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This study provides a detailed study of a Convolutional Neural Network (CNN) model optimized for facial 

expression recognition with Fuzzy logic using Fuzzy2DPooling and Fuzzy Neural Networks (FNN), and 

discusses data augmentation in model optimization. It highlights important roles. performance. First, the 

effectiveness of the models in classifying emotions from FER2013, RAB-DB, and CK+ datasets was 

evaluated by a 5-fold cross-validation method, which showed that the accuracy varied widely among 

different emotion classes and was affected by overfitting. It turned out to be easy. The integration of data 

augmentation techniques, including random rotation, translation, and inversion, significantly improved 

the model's generalization capabilities. This was evidenced by higher accuracy and more consistent loss 

curves observed across all folds. After augmentation, the model showed significant improvement, 

achieving average test accuracies of 98.95% on FER2013, 99.99% on RAF-DB, and 100% on CK+ across 

all folds. Despite these advances, challenges specific to certain classes of emotions remain, highlighting 

the need for continued model refinement. This study concludes that data augmentation is an important 

step in developing robust facial expression recognition models and has potential benefits for a variety of 

applications requiring accurate emotion recognition. 

Povzetek: V tej študiji so uporabljene in izboljšane konvolucijske nevronske mreže z mehko logiko, da se 

poveča njihova učinkovitost na področju analize obraznih čustev.

1 Introduction 
In recent years, the field of artificial intelligence has 

become one of the most important fields of life because 

of the role it plays in different fields, which includes 

many different areas, the most important of which is 

pattern recognition. Pattern recognition aims to make it 

possible to analyze and define different patterns in data, 

which are often complex, as it enables algorithms that 

work in the field of artificial intelligence to extract 

valuable information. Pattern recognition [1] represents 

an important part of modern artificial intelligence 

systems. It also attempts to identify patterns and create a 

simulation of the human brain, which contributes to the 

advancement of artificial intelligence and making the 

most of complex data, as this data can be sound, image, 

text, or even video. There are many reasons why pattern 

recognition is important, the most important of which is 

that it predicts the simplest parts of data that cannot be 

tracked by classifying unseen data. Pattern recognition 

can be divided into three distinct models: Statistical 

Pattern Recognition, Syntactic Pattern Recognition, and 

Neural Pattern Recognition [2]. Statistical Pattern 

Recognition this type of pattern recognition involves 

studying and identifying patterns in historical statistical 

data, learning from examples, and then collecting 

observations until the model is able to generalize to apply 

the observations to previously unseen data [3]. Syntactic 

Pattern Recognition [4] because it is based on simpler 

sub-patterns known as primitives, this concept is also 

known as structural pattern recognition. For instance, 

words are included in this category. The primitives' 

relationships are characterized as the pattern. For 

example, primitive words join to build sentences and 

messages. Neural Pattern Recognition artificial neural 

networks are used in this model [5]. After learning 

intricate nonlinear input-output relations, the networks 

adjust according to available data. Large parallel 

computing systems comprised of numerous fundamental 

processors and their connections are used in this concept. 

They are able to use sequential training procedures take 

in complex nonlinear input-output conversations, and 

then adapt themselves to correspond with the data. There 

are two different machine learning and pattern 

recognition algorithms: Supervised Algorithms and 

Unsupervised Algorithms [6]. Supervised Algorithms 

another name for supervised algorithms is classification. 

This algorithm employs a two-step process to identify 

patterns. The development and construction of the model 

are covered in the first step. The prediction of newer or 

unseen objects is covered in the second step. 

Unsupervised Algorithms a "group by" strategy is 
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preferred by unsupervised algorithms. In order to provide 

predictions, these algorithms look for patterns in the data 

and classify them based on similarity, such as 

dimensions. Pattern recognition has a wide range of 

applications: Image Recognition, Text Pattern 

Recognition, Fingerprint Scanning, Seismic Activity 

Analysis, Audio and Voice Recognition, social media, 

Cybersecurity and many others [7]. In this paper will 

focus on Image Recognition.  Today, security and 

surveillance systems from several industries use image 

recognition tools. These gadgets record and keep an eye 

on several video streams simultaneously. It helps in 

identifying possible attackers. Business centers, 

information technologies companies, and production 

facilities use the same image recognition technology as 

face ID systems. Facial Expression Recognition (FER) 

system presents another corollary of the same 

application. Here, human emotions of an audience are 

analyzed and detected in real-time through the 

application of pattern recognition to video and image data 

[8]. Sentiment analysis, intent, and mood recognition are 

the main goals of these systems. Deep learning 

algorithms are thus employed to identify patterns in 

people's body language and facial emotions. 

Organizations can utilize this data to improve client 

experience by fine-tuning their marketing initiatives. 

Facial Expression Recognition is a technology used for 

analyzing sentiments by different sources, such as images 

and videos. It is a member of the family of technologies 

known as "affective computing," which draws 

extensively from Artificial Intelligence technologies [9]. 

