmih strojnega učenja 

in različnih metodah izbire značilnosti. Algoritem odločitvenega drevesa je dosegel najboljše rezultate. 

 

1 Introduction 
 

A. Background 

           Stroke is a prevalent global health issue with 

substantial consequences for individuals, families and 

healthcare systems. According to the World Health 

Organization, stroke is the second most common cause of 

mortality and a major contributor to long-term disability 

worldwide [1]. Stroke occurs when the flow of blood to 

the brain is disrupted, either due to a blockage (ischemic 

stroke) or bleeding (haemorrhagic stroke). The effects of 

stroke can be profound, leading to physical disability, 

cognitive impairments and emotional difficulties. 

Furthermore, stroke places a significant financial strain on 

healthcare institutions and society as a whole [1].  

        Machine learning (ML) algorithms have shown 

significant promise in aiding stroke detection and 

diagnosis, providing healthcare workers with vital tools in 

this critical area. These algorithms can analyse vast  

 

 

amounts of medical data, including imaging scans, clinical 

records and patient demographics, to identify patterns and 

generate precise predictions. By utilising advanced 

computational approaches, ML algorithms can assist in 

the early detection of stroke cases, enabling timely 

interventions and improving patient outcomes. Recent 

research has produced encouraging results in this field. 

For example, Luo et al. (2021) developed a convolutional 

neural network (CNN) to autonomously identify acute 

ischemic stroke in brain magnetic resonance imaging 

(MRI) data [2]. The CNN demonstrated exceptional 

accuracy and sensitivity (SEN), indicating its potential as 

a reliable method for stroke diagnosis. In another study by 

Wu et al. (2020), ML algorithms were used to analyse 

electrocardiogram (ECG) signals to identify atrial 

fibrillation, a common risk factor for stroke [3]. Their 

findings highlighted the feasibility and effectiveness of 

ML methods in detecting individuals at risk of stroke 

through ECG data analysis. These recent developments 

underscore the potential of ML algorithms to enhance 
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stroke detection and diagnosis, providing critical support 

to healthcare providers and improving patient care.  

       Stroke detection methods currently consist of both 

conventional approaches and emerging research that 

employs ML techniques. Conventional approaches to 

identifying stroke typically depend on clinical evaluation, 

which involves analysing the patient’s medical history, 

conducting a physical examination and utilising 

neuroimaging techniques such as computed tomography 

(CT) or MRI. Although these approaches have their 

benefits, they can be influenced by subjective 

interpretation and may take a significant amount of time, 

potentially resulting in delays in diagnosis and the 

initiation of therapy [4].  

        There has been increasing interest in using ML 

techniques to improve stroke detection in recent years. ML 

methods can evaluate extensive datasets and identify 

significant patterns and characteristics that assist in 

precise and timely diagnosis. Various studies have 

explored the use of ML algorithms for stroke 

identification, demonstrating promising results. 

Researchers have developed algorithms that use image 

processing and pattern recognition to automatically detect 

and categorise abnormalities related to stroke in brain 

imaging studies, such as CT or MRI. These algorithms 

have shown exceptional precision in differentiating 

between various stroke types and can help radiologists 

achieve more streamlined and accurate diagnoses [5].  

In addition, ML algorithms have been used to analyse 

diverse data sources beyond imaging, including ECGs and 

electronic health records (EHRs), with the aim of 

enhancing stroke detection. By examining ECG signals, 

researchers have developed algorithms to detect distinct 

patterns associated with atrial fibrillation, a common risk 

factor for stroke. The integration of ML with EHR data 

has shown potential in accurately predicting the likelihood 

of stroke, thereby facilitating timely treatments and 

preventive measures [6].  

While traditional approaches to stroke detection 

remain valuable, the integration of ML algorithms offers 

exciting opportunities to enhance accuracy, efficiency and 

accessibility in stroke diagnosis. Further investigation and 

advancements in this field may lead to the development of 

improved and reliable tools for identifying stroke, thereby 

enhancing patient outcomes and reducing the strain on 

healthcare systems [7]. 

The problems addressed in this research work are 

introduced as follows: 

 

• Failure to recognise stroke can lead to severe 

consequences.  

• Enhancing ML methods for detecting stroke 

occurrences, such as the proposed model using 

decision trees (DT) and random forest (RF).  

• Evaluating the performance of the proposed model’s 

classification metrics compared to three previous ML 

algorithms. 

 

 

 

B. Research objectives 

• Assess accuracy: Analyse and evaluate the precision 

of various ML methods in detecting stroke.  

• Analyse and contrast different methods for selecting 

features:   Examine and compare several feature 

selection methods used by ML algorithms for stroke 

identification. Evaluate the impact of feature selection 

on algorithm performance.  

• Determine the optimal algorithm: Identify the 

algorithm that provides the highest level of accuracy 

and efficiency for early stroke detection.  

• Evaluate algorithm performance: Assess the 

effectiveness of accuracy, recall and F1-score for the 

algorithms being compared, using various feature 

selection strategies.  

• Identify the most effective feature selection strategy: 

Determine which feature selection strategy offers the 

best outcomes in terms of accuracy, precision, recall 

and F1-score for each algorithm being compared. 

C. Research questions  

This section presents the research questions of this 

paper: 

• Among the compared ML algorithms using different 

feature selection strategies, which algorithm yields the 

best results in terms of accuracy, precision, recall and 

F1-score for detecting stroke?  

• Which feature selection strategy is most suitable for 

use with the comparative ML algorithms in detecting 

stroke?  

• Which model exhibits superior performance when 

comparing the proposed model with three related 

models? 

D. Contribution and expected outcomes 

The objective of this paper is to advance the field of 

stroke detection through a systematic assessment and 

comparison of the effectiveness of several ML methods. 

The anticipated results include a comprehensive 

understanding of the accuracy, precision, recall and F1-

score of various ML algorithms. Some ML algorithms are 

expected to demonstrate higher accuracy in stroke 

detection, potentially leading to more prompt and precise 

diagnoses. The paper will conduct a comparative analysis 

between the proposed model and three state-of-the-art 

models utilising different ML methods to determine which 

model offers superior performance.  

The findings of this study could assist researchers and 

clinicians in selecting the most appropriate ML algorithms 

for stroke detection. This may lead to improved patient 

outcomes, reduced diagnostic delays and enhanced 

efficiency in stroke management within the healthcare 

industry.  

 

E. Organisation of the paper 

        This paper is organised as follows: It begins with an 

introduction (Section 1) that presents an overview of the 

significance of stroke detection, the drawbacks of 

traditional methods and the potential of ML algorithms in 

enhancing diagnostic precision and efficiency. This section 

also outlines the research objectives. Section 2 follows 
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with a thorough literature review, covering relevant 

research on stroke detection methodologies, including both 

conventional approaches and ML-driven strategies. 

Section 3 details the methodology, including the dataset 

used, the ML methods selected for comparison, the 

features analysed and the criteria for assessment. Section 4 

presents the findings, comparing the efficacy of various 

ML algorithms in stroke detection. This comparison 

encompasses metrics such as accuracy, precision, recall, 

F1-score and efficiency. Section 5 examines and evaluates 

the outcomes, highlighting the advantages and potential 

limitations of the algorithms. Finally, Section 6 concludes 

by succinctly recapitulating the key findings, reaffirming 

the significance of the study and proposing suggestions for 

future research endeavours. 

2 Literature review 
Stroke detection is a critical area of medical research, 

where timely and accurate diagnosis significantly impacts 

patient outcomes. In the field of ML, numerous studies 

have explored its application in stroke identification using 

diverse patient data, including age, gender, blood pressure 

and heart condition.  

For instance, a study conducted by Shoily et al. [8] 

employed four distinct ML algorithms – naïve Bayes 

(NB), J48, k-nearest neighbours (KNN) and RF – to 

determine the type of stroke, whether prospective or 

existing, based on an individual’s physical state and 

medical records. The researchers collected a substantial 

amount of data from hospitals for their analysis. The 

classification results were promising, suggesting that real-

time deployment in medical settings is feasible. The study 

indicates that ML algorithms could significantly enhance 

disease understanding and act as valuable tools in 

healthcare. Performance analysis revealed that NB 

outperformed the other methods. Despite some issues with 

dataset symmetry, which did not noticeably affect the 

accuracy of the other algorithms, the NB algorithm did not 

achieve the expected outcomes. In response, Yang et al. 

[9] developed a stroke risk prediction model specifically 

tailored for hypertensive patients. This model leverages 

historical electronic medical records and ML techniques. 

Out of 250,788 individuals diagnosed with hypertension, 

a subset of 57,671 patients was examined, with 9,421 

experiencing a stroke within a 3-year follow-up period. 

The researchers used stratified sampling to account for sex 

ratio and age categories, creating a balanced sample of 

both positive and negative cases. Ultimately, 19,953 

samples were randomly divided into training and test sets, 

with a 70% and 30% split, respectively. Four ML 

algorithms – logistic regression (LR), support vector 

machine (SVM), RF and gradient boosted trees 

(XGBoost) – were used for modelling and their efficacy in 

predicting stroke risk was compared to traditional risk 

indicators. The tree-based integration approach 

demonstrated exceptional performance, achieving an area 

under the receiver operating characteristic curve of 

92.20%, surpassing the performance of the other three 

conventional ML techniques.  

Several ML models have been developed to predict 

the likelihood of a stroke occurring in the brain. The study 

by Tazin et al. [10] utilised a variety of physiological 

parameters and ML algorithms, including LR, DT 

classification, RF classification and voting classifier. 

These algorithms were used to train four separate models 

to generate reliable predictions. Among these, RF 

demonstrated the highest performance, achieving an 

accuracy rate of approximately 96%. The researchers 

employed the open-access Stroke Prediction dataset to 

develop their methodology. Their findings indicate that 

the RF approach outperforms other methods in predicting 

brain stroke based on cross-validation metrics.   Akter et 

al. [11] proposed a model aimed at accurately predicting 

brain stroke. They used a dataset specifically focused on 

brain stroke and employed RF, SVM and DT classifiers 

for both training and testing. To evaluate each classifier’s 

effectiveness, the study used various performance metrics, 

including accuracy, SEN, error rate, false-positive rate 

(FPR), false-negative rate, root mean square error and log 

loss. The dataset comprised observations from 5,110 

patients and included 12 features pertinent to brain stroke. 

The RF classifier demonstrated outstanding performance, 

capturing influential information effectively and 

achieving a significantly higher accuracy rate of 95.30% 

compared to the other classifiers.  

Extensive research has been conducted on the 

application of ML algorithms for stroke prediction. A 

multitude of laboratory tests have been associated with 

stroke, and developing a predictive model that can assess 

stroke likelihood based on laboratory test data could have 

critical implications for saving lives. The study by Alanazi 

et al. [12] aimed to use computational methodologies and 

ML techniques to forecast stroke occurrence based on 

laboratory test data. The researchers used datasets from 

the National Health and Nutrition Examination Survey 

and applied three distinct data selection approaches 

(without data resampling, data imputation and data 

resampling) to create predictive models. They evaluated 

the models using four ML classifiers (NB, Bayes Net, DT 

and RF) and six performance indicators (accuracy, SEN, 

specificity, positive predictive value, negative predictive 

value and area under the curve (AUC)). The results 

demonstrated that accurate and responsive ML models 

could be created to forecast stroke occurrence using 

laboratory test data. Notably, the data resampling 

approach outperformed the other two data selection 

techniques. When all attributes were used, the RF 

algorithm produced the most precise predictions, 

achieving an accuracy of up to 96% with the data 

resampling approach. The prediction model, constructed 

using laboratory test data, exhibited exceptional accuracy 

and user-friendliness. 

In the current era of rapid advancements in artificial 

intelligence and ML, clinical practitioners, medical 

specialists and decision-makers can leverage developed 

models to identify key characteristics or factors that 

increase the likelihood of stroke occurrence. Additionally, 

they can assess associated risk levels. The study conducted 

by Elias and Maria [13] aims to apply ML techniques to 

develop and evaluate several models for creating a reliable 



80    Informatica 48 (2024) 77–94                                                                                                               H. Abdel-Jaber et al.

  

framework for predicting long-term stroke risk. The 

study’s main contribution is the development of a stacking 

technique that demonstrates outstanding performance, 

achieving an AUC of 98.9%, with F-measure, precision 

and recall all at 97.4%, and an accuracy of 98%. These 

metrics – AUC, precision, recall, F-measure and accuracy 

– confirm the technique’s effectiveness. The stacking 

approach proves its efficacy in identifying individuals at 

high risk of experiencing a stroke over an extended period. 

The high AUC values highlight the model’s exceptional 

predictive capability and its ability to distinguish between 

categories accurately.  

Ahammad’s research [14] focused on an enhanced 

method for identifying risk variables and detecting stroke 

in clinical datasets by employing ML models. The study 

began with examining the dataset to identify discrepancies 

and reveal underlying patterns. Subsequently, several 

subsets of features were selected to identify and prioritise 

stroke risk factors for classification. Ten ML classification 

models –RF, XGB, DT, LightGBM, CatBoost, AdaBoost, 

SVM, multilayer perceptron (MLP), KNN and LR – were 

used to predict stroke occurrence using a train-test 

splitting strategy. The performance of these classifiers was 

evaluated using five metrics: accuracy, precision, F1-

score, recall and area under the ROC curve. The 

researchers compared the outcomes of these ten models, 

analysing both the full set of available features and the top 

seven feature subsets. They observed notable differences 

in classifier performance based on the feature selection 

used. Generally, gradient boosting and ensemble tree-

based classifiers demonstrated superior accuracy with the 

stroke dataset.  

An essential task for physicians is the methodical 

analysis of various attributes within EHRs to effectively 

manage these records. Instead of retaining all attributes, 

the data management team can selectively archive only 

those crucial for stroke prediction. The study by Dev et al. 

[15] systematically examines several characteristics found 

in EHRs to enhance stroke prediction accuracy. By using 

statistical methods and principal component analysis, they 

identify the key attributes critical for predicting stroke. 

Their research highlights that age, heart disease, average 

glucose level and hypertension are the primary 

determinants for stroke identification. Three ML 

techniques were applied to evaluate different feature sets 

and principal component configurations. The researchers 

found that the neural network method showed superior 

performance. Notably, they achieved promising results 

with only four features. However, they recognised that the 

lack of additional distinguishing features and the limited 

size of the dataset prevented the accuracy from exceeding 

77%.  