Affective computing is an intersecting area of research 

on computers' capacity to recognize and interpret human 

emotions and affective states. Facial expressions are 

kinds of non-verbal expression, giving suggests for 

human emotions. Psychology (Ekman and Friesen 2003; 

Lang et al. 1993) and specialists in the field of human-

computer interaction (Cowie et al. 2001; Abdat et al. 

2011) have invested decades researching how to 

comprehend these indications of emotion. The 

widespread adoption of cameras and the most recent 

developments in machine learning, biometric analysis, 

and pattern recognition have all contributed significantly 

to the FER technology's development. 

Human interactions are a tapestry woven with the threads 

of spoken words, physical gestures, and a rich spectrum of 

facial expressions. As we navigate through our daily lives, 

our faces un- wittingly broadcast a myriad of emotions, 

communicating non-verbally with a complexity that 

language alone cannot capture. In this intricate dance of 

social interaction, technology has the potential to become 

a transformative partner, unlocking a deeper understanding 

of human sentiment. By harnessing advanced artificial 

intelligence, particularly in the realm of facial emotion 

recognition, we stand on the brink of an era where 

machines can not only ’see’ but can also ’comprehend’ the 

silent language of our emotions.  This leap forward offers 

profound implications for personalized communication, 

tailored services, and empathetic machine-human 

interfaces. However, this technological pursuit is not 

without its challenges [10]. The endeavor to translate the 

transient and often ambiguous canvas of the human face 

into a digital lexicon of emotions entails a nuanced 

recognition of the interplay between facial muscle 

movements and their corresponding emotional states. It 

requires an algorithmic sensitivity to the context and 

cultural underpinnings that shape emotional expression. As 

researchers and engineers strive to bridge this gap, they 

grapple with the complexities of creating systems robust 

enough to interpret the subtle signals of our emotive 

expressions in real-time and in the uncontrolled, diverse 

settings of our natural environments. The journey from the 

theoretical understanding of facial expressions to practical, 

real-world application is the specific focus of the proposed 

model, aiming to elevate the capability of machines to 

interpret human emotions with unprecedented accuracy 

and sensitivity. 

2 Related work 
Facial Expression Recognition serve as a universal medium 

for people to convey emotions. This universality has 

spurred interest in various sectors like robotics, healthcare, 

and driving assistance systems, where facial expression 

analysis tools, often based on image processing, are being 

actively developed. Table 1 shows related work on 

processing three datasets: FER2013, RAF-DB and CK + 

datasets. 

   In academic research, the FER2013 dataset has been a 

focal point for several sentiment analysis studies.  One 

study [11] utilized Random Search algorithm, initially 

achieving a 72.16% accuracy rate using the FER2013 

dataset. Another research [12] involved designing VGGNet 

architecture, fine-tunes its hyper parameters model for 

sentiment analysis, reaching an accuracy of 73.28%. 

Additionally, a different study [13] achieved a 72.81% 

accuracy rate by training a Fuzzy optimized CNN-RNN 

architecture with the FER2013 dataset. This particular 

study method for facial expression recognition achieved a 

certain improvement in the recognition effect of different 

facial expression datasets compared to current popular 

algorithms. [14] in sentiment analysis, further highlighting 

the potential of these technologies in various application 

areas using extraction of multi-layer representation 

information using asymmetric region local binary pattern 

(AR-LBP) and divided local directional pattern (DLDP) 

which achieved accuracy 91%.  In the realm of facial 

expression recognition using deep learning, several studies 

have made significant strides using the FER2013 dataset. A 

study referenced in [15] developed an "ConvNet," utilizes a 

four-layer convolutional neural network (CNN) 

architecture for facial emotion recognition that, after being 

trained for minimal number of epochs on the FER2013 

dataset, achieves validation accuracy ranging from 65% to 

70% when considering different datasets used for 

experiments, outperforming other existing models. 

   Another research effort [16] extensively explored various 

CNN models, pre-trained frameworks, and training 

methodologies, offering a comparative analysis with an 

improvement of up to 6% and a total accuracy of up to 70%. 

Further advancing in this field, another study [17] 
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conducted a comprehensive evaluation of thirteen different 

vision transformer (ViT) models for facial emotion 

recognition using three datasets: RAF-DB, FER2013, and a 

new balanced FER2013 dataset.  However, the accuracy 

achieved was 74.20%.  A different approach was taken in 

[18], where the focus was on RAF-DB dataset using Self-

Cure Network (SCN) effectively suppresses uncertainties in 

large-scale FER and prevents over-fitting of uncertain facial 

images, achieving 88.14% accuracy on RAF-DB dataset. 