Stroke prediction is influenced by lifestyle 

factors such as smoking status and employment type. The 

study by Sharma et al. [16] examines the traits of 

individuals who are more prone to experience a stroke 

compared to others. The study utilised a dataset from a 

publicly accessible source and employed various 

classification algorithms to forecast the likelihood of a 

stroke occurring in the near future. The RF method 

achieved a high level of accuracy. Additionally, the study 

suggests preventive strategies such as quitting smoking, 

abstaining from drinking and addressing other 

contributing factors to reduce stroke risk. The results 

demonstrate the practicality of using historical data 

mining methods for stroke prediction. The study analysed 

the accuracy rates of five prominent classification 

algorithms: DT, RF, NB, MLP and JRip.  

Shobayo et al. [17] emphasised the importance of 

health-related data such as BMI and age in ML models for 

stroke detection. This study aimed to predict stroke 

occurrence by combining demographic and behavioural 

data with the RF algorithm. The experimental results 

showed that RF outperformed the DT and LR algorithms. 

Additionally, the research highlighted that age and body 

mass index (BMI) were the most significant factors in 

predicting stroke occurrence. 

Table 1 compares state-of-the-art stroke 

detection models based on the performance metrics of 

various ML algorithms, including KNN, DT, RF, NB, 

MLP and SVM. The evaluated metrics are accuracy, 

precision, recall and F1-score. 

Table 1 indicates that all studies used the same Kaggle 

stroke prediction dataset. This presents an opportunity to 

explore other relevant datasets or combine multiple 

datasets to improve the generalisability of the models. The 

studies did not provide a comprehensive analysis of the 

trade-offs between different performance metrics (e.g. 

accuracy, precision, recall, F1-score) and their practical 

implications in a clinical setting. Additionally, none of the 

studies reported any explicit feature selection methods 

used. Employing feature selection techniques could 

enhance the performance of ML models by identifying the 

most relevant features for stroke prediction. 
 

Table 1: A comparison between the state of art stroke 

detection models 

ML 

Algorithm 

Accuracy 

[18] [19] [20] 

KNN NA 87% 98.82% 

DT 99.46% 91% 96.90% 

RF 99.98% NA 99.87% 

NB NA 78% 74.77% 

MLP NA 79% 79.94% 

SVM NA NA 99.99% 

ML 

Algorithm 

Precision 

[25] [26] [27] 

KNN NA 77% 98.66% 

DT 99.00% 87% 96.63% 

RF 99.00% NA 99.85% 

NB NA 86% 74.26% 

MLP NA 71% 79.58% 

SVM NA NA 99.99% 

Recall 
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ML 

Algorithm 
[25] [26] [27] 

KNN NA 83% 98.97% 

DT 99% 90% 97.27% 

RF 99% NA 99.88% 

NB NA 77% 74.39% 

MLP NA 79% 80.05% 

SVM NA NA 99.99% 

ML 

Algorithm 

F1-score 

[25] [26] [27] 

KNN NA 89% 98.81% 

DT 99% 89% 96.86% 

RF 99% NA 99.86% 

NB NA 72% 74.32% 

MLP NA 78% 79.71% 

SVM NA NA 99.99% 

3 Methodology  
The dataset used in this study for training and evaluating 

ML algorithms for stroke detection was acquired from 

Kaggle [21], a well-known online platform for data science 

and ML. The dataset comprises 40,910 cases with a wide 

range of clinical and demographic characteristics. It 

includes ten features and one target variable (11 columns 

in total) and 40,910 instances (rows). The sex feature had 

three missing values, which were removed. The features 

are sex, age, hypertension, heart_disease, ever_married, 

work_type, residence_type, avg_glucose_level, BMI and 

smoking_status. The target variable is stroke. The dataset 

has been augmented, cleaned and balanced to ensure the 

classes are equally represented. 

This study utilised six ML methods to identify 

instances of stroke: KNN, DT, RF, NB, MLP and SVM. 

KNN is a nonparametric algorithm that classifies instances 

based on their proximity to nearby data points. It assigns a 

class label to a data point by determining the majority class 

among its k nearest neighbours. DT is a hierarchical model 

that segments the feature space by making a series of 

binary decisions, creating a tree-like structure to categorise 

instances based on feature thresholds. RF is an ensemble 

technique that improves accuracy and robustness by 

combining multiple DTs. NB is a probabilistic classifier 

that applies Bayes’ theorem, assuming feature 

independence, to compute the probability of a class based 

on feature values. MLP is a type of neural network with 

multiple layers, including hidden layers, trained using the 

backpropagation algorithm. It captures complex 

relationships between features and has been successful in 

various fields. SVM is a robust method that classifies data 

by finding an optimal hyperplane in a multidimensional 

feature space, using kernel functions to handle nonlinear 

classification. This study aims to evaluate the effectiveness 

of these ML algorithms in detecting stroke and to analyse 

their strengths and limitations in accurate stroke diagnosis.  

Four evaluation measures were used to compare the 

ML algorithms KNN, DT, RF, NB, MLP and SVM in 

detecting stroke. Accuracy, a commonly used metric, 

quantifies the overall correctness of the algorithm’s 

predictions by calculating the proportion of correctly 

classified cases out of the total number of instances. 

Precision measures the algorithm’s ability to correctly 

identify actual stroke cases among all the cases it predicts 

as positive. It is the ratio of true positive (TP) instances to 

the sum of TP and false positive (FP) cases. Recall, or SEN, 

assesses the algorithm’s ability to accurately identify all 

actual positive cases. It is calculated by dividing the 

number of TP cases by the sum of TP and false negative 

(FN) cases. The F1-score is a composite metric that 

combines precision and recall, providing a balanced 

evaluation of the algorithm’s performance. It is the 

harmonic mean of precision and recall, offering a 

comprehensive assessment by accounting for both FPs and 

FNs. These evaluation measures collectively offer a 

detailed comparison of the ML algorithms based on their 

accuracy, precision, recall and F1-score, reflecting their 

overall effectiveness in detecting stroke cases. 

A. Dataset description 

This study’s dataset for stroke prediction comprises 

approximately 40,910 records, each containing 11 

attributes: ten features and one target variable. The sex 

feature had three missing values, which were removed. All 

attributes are detailed in Table 2. 
 

Table 2: The attributes in the stroke dataset 
Attribute Description 

Age This attribute means a person’s age. It’s 

numerical data. 

Sex This attribute means a person’s gender. It’s 

categorical data (Male, Female). 

Hypertension This attribute means that this person is 

hypertensive or not. It’s binary data (0,1). 

Work_Type This attribute represents the person’s 
work type. It’s categorical data (private, self-

employed, other). 

Residence_Type This attribute represents the person’s 
living type. It’s categorical data (urban, 

rural). 

Heart_Disease This attribute means whether this 

person has a heart disease or not. It’s binary 
data (0,1). 

Avg_Glucose_Lev

el 

This attribute means what was the level 

of a person’s glucose condition. It’s 
numerical data. 

BMI This attribute means the body mass 

index of a person. It’s numerical data. 

Ever_Married This attribute represents a person’s 
married status. It’s Boolean data (true, false). 

Smoking_Status This attribute means a person’s smoking 

condition. It’s categorical data (never smoked, 

formerly smoked, smokes, unknown) 

Stroke This attribute means a person 

previously had a stroke or not. It’s numerical 

data. 

 

Table 3 presents the number of instances per class both 

before and after removing the missing values. 
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Table 3: The number of instances per class before and 

after deleting the missing values. 
Class Number of 

Instances before 

deleting the 

missing values 

Number of 

Instances after 

deleting the 

missing values 

0 (not stroke) 20450 20447 

1 (stroke) 20460 20460 

 

Tables 4–10 display the distribution of the following 

features: sex, hypertension, heart_disease, ever_married, 

work_type, residence_type and smoking_status. Due to 

the extensive range of values for age, avg_glucose_level 

and BMI, their distributions are not presented in tables. 
 

 

Table 4: The distribution of sex feature before and 

after deleting the missing values. 
Sex feature 

value 

Number of instances 

before deleting the 

missing values 

Number of instances 

after deleting the 

missing values 

0 (female) 18197 18197 

1 (male) 22710 22710 

 

Table 5: The distribution of hypertension feature 

before and after deleting the missing values. 
Hypertension 

feature value 

Number of 

instances before 

deleting the 

missing values 

Number of 

instances after 

deleting the 

missing values 

0 (patient has not 

ever had 

hypertension) 

32162 32159 

1 (patient has ever 

had hypertension) 

8748 8748 

 

Table 6: The distribution of heart_disease feature 

before and after deleting the missing values. 

 
Table 7: The distribution of ever_married feature 

before and after deleting the missing values. 
ever_married feature 

value Number of 

instances before 

deleting the 

missing values 

Number of 

instances after 

deleting the 

missing values 

0 (patient not married) 7309 7309 

1 (patient married) 33601 33598 

Table 8: The distribution of work_type feature before 

and after deleting the missing values. 

work_type feature 

value 

Number of 

instances before 

deleting the 

missing values 

Number of 

instances after 

deleting the 

missing values 

0 (Never_worked) 85 85 

1 (children) 431 431 

2 (Govt_job) 5588 5588 

3 (Self-employed) 9236 9236 

4 (Private) 25570 25567 

 

 

Table 9: The distribution of Residence_type feature 

before and after deleting the missing values. 

Residence_type 

feature value 

Number of 

instances before 

deleting the 

missing values 

Number of 

instances after 

deleting the 

missing values 

0 (Rural) 19846 19846 

1 (Urban) 21064 21061 

 

Table 10: The distribution of smoking_status feature 

before and after deleting the missing values. 

smoking_status 

feature value 

Number of 

instances before 

deleting the 

missing values 

Number of 

instances after 

deleting the 

missing values 

0 (never smoked) 20921 20921 

1 (smokes) 19989 19986 

 

B. Classification algorithms 

In this section, we discuss six ML algorithms used for 

stroke prediction: KNN, DT, RF, NB, MLP and SVM. 

KNN is a popular nonparametric ML algorithm used 

for classification and regression tasks. It operates on the 

principle that data points with similar attributes are likely 

to belong to the same class or have similar values. To 

make a prediction, KNN identifies the K nearest data 

points in the feature space relative to the given data point. 

Although Euclidean distance is commonly used for this 

purpose, other distance metrics can also be applied. For 

classification, KNN assigns the class label that is most 

frequent among the K nearest neighbours. In regression 

tasks, it predicts the value by averaging or weighting the 

target values of the K closest neighbours. KNN is 

straightforward and does not assume any specific 

distribution of the data, allowing it to handle complex 

decision boundaries. However, calculating distances for 

each data point can be computationally expensive, 

particularly with large datasets. Proper selection of K and 

the distance metric is crucial for accurate predictions. 

Additionally, data preprocessing, such as normalisation or 

Heart_disease feature 

value 

Number of 

instances 

before deleting 

the missing 

values 

Number of 

instances after 

deleting the 

missing values 

0 (patient has not ever 

had heart_disease) 

35685 35682 

1 (patient has ever had 

heart_disease) 

5225 5225 
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scaling, may be necessary to ensure reliable feature 

comparisons [22]. 

DT is a widely used supervised ML technique for both 

classification and regression tasks. It constructs a 

hierarchical model of decisions and outcomes based on 

input features. The algorithm repeatedly splits the data by 

feature values to create homogeneous subsets in each 

branch of the tree. At each node, it selects the most 

informative feature based on metrics such as information 

gain or Gini impurity, which improves class separation or 

reduces subgroup impurity. To make predictions, the 

algorithm traverses the tree from the root to a leaf node 

based on the incoming data features. The final 

classification label or regression value is determined by 

the leaf node. DTs are transparent and easy to interpret due 

to their hierarchical structure. They effectively capture 

complex nonlinear relationships in both numerical and 

categorical data and are robust against outliers and 

missing values. However, deep and complex DTs are 

prone to overfitting. This can be mitigated by pruning the 

tree and limiting the depth or number of samples in 

terminal nodes. The simplicity, interpretability and 

versatility of DTs make them valuable in various fields, 

including healthcare, finance and customer relationship 

management [23]. 

RF is a popular ensemble learning method used for 

classification and regression tasks. It works by combining 

the predictions of multiple DTs. RF trains these DTs using 

random subsets of the training data and input features. 

This randomness helps to reduce overfitting by 

introducing variability among the trees. During training, 

RF uses bootstrap aggregating (bagging) to randomly 

select and replace segments of the training data, creating 

slightly different datasets for each tree. Additionally, at 

each split within the trees, a random subset of features is 

considered, further enhancing variation. For classification 

tasks, RF employs majority voting to determine the chosen 

class based on the most votes from all trees. For regression 

tasks, RF calculates the average or weighted average of all 

tree predictions. RF offers several benefits, such as 

preventing overfitting, effectively managing high-

dimensional data and handling missing values and 

outliers. It also provides estimates of feature importance, 

indicating the impact of each feature on predictions. Due 

to its precision and adaptability, RF is well-suited for 

complex datasets and is widely used in banking, 

healthcare and image classification [24]. 

NB is a simple and effective probabilistic classifier 

based on Bayes’ theorem. This model assumes feature 

independence, meaning the presence or absence of one 

feature does not affect the presence or absence of another, 

given the class. NB calculates the probability of a data 

point belonging to a particular class based on the feature 

probabilities. During training, it estimates prior and 

likelihood probabilities for each class and feature, creating 

a probabilistic model from these values. The model then 

uses Bayes’ theorem to compute the posterior probability 

for each class and makes predictions based on the 

attributes of the data point. The class with the highest 

posterior probability is selected as the prediction. NB 

offers several advantages, including efficient processing 

of high-dimensional data and effective performance with 

small training datasets, with minimal overfitting. It excels 

when the independence assumption holds. However, NB 

may struggle with highly correlated features or rare 

characteristics due to its independence assumption. It also 

faces challenges with tasks requiring feature interactions 

or order. NB is widely used for text classification, 

especially for spam detection and sentiment analysis, due 

to its speed and simplicity, although performance can vary 

depending on the dataset [25]. 