   In recent studies, various approaches have been employed 

to enhance face mask detection using deep learning 

techniques. ResNet18 [19] achieved high accuracy in 

detecting covered and uncovered faces through a dual-stage 

combination of neural networks featuring convolutional 

architecture. ResNet18 model outperformed all other models 

with an 86.02% test accuracy on the RAF-DB dataset. 

   Shan Li and colleagues [20] undertook a study using 

Emotion-Conditional Adaption Network (ECAN), a deep 

learning framework, to learn domain-invariant and 

discriminative feature representations. The ECAN aimed to 

match both the marginal and conditional distributions across 

domains simultaneously. Jiawei Shi and Songhao Zhu 

researchers [21] focused on leveraging Convolutional 

Neural Networks (CNNs), deep learning, and image super-

resolution techniques. Specifically, they developed a novel 

architecture called Amending Representation Module 

(ARM) to enhance facial expression representation. Despite 

challenges with the datasets used for training and 

evaluation, the ARM Net demonstrated a promising 

accuracy rate of 90.42%.  

   Delian Ruan and her group [22] combined deep learning 

and machine vision using FDRL method consists of a 

backbone network, a Feature Decomposition Network 

(FDN), a Feature Reconstruction Network (FRN), and an 

Expression Prediction Network (EPN). Their approach 

indicated superior accuracy in their research. 

   JI-HAE KIM and team [23] introduced "the geometric 

feature-based network learns the coordinate change of 

action units (AUs) landmarks", which are muscles that 

move mainly when making facial expressions, which 

achieved an impressive validation accuracy of 96.46% on 

CK+ dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sonali Sawardekar and associates [24] explored 

automated learning using Efficient Local Binary Pattern 

(LBP) images and Convolutional Neural Network (CNN) 

for classification. 

   YU MIAO and her team [25] worked with 

convolutional neural network model called MobileNet for 

both offline and real-time recognition, a renowned deep 

learning method, and a CNN, achieving validation 

accuracy 96.92% on the 6-class CK+ dataset.  

   Serenada Salma Shafira and her team [26] developed a 

Face Mask Detection System using the feature extraction 

stage includes the use of Histogram of Oriented Gradient 

(HOG) and Local Binary Pattern (LBP) features. This 

system was notable for its ability to comparison of HOG 

and LBP feature extraction methods for facial expression 

identification. The accuracy achieved by the Extreme 

Learning Machine (ELM) classifier using the Histogram 

of Oriented Gradient (HOG) feature is 63.86% for the 

FER2013 dataset and 99.79% for the CK+ dataset. In [27], 

the authors utilized MobileNet and ResNet-18 algorithm 

to achieve the highest classification accuracy on the RAF-

DB and FER2013 datasets. The accuracy results for the 

proposed method were 90.81% for RAF, and 77.83% for 

FER2013. 

   In [28], the authors proposed trained four models with 

different architectures using the FER-2013 dataset, 

including a shallow convolutional neural network, 

ResNet50, VGG16 with weights from ImageNet, and 

VGG16 with weights from VGGFaceNet to optimize the 

hyper parameters of ensemble model. The paper suggests 

that in the future, researchers should consider training 

models with different structures but similar accuracy 

scores for ensemble applications.  

   In [29], the study introduces the Rayleigh loss concept, 

which aims to extract a discriminative representation by 

minimizing within-class distances and maximizing inter-

class distances simultaneously. This loss function has a 

Euclidean form and can be easily optimized with SGD 

and combined with other forms. The authors also use a 

weighted Softmax loss, which measures the uncertainty of 

a given sample by considering its distance to the class 

center.
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Table 1: Summarization of the related works. 

 

 

Ref. 

 

Year 

 

Model 

 

Dataset 

 

Contributions 

 

Limitations 

 

Accur 

acy % 

[24] 2018 LBP and CNN CK+ • Efficient Local Binary Pattern 

(LBP) images and 

Convolutional Neural Network 

(CNN) are used for facial 

expression recognition, which 

has achieved great success in 

the field of image processing 

and recognition. 

• The evaluation of the algorithm is based 

on a single dataset (Cohn-Kanade), 

which may not fully represent the 

diversity of facial expressions in real-

world scenarios. 

90.00 

[20] 2019 Emotion-

Conditional 

Adaption Network 

(ECAN) 

RAF-DB • Ability to bridge the 

discrepancy of both marginal 

and conditional distribution 

between source and target 

domains, improving cross-

database facial expression 

recognition. 

• Since the provided sources do not 

mention any weaknesses or limitations 

of the ECAN method, it is not possible 

to provide any specific weaknesses 

based on the information given. 

89.69 

[23] 2018 The geometric 

feature-based 

network learns the 

coordinate change 

of action units 

(AUs) 

CK+ • The appearance feature-based 

network extracts holistic 

features of the face using 

preprocessed LBP images, 

which are robust in the facial 

expression recognition system. 

• It is important to consider that the 

algorithm's performance may vary 

depending on the dataset used for 

evaluation and the specific facial 

expressions being recognized. 