ML is a type of neural network used for classification 

tasks in ML. It consists of multiple layers of 

interconnected neurons, forming a feedforward network 

with input, hidden and output layers. Each neuron in these 

layers applies an activation function to its inputs and 

outputs through weighted connections. During training, 

the MLP algorithm adjusts the weights of these 

connections to minimise the difference between predicted 

outputs and true class labels, using optimisation 

techniques such as gradient descent. The hidden layers of 

the MLP allow it to model complex relationships and 

perform extensive data analysis. Activation functions like 

ReLU or sigmoid introduce nonlinearity, enabling the 

network to handle nonlinear decision boundaries. The 

MLP processes input data through the network and 

predicts class labels based on probability distributions, 

selecting the most likely class. MLPs offer several 

advantages, including efficient handling of 

multidimensional data and the ability to learn complex 

patterns. Once trained, MLPs can generalise well to new 

data. They are capable of modelling both linear and 

nonlinear relationships. However, MLPs are prone to 

overfitting, especially with large networks. Techniques 

like dropout and weight decay can mitigate overfitting. 

Tuning hyperparameters, such as the number of hidden 

layers, neurons per layer and learning rate, is crucial for 

optimal performance. MLPs are versatile and widely used 

in image recognition, natural language processing and 

medical diagnosis [26]. 

SVM is a powerful supervised ML algorithm often 

used for classification tasks, particularly with complex 

and well-defined datasets. It works by transforming input 

data into a higher-dimensional space and then finding a 

hyperplane that best separates the data points into different 

classes. The goal is to choose a hyperplane that maximises 

the margin, which is the distance between the hyperplane 

and the nearest data points from each class. These nearest 

points, known as support vectors, define the decision 

boundary of the SVM. SVMs use kernel functions to 

handle both linearly and nonlinearly separable data. By 

applying a kernel function, data can be transformed into a 

higher-dimensional space where a linear hyperplane can 

be used for separation. Common kernels include linear, 

polynomial, radial basis function and sigmoid. During 

training, SVM uses convex optimisation to determine the 

hyperplane parameters, aiming to minimise classification 

errors and maximise the margin. Once trained, the SVM 

model can classify new data points based on their position 

relative to the hyperplane. The effectiveness of SVM is 

notable in high-dimensional spaces and small-sample 

scenarios, as well as its ability to generalise well to new 
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data and resist overfitting. However, SVM can be 

computationally intensive with large datasets, and the 

choice of hyperparameters, such as the kernel function and 

regularisation parameter, can significantly impact 

performance. SVM is versatile and used in various 

applications, including image classification, text 

categorisation and bioinformatics, where precise margin 

separation and a robust decision boundary are 

advantageous [27]. 

 

C. Feature selection methods 

Different feature selection methods are employed in 

this paper as follows: 

• Taking all the features of the dataset. 

• SelectKBest is used, which means selecting the K 

best features that have the largest scores for the 

applied score function, where in this comparison, chi-

squared function is used and the best seven features 

have been chosen (K = 7). 

• SelectPercentile is used, which means that the user 

identified the percentage of features that have the 

largest scoring for the applied score function. In this 

comparison, chi-squared function is used as the score 

function, and 70% of the largest scoring features are 

chosen.  

• SelectFdr is used, where Fdr stands for false 

discovery rate. The features based on SelectFdr are 

chosen for the pvalues of the approximated false 

discovery rate. alpha value is set to 0.05. The score 

function used is chi-squared. 

• SelectFpr is used, where Fpr stands for FP rate. The 

features based on SelectFpr are chosen when pvalues 

is smaller than the given alpha depending on the FP 

rate test, where alpha value is set to 0.05. The score 

function used is chi-squared. 

• SelectFwe is used, where Fwe stands for family wise 

error. The features based on SelectFwe are chosen for 

the corresponding to the rate of family wire error, 

where alpha value is set to 0.05. The score function 

used is chi-squared. 

In this paper, the following univariate feature 

selection methods are used: SelectKBest, SelectPercentile, 

false-positive rate (SelectFpr), false-discovery rate 

(SelectFdr) and family-wise error (SelectFwe). Univariate 

feature selection methods select features based on 

univariate statistical tests that assess the relationship 

between independent and dependent variables. The 

independent variables with the strongest relationships to 

the dependent variable are selected. These methods are 

used to identify the most relevant features for the target 

variable.  

• SelectKBest: Chooses features based on the K 

highest scores, meaning the selected features have 

the strongest relationships with the target variable. 

• SelectPercentile: Selects features based on the 

highest scoring percentile, with the chosen features 

being those most related to the target variable. 

• SelectFpr: Chooses features based on the FP rate 

test. 

• SelectFdr: Chooses features using the approximated 

false-discovery rate. 

• SelectFwe: Chooses features based on the family-

wise error rate. 

In terms of model performance, univariate feature 

selection methods can either enhance or reduce 

effectiveness. These methods can improve model 

performance by removing features with weak 

relationships to the target variable. However, they may 

also decrease performance if they eliminate features with 

strong relationships to the target variable. 

Using all features of the dataset can decrease model 

performance if it includes features that are unrelated to the 

target variable. Conversely, if all features are strongly 

related to the target variable, using all of them can enhance 

model performance. 

Univariate feature selection methods reduce dataset 

dimensionality by selecting the most relevant features 

[28]. This improves computational efficiency, simplifies 

models and reduces overfitting [28]. Using all features 

results in higher computational complexity compared to 

univariate feature selection methods, as all features are 

involved in predicting stroke occurrence. 

Univariate feature selection methods can use P-values 

to select features. P-values are related to feature selection 

in statistical hypothesis testing, particularly in statistics 

and ML [29]. They help determine whether to select or 

deselect features from the dataset. 

The statistical hypotheses for all features and the 

target variable are tested as follows. 

 

For sex feature and stroke variable: 

Null hypothesis: No significant relationship between sex 

and stroke. 

Alternative hypothesis: A significant relationship between 

sex and stroke. 

 

For age feature and stroke variable: 

Null hypothesis: No significant relationship between age 

and stroke. 

Alternative hypothesis: A significant relationship between 

age and stroke. 

 

For hypertension feature and stroke variable: 

Null hypothesis: No significant relationship between 

hypertension and stroke. 

Alternative hypothesis: A significant relationship between 

hypertension and stroke. 

 

For heart_disease feature and stroke variable: 

Null hypothesis: No significant relationship between 

heart_disease and stroke. 

Alternative hypothesis: A significant relationship between 

heart_disease and stroke. 

 

For ever_married feature and stroke variable: 

Null hypothesis: No significant relationship between 

ever_married and stroke. 
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Alternative hypothesis: A significant relationship between 

ever_married and stroke.  

 

For work_type feature and stroke variable: 

Null hypothesis: No significant relationship between 

work_type and stroke. 

Alternative hypothesis: A significant relationship between 

work_type and stroke.  

 

For residence_type feature and stroke variable: 

Null hypothesis: No significant relationship between 

residence_type and stroke. 

Alternative hypothesis: A significant relationship between 

residence_type and stroke.  

 

For ave_glucose_level feature and stroke variable: 

Null hypothesis: No significant relationship between 

ave_glucose_level and stroke. 

Alternative hypothesis: A significant relationship between 

ave_glucose_level and stroke.  

 

For BMI feature and stroke variable: 

Null hypothesis: No significant relationship between BMI 

and stroke. 

Alternative hypothesis: A significant relationship between 

BMI and stroke.  

 

For smoking_status feature and stroke variable: 

Null hypothesis: No significant relationship between 

smoking_status and stroke. 

Alternative hypothesis: A significant relationship between 

smoking_status and stroke.  

 

The features with P-values less than the given level of 

significance (e.g., 0.05) are considered to have significant 

relationships with the target variable. Consequently, the 

null hypotheses are rejected for these features. 

Conversely, features with P-values greater than the 

significance level are considered to have no significant 

relationship with the target variable, leading to the 

acceptance of the null hypotheses. 

Figure 1 shows the P-values for all features, indicating 

that BMI, work_type and residence_type have the highest 

P-values. These P-values are greater than those for the 

remaining features. In this figure, the P-values of all 

features, except for BMI, are less than the given level of 

significance. Consequently, the null hypotheses for all 

features except BMI are rejected. The null hypothesis for 

the BMI feature is accepted because its P-value exceeds 

the significance level. Therefore, the results indicate that 

all features except BMI have significant relationships with 

stroke. 

Figures 2–6 show the P-values for the selected 

features using various univariate feature selection 

methods. The features with the smallest P-values are 

considered the most relevant. Therefore, the features 

selected using univariate feature selection methods are 

those with the smallest P-values. The features with the 

highest P-values – BMI, work_type and residence_type – 

were deleted. This is because work_type and 

residence_type features have less significant relationships 

with stroke, and the BMI feature has no significant 

relationship with stroke. The remaining features, which 

have smaller P-values, are retained. These selected 

features are sex, age, hypertension, heart_disease, 

ever_married, ave_glucose_level and smoking_status. In 

the SelectKBest method, the K parameter is set to 7, 

selecting seven features. Similarly, in the SelectPercentile 

method, the percentile parameter is set to 70, also leading 

to the selection of seven features.  

 

 

 
Figure 1: P-Values vs. all features 

 

 
Figure 2: P-Values vs. selected features using 

SelectKBest method 

 
 

Figure 3: P-Values vs. selected features using 

SelectPercentile method 
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Figure 4: P-Values vs. selected features using 

SelectFpr method 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D. The proposed models using different machine 

learning algorithms 

 

This section presents the proposed models based on 

the following ML algorithms: KNN, DT, RF, NB, MLP 

and SVM, used to detect the occurrence of stroke using 

the stroke dataset mentioned earlier. The proposed models 

are illustrated in Figure 7: 

 

 

 

 

 

 

 

Figure 7: The organization of the proposed model 

 

The pseudocode for the proposed model is shown in 

Figure 8. This figure provides a detailed view of the 

model. First, the dataset is obtained from the Kaggle 

website. Data preprocessing involves deleting missing 

values and storing the feature data in X and the target 

values in y. The features are then scaled using 

MinMaxScaler. You can either keep all features or apply 

univariate feature selection methods to select the most 

relevant features for the target variable. The dataset is then 

split into training and testing sets using the train-test split 

function, with 80% allocated to the training set and 20% 

to the testing set. The proposed model, based on different 

ML algorithms, is trained and tested. Finally, the 

classification results – accuracy, precision, recall and F1-

score – are obtained. 

 

 
Figure 8: The pseudocode of the proposed model 

4 Results and discussion 
This section is organised into the following subsections. 

Subsection A presents a comparison of different ML 

algorithms based on various classification metrics. 

Subsection B compares the proposed model with state-of-

the-art models using different ML algorithms and 

evaluates their performance with various classification 

metrics. Subsection C introduces statistical results for all 

features and the target variable in the stroke dataset. 

Finally, Subsection D discusses the trade-offs between 

precision and recall for the different ML algorithms. 

A. Comparison of different machine learning 

algorithms 

This subsection compares various classification 

algorithms in ML to determine which algorithm yields the 

best classification results. The algorithms compared are 

KNN, DT, RF, NB, MLP and SVM. The classification 

measures used for comparison are accuracy, precision, 

recall and F1-score. The dataset is divided into two 

subsets: the training set, which comprises 80% of the 

dataset, and the test subset, which constitutes 20% of the 

dataset. 

For the KNN algorithm, the parameter K, representing 

the number of nearest neighbours, is set to 5. Additionally, 

the weight function applied in KNN is uniform, meaning 

that all points in each neighbourhood have equal weights. 

The parameter p for the Minkowski metric is set to 2, 

which specifies the use of Euclidean distance. The metric 

 
Acquire 

Stroke 

Dataset 

 
Scaling of 

features using 

MinMax 

Scaler 
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Feature 

selection 

method 

 

Figure 5: P-Values vs. selected features using 

SelectFdr method 

  

 
Figure 6: P-Values vs. selected features using 

SelectFwe method 
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parameter is set to Minkowski, implying that the 

Euclidean distance is used when p is set to 2. 

In DT and RF, the quality of a split is measured using 

the Gini impurity function. The criterion parameter is set 

to ‘gini’, which denotes the use of Gini impurity. To split  

Figure 9: Accuracy results of the compared machine 

learning algorithms based on different feature selection 

methods. 

 

an internal node, a minimum of two samples is required. 

The tree’s depth is expanded until all leaves are pure or 

contain fewer samples than the minimum required for a 

split. The min_weight_fraction_leaf parameter is set to 

0.0, representing the minimum weight fraction of the total 

sample weights needed at the leaf node. The max_features 

parameter is set to the number of features in DT, which 

determines how many features are considered when 

searching for the best split. In DT, the ‘best’ split is 

applied at each node, with a minimum of one sample 

required for leaf nodes.  In RF, the forest contains 100 

trees. The max_features parameter, which indicates the 

number of features to consider when searching for the best 

split, is set to the square root of the total number of 

features. Each tree in the RF applies the ‘best’ split.  

The Gaussian NB algorithm is used to perform the 

classification task. The prior parameter represents the 

prior probabilities of the classes. If prior probabilities are 

provided, their values are not adjusted based on the data. 

The var_smoothing parameter is set to 1e-9. This 

parameter represents a portion of the largest variance 

among all features, which is added to the variances to 

ensure computational stability. 

In MLP, the hidden_layer_sizes parameter is set to 

(100,), indicating that there is one hidden layer with 100 

neurons. The activation function used for the hidden layer 

is the logistic sigmoid function. The solver parameter, 

which is used for weight optimisation, is set to stochastic 

gradient descent (sgd). The learning_rate_init parameter 

represents the initial learning rate, which is set to 0.001. 

The learning_rate parameter is set to ‘constant’, meaning 

the learning rate remains constant and is defined by the 

learning_rate_init value. The maximum number of 

iterations is set to 200, and the samples are shuffled at each 

iteration. 

In SVM, the regularisation parameter is set to 1.0. The  

Figure 10: Precision results of the compared machine 

learning algorithms based on different feature selection  

methods. 

 

kernel function used is Linear. Additionally, the 

probability parameter is set to True. 

The classification measure results of the compared ML 

algorithms using different feature selection methods are 

shown in Figures 9–12. Figure 9 displays the accuracy 

results. Figures 10 and 11 present the precision and recall 

results, respectively. Figure 12 illustrates the F1-score 

results. 
 

Figure 11: Recall results of the compared machine learning 

algorithms based on different feature selection methods. 
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Figure 12: F1-Score results of the compared machine 

learning algorithms based on different feature selection 

methods. 