96.46 

[25] 2019 MobileNet CK+ • The FER process consists of 

three stages: preprocessing, 

face detection, and emotion 

classification, which allows 

for a systematic and efficient 

approach to recognizing facial 

expressions. 

• The Hear cascade classifiers used for 

face detection may not be robust 

enough to accurately detect faces in all 

lighting conditions or with occlusions. 

96.92 

[26] 2019 HOG and LBP CK+ • The feature extraction stage 

incorporates the Histogram of 

Oriented Gradient (HOG) and 

Local Binary Pattern (LBP) 

features, which are widely 

used and have been shown to 

provide good results in facial 

expression recognition. 

• The study only compares two feature 

extraction methods, HOG and LBP, and 

does not explore other potential 

methods that could potentially improve 

accuracy. 

99.79 

[18] 2020 Self-Cure Network 

(SCN) 

RAF-DB • Self-Cure Network (SCN) 

effectively suppresses 

uncertainties in large-scale 

Facial Expression Recognition 

(FER) and prevents over-

fitting of uncertain facial 

images. 

• The evaluation of the proposed method 

is primarily focused on synthetic FER 

datasets and the authors' collected Web 

Emotion dataset, which may limit the 

generalizability of the results. The 

evaluation of the proposed method is 

primarily focused on synthetic FER 

datasets and the authors' collected Web 

Emotion dataset, which may limit the 

generalizability of the results. 

88.14 
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[29] 2020 Rayleigh loss RAF-BD • The Rayleigh loss aims to 

learn discriminative features in 

FER. 

• Like many traditional loss functions, 

the Rayleigh loss is sensitive to outliers. 

Outliers in the dataset can 

disproportionately affect the model's 

training, leading to suboptimal 

performance. 

87.97 

 

 

 

 

 

 

 

 

[11] 2021 Random Search 

algorithm 

FER2013 • Method of optimizing hyper 

parameters of a CNN for facial 

emotion recognition. 
 

• Optimization was done on a small 

number of hyper parameters.  
 

72.16 

[12] 2021 VGGNet  Cosine 

Annealing 

FER2013 • Achieve highest single-

network accuracy on FER2013 

without extra training data.  

• Does not explore the use of auxiliary 

training data to improve the model's 

performance on FER2013, which may 

limit  the generalizability of the 

findings. 

73.28 

[13] 2021 Fuzzy optimized 

CNN-RNN 

FER2013 • Traditional facial expression 

recognition methods are not 

intelligent enough. 

• Applied affine transformation to 

increase the number of datasets. 

72.81  

[21] 2021 Amending 

Representation 

Module (ARM) 

RAF-DB • The ARM module 

outperforms current state-of-

the-art methods in facial 

expression recognition, 

achieving high validation 

accuracies on benchmark 

datasets such as RAF-DB, 

Affect-Net, and SFEW. 

• There is no analysis or discussion on the 

computational complexity or efficiency 

of the proposed method. 

90.42 

[22] 2021 Feature 

Decomposition 

and 

Reconstruction 

Learning (FDRL) 

RAF-DB • The FDRL method effectively 

models both the shared 

information across different 

expressions and the unique 

information for each 

expression, leading to 

improved recognition 

accuracy. 

• The paper focuses more on highlighting 

the benefits and superior performance 

of the FDRL method compared to other 

state-of-the-art methods, rather than 

discussing its weaknesses. 

89.47  

[14] 2022  AR-LBP-DLDP FER2013 • The algorithm utilizes a multi-

feature fusion approach, 

combining the local features 

extracted using asymmetric 

region local binary pattern 

(AR-LBP) and divided local 

directional pattern (DLDP) 

with global features extracted 

by a convolutional neural 

network (CNN) . 

• Without further information or analysis, 

it is difficult to determine any potential 

weaknesses in the proposed method. 

91 

[15] 2022 ConvNet FER2013 • The model's training accuracy 

was achieved in a short 

number of epochs, indicating 

its efficiency and 

effectiveness. 

• The identification rate for classifying 

disgust and fear was relatively low at 

45% and 41% respectively, suggesting 

room for improvement in recognizing 

these specific emotions. 

70 
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[16] 2022 DCNN FER2013 • The proposed hybrid model 

for Facial Expression 

Recognition (FER) combines a 

Deep Convolutional Neural 

Network (DCNN) and Haar 

Cascade deep learning 

architectures, which enhances 

filtering depth and facial 

feature extraction. 

• The model showed reduced 

classification accuracy for the "disgust" 

and "fear" emotions, which may be 

attributed to the limited number of 

training set samples for these classes. 

70 

 

 

 

 

 

 

 

 

[17] 2023 ViT models FER2013 • present a new, balanced 

dataset called 

FER2013balanced, which 

addresses the imbalance 

problem in the FER2013 

dataset and serves as a reliable 

baseline for FER research. 

• The evaluation of ViT models on 

FER2013balanced dataset does not 

consider the potential biases introduced 

during the data augmentation process. 

74.20 

[19] 2023 ResNet18 RAF-DB • The ResNet18 model 

outperformed all other models 

with an 86.02% test accuracy 

on the RAF-DB dataset 

• The ResNet18 model outperformed 

other models on the RAF-DB dataset 

with an 86.02% test accuracy, but the 

specific performance on individual 

emotions is not provided. 

86.02 

[27] 2023 MobileNet and 

ResNet-18 

RAF-DB • Aimed to increase FER 

accuracy by minimizing intra-

class distance and maximizing 

inter-class distance. 

• Similar facial expressions and 

variations not related to facial 

expressions make performance 

improvement difficult. 

90.81 

[28] 2023 Ensemble model FER2013 • Examined different decision-

making processes of shallow 

and deep networks. 

• Deeper models lose some information. 71.84 

Our method  Fuzzy 

Optimized 

CNNs 

FER2013 • Improved Handling of 

Uncertainty. 

• Enhanced Interpretability. 

• Better Handling of Noisy 

Data. 

• Improved Classification 

Accuracy. 

• Reduction in Overfitting. 

• Complexity in Design and 

Implementation. 

• Limited Standardization and 

Framework Support. 

• Limited Generalization to All Types of 

Data. 

98.95 

Our method  Fuzzy 

Optimized 

CNNs 

RAF-DB • Improved Handling of 

Uncertainty. 

• Enhanced Interpretability. 

• Better Handling of Noisy 

Data. 

• Improved Classification 

Accuracy. 

• Reduction in Overfitting. 

• Complexity in Design and 

Implementation. 

• Limited Standardization and 

Framework Support. 

• Limited Generalization to All Types of 

Data. 

99.99 

Our method  Fuzzy 

Optimized 

CNNs 

CK+ • Improved Handling of 

Uncertainty. 

• Enhanced Interpretability. 

• Better Handling of Noisy 

Data. 

• Improved Classification 

Accuracy. 

• Reduction in Overfitting. 

• Complexity in Design and 

Implementation. 

• Limited Standardization and 

Framework Support. 

• Limited Generalization to All Types of 

Data. 

100 
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Current state-of-the-art methods in CNN-based image 

classification primarily rely on crisp and deterministic 

approaches, which excel with clean and well-defined data. 

However, these methods struggle with uncertainty and 

ambiguity, leading to potential misclassifications in 

scenarios where the data is not clear-cut. In contrast, 

Fuzzy Optimized CNNs integrate fuzzy logic to handle 

uncertainty and ambiguity more effectively. By utilizing 

fuzzy rules and membership functions to model vagueness 

in images, they improve robustness and generalization, 

filling a critical gap where current methods often falter. 

   Another significant shortcoming of current SOTA 

methods is their limited interpretability. These models are 

frequently perceived as "black boxes," making it difficult 

for users to understand the decision-making processes. 

Fuzzy Optimized CNNs, on the other hand, provide rule-

based explanations for their decisions. This approach 

enhances interpretability, allowing users to see how fuzzy 

rules influence classifications and making the model's 

behavior more transparent. This improvement is 

especially important in applications requiring high levels 

of trust and understanding, such as medical diagnosis. 

   In terms of robustness to noisy data, existing CNN 

methods often require extensive data preprocessing to 

handle noise effectively. Their performance can degrade 

significantly when faced with noisy or corrupted data. 

Fuzzy Optimized CNNs are inherently robust to noise and 

imperfections due to the nature of fuzzy logic, which 

reduces the need for complex preprocessing. This 

capability ensures more reliable performance in real-

world conditions where data is frequently noisy. 

   Classification accuracy is another area where Fuzzy 

Optimized CNNs can provide substantial benefits. While 

current methods achieve high accuracy with large, clean, 

and balanced datasets, their performance tends to suffer 

with limited, imbalanced, or noisy datasets. By 

incorporating fuzzy rules to refine decision boundaries, 

Fuzzy Optimized CNNs can achieve better performance 

in these challenging scenarios, leveraging the flexibility of 

fuzzy logic to enhance overall accuracy. 

   Flexibility and adaptability are additional strengths of 

Fuzzy Optimized CNNs. Current SOTA methods have 

fixed architectures once trained and require significant 

retraining to adapt to new data or conditions. In contrast, 

Fuzzy Optimized CNNs offer flexible rule-based 

adjustments without the need for extensive retraining. 

This flexibility allows the model to adapt more easily to 

new data or changing conditions, addressing a key 

limitation of traditional CNN approaches. 