 

Figures 9, 11 and 12 show that DT delivers the most 

satisfactory results in terms of accuracy, recall and F1-

score, regardless of the feature selection method used. The 

exception is when all features are used, where both DT and 

RF provide the same recall result. This is because DT 

generally has the fewest FN cases – instances where the 

actual class is positive but the predicted class is negative 

– except when using all features, where DT and RF have 

the same number of positive cases predicted as negative. 

RF outperforms KNN, NB, MLP and SVM in accuracy, 

recall and F1-score across all feature selection methods. 

This is due to RF having fewer actual positive cases 

predicted negatively compared to KNN, NB, MLP and 

SVM. KNN performs better than NB, MLP and SVM in 

accuracy, recall and F1-score for all feature selection 

methods because KNN has fewer misclassified positive 

cases. MLP surpasses NB and SVM in accuracy, recall 

and F1-score because MLP incorrectly predicts fewer 

actual positive cases compared to NB and SVM. NB 

achieves better accuracy, recall and F1-score than SVM 

due to having fewer incorrectly predicted positive cases.  

In Figure 10, when using all features, DT shows the 

best precision compared to the other algorithms. RF 

follows with the second-best precision, then KNN, SVM, 

NB and MLP. DT’s high precision results from having the 

fewest actual negative cases incorrectly predicted as 

positive. RF has the second-fewest such cases. KNN’s 

precision is better than NB and SVM because it has more 

TPs. Additionally, SVM’s number of actual negative cases 

incorrectly predicted as positive is lower than NB or MLP, 

with NB having fewer such cases compared to MLP.  

When using the SelectKBest feature selection method, 

the ordering of algorithms based on precision is similar to 

that with the all-features method, except for the third and 

fourth positions. In this case, SVM ranks third and KNN 

ranks fourth. These results are due to the number of FP 

cases: DT has the fewest FP cases, followed by RF and 

then SVM. KNN achieves better precision than NB and 

MLP with the SelectKBest method because KNN has 

more TPs compared to NB and MLP. Additionally, NB 

has fewer FP cases than MLP.  

In the remaining selection methods – SelectPercentile, 

SelectFdr, SelectFpr and SelectFwe – the ordering of 

algorithms based on precision remains consistent with the 

SelectKBest method, except for the fourth and fifth 

positions. In these cases, NB ranks fourth and KNN ranks 

fifth. These results are attributed to the number of FP 

cases: DT has the fewest FP cases, followed by RF, SVM 

and then NB. KNN outperforms MLP in precision across 

SelectPercentile, SelectFwe, SelectFpr and SelectFdr 

methods because KNN has more TPs than MLP.  

 The best results for accuracy, precision, recall and F1-

score are achieved by DT, RF and KNN when using the 

all-features selection method. For NB and SVM, the best 

results in these metrics are obtained with the SelectFpr 

method. 

For MLP, the highest accuracy and precision are 

achieved with the SelectFpr method, while the best recall 

and F1-score are achieved with the SelectPercentile 

method. 

B. Comparison between the proposed model and state-

of-the-art models 

This subsection provides a comparison between the 

proposed model and state-of-the-art models across various 

machine learning algorithms, evaluated using different 

classification metrics. 
 

Table 11 compares the proposed model with 

state-of-the-art models across various ML algorithms, 

including KNN, DT, RF, NB, MLP and SVM, using 

metrics such as accuracy, precision, recall and F1-score. 

For accuracy, the proposed model achieves 100% 

with the DT algorithm. In comparison, references [18] and 

[20] report accuracies of 99.46% and 96.90%, 

respectively, while reference [19] reports 91%. This 

indicates that the proposed model provides slightly higher 

accuracy than the referenced models. 

In terms of precision, the proposed model also 

achieves 100% with the DT algorithm. Models in [18] and 

[20] have precision scores of 99% and 96.63%, 

respectively, with [20] having a lower precision of 87%. 

Thus, the proposed model with DT offers higher precision 

than the compared models. 

For recall, the proposed model achieves 100% 

with the DT algorithm. The models in [18], [19] and [20] 

have recall scores of 99%, 90% and 97.27%, respectively. 

The proposed model with DT and RF outperforms all three 

compared models, demonstrating superior ability to 

identify positive instances. 

Finally, the F1-score, which balances precision and 

recall, is 100% for the proposed model using DT. The F1-

scores for models in [18], [19] and [20] are 99%, 89% and 

96.86%, respectively. Once again, the proposed model 

using DT shows a higher F1-score compared to the other 

models.  
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Table 11 shows that models based on KNN, NB and 

MLP from references [19] and [20] achieve better 

accuracy than the proposed model, with the KNN model 

in [19] showing slightly superior results. Additionally, RF 

models in [18] and [20] exhibit marginally better accuracy 

than the proposed model.  

The SVM model in [20] achieves higher accuracy 

than the proposed model, likely due to its optimised 

approach. 

Overall, based on the metrics provided in the 

comparison table, the proposed model demonstrates 

superior performance in accuracy, precision, recall and 

F1-score with the DT algorithm compared to the models 

in [18], [19] and [20]. These results indicate that the 

proposed model offers strong classification capabilities 

and performs favourably against the referenced models. 

The best classification metric results for the proposed 

model are based on the ML algorithms used in this 

comparison.  
 

Table 11: A comparison between the proposed 

model and the state of art models. 

 

ML 

Algorithm 

Accuracy 

[18] [19] [20] Proposed Model 

KNN NA 87% 98.82% 86.81% 

DT 99.46% 91% 96.90% 100% 

RF 99.98% NA 99.87% 99.82% 

NB NA 78% 74.77% 68.06% 

MLP NA 79% 79.94% 68.78% 

SVM NA NA 99.99% 65.87% 

ML 

Algorithm 

Precision 

[18] [19] [20] Proposed Model 

KNN NA 77% 98.66% 81.14% 

DT 99.00% 87% 96.63% 100% 

RF 99.00% NA 99.85% 99.66% 

NB NA 86% 74.26% 74.74% 

MLP NA 71% 79.58% 73.91% 

SVM NA NA 99.99% 76.25% 

ML 

Algorithm 

Recall 

[18] [19] [20] Proposed Model 

KNN NA 83% 98.97% 96.11% 

DT 99% 90% 97.27% 100% 

RF 99% NA 99.88% 100% 

NB NA 77% 74.39% 55.79% 

MLP NA 79% 80.05% 61.15% 

SVM NA NA 99.99% 46.33% 

ML 

Algorithm 

F1-score 

[18] [19] [20] Proposed Model 

KNN NA 89% 98.81% 87.99% 

DT 99% 89% 96.86% 100% 

RF 99% NA 99.86% 99.83% 

NB NA 72% 74.32% 63.89% 

MLP NA 78% 79.71% 66.10% 

SVM NA NA 99.99% 57.90% 

C. Statistical results of all features and the target 

variable in stroke dataset 

This subsection presents the statistical results for all 

features and the target variable. The mean, standard 

deviation and 95% confidence intervals are calculated for 

each feature and the target variable. Table 12 displays 

these values for all features and the target variable. 

For every feature and the target variable, the true 

population means fall within the lower and upper limits of 

their 95% confidence intervals. This indicates a 95% 

chance that the confidence interval includes the true 

population mean for each feature and the target variable. 