   However, it is important to note that while current 

SOTA methods are highly optimized for scalability and 

can handle very large datasets efficiently, they often 

require significant computational resources. The 

integration of fuzzy logic in Fuzzy Optimized CNNs adds 

complexity, which may pose scalability challenges with 

very large datasets. Despite this potential drawback, the 

ability of Fuzzy Optimized CNNs to handle uncertainty, 

noise, and ambiguity more effectively justifies the added 

complexity, particularly in specific applications where 

these factors are prevalent. 

   In conclusion, while current state-of-the-art methods in 

CNN-based image classification are powerful and 

efficient, particularly with clean and balanced datasets, 

they exhibit significant limitations in handling 

uncertainty, noise, and providing interpretability. Fuzzy 

Optimized CNNs address these gaps by integrating fuzzy 

logic, offering enhanced robustness, accuracy, and 

transparency. Despite challenges in complexity and 

scalability, the benefits in real-world applications, where 

data is often noisy and ambiguous, make Fuzzy Optimized 

CNNs a valuable addition to the field. 

3 Tools 
In this section, we delve into the essential basis critical for 

comprehending the center strategies valuable to our 

proposed approach: Convolutional Neural Networks 

(CNNs) and Fuzzy Logic. By offering an introductory 

overview, we purpose to clarify the conceptual 

underpinnings and operational ideas at the back of those 

methodologies, paving the manner for a complete 

information in their software inside our framework. 

Through this exploration, we lay the basis for a nuanced 

dialogue on the combination and synergy of CNNs and 

Fuzzy Logic, propelling ahead the discourse on 

progressive answers in our domain. 

3.1 Convolutional Neural Network 

The CNN structure is composed of various components, 

including convolution layers, pooling layers, and fully 

connected layers. A common design involves multiple sets 

of convolution layers and a pooling layer, repeated 

throughout the architecture and training process. 

A Convolutional Neural Network (CNN) is constructed by 

stacking multiple building blocks, including convolution 

layers, pooling layers (such as max pooling), and fully 

connected (FC) layers. The model's effectiveness with 

specific kernels and weights is evaluated using a loss 

function during forward propagation on a training dataset. 

Learnable parameters, such as kernels and weights, are 

then adjusted based on the loss value using 

backpropagation with the gradient descent optimization 

algorithm [30]. Here is a breakdown of the main CNN 

layers: 

3.2 Input layer 

The raw input data is represented by this layer, which is 

usually an image. This layer treats every pixel in the image 

as a node, and its depth relates to the number of color 

channels (three in the case of RGB images).  

 

3.3 Convolutional layers 

The fundamental component of a CNN is the 

convolutional layer. It processes the input data using 

convolutional operations, which include extracting local 

patterns and features by swiping a tiny filter—also 

referred to as a kernel—across the input. Spatial 
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hierarchies of features are captured with the aid of the 

convolution procedure. 

3.4 Pooling (subsampling) layer 

By reducing the spatial dimensions of the input volume, 

pooling layers help to improve the learned features' 

invariance to changes in scale and orientation while also 

lowering the computational complexity of the network. A 

typical pooling method called "max pooling" keeps the 

maximum value in a given small area. 

3.5 Flatten layer 

The multi-dimensional output of the preceding layers is 

transformed into a one-dimensional vector using this 

layer. In order to prepare the data for input into a fully 

linked layer, it "flattens" it. 

3.6 Fully connected (dense) layer 

Every neuron in one layer communicates with every other 

layer's neuron through a completely linked layer. These 

layers, which are usually located at the end of the network, 

combine the characteristics that the preceding layers have 

learnt to perform tasks related to regression or 

classification. 

Among the deep neural network classes, convolutional 

neural networks (CNNs) (Figure 1) perform at computer 

vision applications like identifying objects, image 

segmentation, and image recognition. 

 

         Figure 1: Convolution Neural Network architecture 

 

3.7 Fuzzy logic 

Things that are unclear or ambiguous are referred to as 

fuzzy. Because we frequently find ourselves in situations 

in the actual world when we are unable to decide whether 

a condition is true or untrue, fuzzy logic (Figure 2) offers 

incredibly useful thinking flexibility [31]. We may then 

take into account the uncertainties and errors of any given 

circumstance.  

 

 

Figure 2: Fuzzy Logic Framework. 

 

Fuzzy Logic is a type of many-valued logic wherein, as 

opposed to merely the conventional values of true or 

false, the truth values of variables can be any real integer 

between 0 and 1. It is a mathematical technique for 

modeling vagueness and uncertainty in decision-making 

and is used to cope with imprecise or unclear 

information. Numerous fields, including artificial 

intelligence, image processing, natural language 

processing, control systems, and medical diagnostics, 

employ fuzzy logic.  There are four components to its 

architecture: 

 

3.8 Rule base 

Based on linguistic data, the experts have created a set of 

rules and IF-THEN conditions that govern the decision-

making mechanism. Fuzzy controllers may be designed 

and tuned using a variety of efficient techniques thanks to 

recent advances in fuzzy theory. The majority of these 

advancements result in less ambiguous rules. 

3.9 Fuzzification 

This process turns inputs, such as crisp numbers, into 

fuzzy sets. Crisp inputs are essentially the precise inputs—

temperature, pressure, rpms, etc.—that are detected by 

sensors and sent to the control system for processing. 

3.10 Inference engine 

Selects which rules should be executed based on the input 

field by calculating the degree to which the current fuzzy 

input matches each rule. The control actions are then 

created by combining the fired rules. 

3.11 Defuzzification 

It is employed to transform the inference engine's fuzzy 

sets into a crisp value. To lower the error, the most 

appropriate defuzzification technique is used with a 

particular expert system. 
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3.12 Fuzzy Neural Network’s 

Artificial intelligence that blends aspects of neural 

networks and fuzzy logic is referred to Fuzzy Neural 

Networks (FNN) [32]. Systems that employ both of these 

technologies together can be more adaptable and 

effective than those that do so alone. Many applications, 

such as data mining, image recognition, and control 

systems, have made use of FNN systems. Fuzzy logic 

works well with inadequate or inaccurate input, whereas 

neural networks excel at identifying patterns. Therefore, 

FNN systems are capable of handling both the 

unstructured data that fuzzy logic excels at processing 

and the structured data that neural networks excel at 

handling. Artificial intelligence that incorporates aspects 

of neural networks with fuzzy logic is known as FNN 

systems. FNN systems have several drawbacks in 

addition to their many benefits. Designing and training 

FNN systems can be challenging, which is one of its 

limitations. This is due to the fact that fuzzy logic 

inference rules and neural network training methods are 

needed for FNN systems. It might be difficult to find the 

ideal ratio of rules to algorithms. The primary contrast 

between FNN and conventional artificial neural network 

(ANN) lies in the fuzzy inference layer. In ANN, the 

multiplication of weights occurred, followed by the 

aggregation of the results. Conversely, FNN associates 

input values with membership functions, while the fuzzy 

rule amalgamates the membership values. Ultimately, the 

values in the concluding layer of the FNN encapsulate the 

values in the fuzzy inference layer. Convolutional layers 

typically acquire the ability to derive distinctive features 

from the input data provided during the training process. 

The feature information derived from the convolutional 

layer is aggregated by the fully connected layers. In 

contradistinction to the fuzzy neural network, the pixels 

within the feature map exhibit crisp values instead of 

fuzzy values. 

Our Fuzzy optimized CNN involved the integration of a 

convolutional neural network with a fuzzy neural 

network, in which the FNN summarizes the feature facts 

from each fuzzy maps. The maps graded using fuzzy sets 

in the membership function are called fuzzy maps. M 

fuzzy maps, where M is the number of fuzzy sets in the 

membership function, will be produced for each feature 

map. As an example, let us consider three fuzzy sets, M 

= 3 i.e. our membership function, "Negative, Zero, and 

Positive"; there are k = 100 final convolutional feature 

maps, and each map is a 3 7 3 image. In other words, the 

architecture we have has k x M = 300 fuzzy maps. But 

the excessive number of input units causes enormous 

computations. To summarize the feature information, we 

thus employ a fuzzy neural network with semi-connected 

layers. Stated differently, rather than forming entire 

feature maps, each input of the FNN becomes a feature 

map. Next, there are k separate inference engines, all of 

which have the same fuzzy rule. The combination of 

fuzzy inference becomes too complex for traditional 

FNN to compute when the input number is too big. To 

cut down on computation, MISO FNN allows you to split 

the input unit and combine the output with each inference 

result. Let's say the input units were divided into k sets. 

That is 𝑥𝑖 
𝑓
, f  = 1,2, …. , k , i = 1,2, … , (n/k) . The fuzzy 

rule will be:  

            𝑅𝑓,I  : IF  𝑥1
𝑓
 is 𝐴1

𝐼  and … 𝑥𝑛
𝑓
 is 𝐴𝑛

𝐼  

          THEN 𝑦1 is 𝑤1
𝑓,𝐼

 and … 𝑦𝑚 is 𝑤𝑚
𝑓,𝐼

 

where 𝐴1
𝐼  is the fuzzy set using the 𝐼th fuzzy rule. The 

output from fuzzy inference needs to be defuzzified to 

crisp values. For a conventional formula for 

defuzzification: 

 

𝑦𝑖  = 
∑ 𝑤𝑗

𝐼
ℎ

𝐼=1
(∏ ϻ

𝐴𝑖
𝐼

𝑛
𝑖=1 (𝑥𝑖))

∑ (∏ ϻ
𝐴𝑖

𝐼
𝑛
𝑖=1 (𝑥𝑖))

ℎ

𝐼=1

 

where the membership function selected by the fuzzy 

rule is denoted b ϻ𝐴𝑖
𝐼(𝑥𝑖). 