The mean values for the features sex, hypertension, 

heart_disease, ever_married, residence_type, 

smoking_status and stroke are between 0 and 1, as these 

features and the target variable are binary. These features, 

along with the target variable (except for work_type), have 

lower standard deviations, all less than 1, indicating small 

data dispersion. In contrast, the mean values for age, 

work_type, avg_glucose_level and BMI are greater than 1 

because these features are not binary. For example, the 

work_type feature has five distinct values [0–4], while 

age, avg_glucose_level and BMI have a range of different 

values. The standard deviations for age, 

avg_glucose_level and BMI are higher than those for the 

other features and the target variable, reflecting greater 

data dispersion for these features. Additionally, the lower 

and upper limits of the 95% confidence intervals for all 

features and the target variable are close to their respective 

means, indicating that the mean values are estimated 

accurately. 

 

Table 12: Means, standard deviations and the 95% 

confidence intervals for all features and the target 

variable. 

 

Feature/Target Mean 
Standard 

Deviation 

Lower 

Limit 

Upper 

limit 

sex 0.56 0.50 0.55 0.56 

age 51.33 21.62 51.12 51.54 

hypertension 0.21 0.41 0.21 0.22 

heart_disease 0.13 0.33 0.12 0.13 

ever_married 0.82 0.38 0.82 0.83 

work_type 3.46 0.78 3.45 3.47 

Residence_type 0.51 0.50 0.51 0.52 

avg_glucose_level 122.08 57.56 121.52 122.64 

bmi 30.41 6.84 30.34 30.47 

smoking_status 0.49 0.50 0.48 0.49 

stroke 0.50 0.50 0.50 0.51 

D. Trade-offs between precision and recall results 

 

The trade-offs between precision and recall for 

different ML algorithms are discussed in this subsection. 

Figures 13-18 illustrate these trade-offs. Specifically, 
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Figure 13 shows the precision versus recall results for 

KNN, while Figures 14 and 15 depict the precision versus 

recall results for DT and RF, respectively. Figures 16, 17 

and 18 present these results for NB, MLP and SVM, 

respectively. 

Recall focuses on minimising the number of false 

negatives (FN), while precision aims to reduce the number 

of false positives (FP). When recall is higher than 

precision, it indicates that the number of FN cases is less 

than the number of FP cases. Conversely, when precision 

is higher than recall, the number of FP cases is less than 

the number of FN cases. To improve recall, the number of 

FN cases needs to be reduced, whereas precision improves 

with a reduction in FP cases. 

Figure 13 demonstrates the trade-off between 

precision and recall for KNN. As recall increases, 

precision decreases, and vice versa.  

Figure 14 shows that precision and recall for DT are 

similar. In Figure 15, it is observed that precision slightly 

decreases as recall increases for RF. Figures 16, 17 and 18 

reveal that for NB, MLP and SVM, when precision 

decreases, recall increases, and vice versa. 

As noted earlier, precision aims to minimise FP cases. 

For instance, if a patient without a stroke is predicted to 

have one, the number of FP cases increases, decreasing 

precision, though this does not affect the patient. On the 

other hand, if a patient with a stroke is predicted not to 

have one, FN cases increase, reducing recall. This can 

endanger the patient’s life by delaying necessary 

treatment. Therefore, increasing recall by reducing FN 

cases is more critical than improving precision by 

decreasing FP cases. 

 
Figure 13: Precision vs. recall results for KNN. 

 

Figure 14: Precision vs. recall results for DT. 

 
Figure 15: Precision vs. recall results for RF. 

 

 
Figure 16: Precision vs. recall results for NB. 

 

 
Figure 17: Precision vs. recall results for MLP 

 

 
Figure 18: Precision vs. recall results for SVM. 
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5   Conclusion 
Prompt identification of a stroke is crucial, as any 

delay in detection can endanger patients’ lives. This paper 

proposes a model based on various machine learning 

classification algorithms to detect stroke or nonstroke at 

an early stage. The model uses KNN, DT, RF, NB, MLP 

and SVM. Different feature selection methods are applied, 

including all features, SelectKBest, SelectPercentile, 

SelectFdr, SelectFpr and SelectFwe. The algorithms are 

compared using classification measures to determine 

which offers the best results. The measures used are 

accuracy, precision, recall and F1-score. The results of the 

comparison are summarised as follows: 

• DT outperforms all other algorithms in terms of 

accuracy, recall and F1-score, regardless of the 

feature selection method used. The only exception is 

when all features are selected, where DT and RF have 

the same recall result. RF consistently outperforms 

KNN, NB, MLP and SVM in accuracy, recall and F1-

score across all feature selection methods. KNN 

provides the third-best results for accuracy, recall and 

F1-score with any feature selection method. MLP 

delivers the fourth-best results, while NB and SVM 

rank fifth and sixth, respectively. 

• When using all features, DT achieves the highest 

precision. RF shows the second-best precision. KNN, 

SVM, NB and MLP follow in the third, fourth, fifth 

and sixth positions, respectively. 

• With the SelectKBest feature selection method, the 

algorithms rank for precision as follows: DT, RF, 

SVM, KNN, NB and MLP. 

• For the SelectPercentile, SelectFdr, SelectFpr and 

SelectFwe feature selection methods, the ranking of 

algorithms by precision is DT, RF, SVM, NB, KNN 

and MLP. 

• The best results for accuracy, precision, recall and F1-

score are achieved by DT, RF and KNN using all 

features. 

• NB and SVM achieve the best results for accuracy, 

precision, recall and F1-Score with the SelectFpr 

feature selection method. 

• The SelectFpr feature selection method also provides 

the best accuracy and precision results for MLP, while 

the best recall and F1-score for MLP are obtained 

using the SelectPercentile feature selection method. 

A comparison between the proposed model and 

relevant works in terms of performance metrics for 

different ML algorithms revealed that the DT-based 

model achieved better classification results overall. 

Additionally, the RF-based model outperformed the 

relevant works in terms of recall. 

The results of the mean, standard deviation and 95% 

confidence interval for all features and the target variable 

were calculated. The standard deviations for sex, 

hypertension, heart_disease, ever_married, 

residence_type, smoking_status, work_type and stroke are 

small, indicating that the dispersion of these features and 

the target variable from their means is minimal. The lower 

and upper limits of the 95% confidence intervals for all 

features and the target variable are close to their means, 

suggesting accurate mean results. 

Future work could involve applying additional ML 

algorithms with different feature selection methods to the 

stroke datasets to achieve improved classification results. 

Further suggestions include applying the developed model 

based on various ML algorithms to different datasets to 

determine which algorithm provides better classification 

results. Additionally, exploring more feature selection 

methods, such as Recursive Feature Elimination and 

Sequential Feature Selection, could help identify which 

methods offer the best classification performance. 

It is suggested to collaborate with clinical institutions 

to apply the developed model for detecting whether a 

patient has had a stroke. Implementing the model on 

various stroke datasets in clinical settings can validate its 

performance in real-world environments. 

Additionally, integrating the ML-based model with 

clinical decision support systems (CDSSs) could be 

beneficial. CDSSs can analyse stroke data, providing 

healthcare professionals with predictions and 

recommendations. Combining the ML model with CDSSs 

would assist healthcare providers in making informed 

decisions and improving patient treatment, helping to 

accurately classify whether a patient has had a stroke. 
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