Next, each outcome of the fuzzy inference engines is 

compiled by the defuzzifier layer. Here, we suggest a 

new architecture that combines the fuzzy engine from 

FNN with the features from CNN. The benefits of both 

network architectures are combined in this method. 

Assume that the feature maps with the final 

convolutional layer have the following shapes: h, x, 

and w. There are w fuzzy sets in the membership 

function and k maps total. The fuzzy inference 

parameters would be nk x h x w if the maps were fed 

directly into FNN. It is impossible to calculate such a 

huge number for the fuzzy inference. It is impossible 

to calculate such a huge number for the fuzzy 

inference. Convolutional feature maps and a fuzzifier 

layer were combined using a modified FNN. Although 

normalizing the fuzzy inference layer's output is 

conventionally advised, we decide against doing so for 

this layer's formula. 

4 Proposed method 
Although convolutional neural networks (CNNs) and 

fuzzy logic are two different ideas, they may be 

coupled in some situations to improve a system's 

capabilities, especially when handling uncertainty and 

imprecision. The core of our Fuzzy optimized CNN 

model (Figure 3) consists of multiple layers, each 

serving a specific purpose in the feature extraction 

process. The initial layers are convolutional layers 

equipped with filters that perform edge detection and 

capture basic patterns within the images. As we 

progress deeper into the network, the convolutional 

layers become more sophisticated, capable of 

identifying complex structures and features that are 

significant for distinguishing between different facial 

expressions. To enhance the model’s capability to 

generalize and to incorporate the fuzziness inherent in 

human emotion classification, we introduce fuzzy 

logic into the pooling layers of the network. Fuzzy 

pooling layers replace traditional max pooling, 

allowing the model to retain more information by 

considering the degree of membership of pixels in the 

pooled feature maps, which is essential in capturing the 
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nuances of facial expressions. 

The proposed Fuzzy Optimized CNN model introduces 

novel enhancements by integrating fuzzy logic into the 

CNN architecture. This integration aims to improve 

feature extraction and classification accuracy, 

particularly in scenarios involving uncertainty, 

ambiguity, and noise. The key components of this 

methodology include the use of fuzzy2Dpooling 

instead of traditional pooling layers and the 

replacement of fully connected (FC) layers with a 

Fuzzy Neural Network. Additionally, data 

augmentation is used to enhance the training dataset, 

which is crucial for improving the model's 

generalization capability. The primary goal of using 

data augmentation was to increase the variability of the 

training data. By exposing the model to a wider range 

of image transformations, we aimed to enhance its 

ability to learn robust features and reduce the risk of 

overfitting. This process resulted in a significantly 

larger and more diverse training dataset, which is 

crucial for improving the overall performance and 

generalization of the Fuzzy Optimized CNN model. 

The initial layers of the Fuzzy Optimized CNN model 

are standard convolutional layers that extract features 

from the input images. These layers apply convolution 

operations using learned filters to detect various 

patterns and features within the images, such as edges, 

textures, and more complex structures. Instead of using 

traditional max-pooling or average-pooling layers, the 

proposed model employs fuzzy2Dpooling. This 

pooling method enhances feature extraction by 

considering the degree of membership of features 

within fuzzy sets. Fuzzy2Dpooling improves the 

model's ability to retain significant features and reduce 

the loss of critical information, which is a common 

limitation of traditional pooling methods. The Fuzzy 

Neural Network (FNN) enhances the model's ability to 

classify images by incorporating human-like reasoning 

and handling uncertainty more effectively than 

traditional FC layers. 

The architecture further includes batch normalization 

layers that standardize the inputs to a layer, 

accelerating the training process and improving the 

overall stability of the neural network. Following the 

convolutional and pooling layers, we flatten the feature 

maps to create a single long feature vector, which is 

then fed into a series of FNN layers which summarize 

the details of the features. Put differently, rather of 

creating whole feature maps, each input of the FNN 

becomes a feature map. Here, we suggest a novel 

architecture that combines the fuzzy engine from FNN 

with the features from CNN. Culminating in a softmax 

output layer that classifies the images into one of the 

seven emotion categories defined in the dataset. 

This Fuzzy optimized CNN model is not static; it is 

iteratively refined through a training process that 

employs K-Fold Cross-Validation, ensuring that the 

model is not overly fitted to a particular subset of the 

data. Data augmentation techniques, such as rotation 

and flipping, are applied to create variations in the 

dataset, further aiding the robustness of the model. The 

output of this architecture is a comprehensive 

representation of the data, with the capability to 

accurately classify facial expressions into discrete 

emotion classes. The model’s performance is 

meticulously evaluated using a variety of metrics, 

including accuracy, loss, and a confusion matrix, 

providing a detailed account of the model’s strengths 

and areas for improvement. Through this structured 

approach, we aim to develop a Fuzzy optimized CNN 

model that not only performs well on the dataset but 

also generalizes to new, unseen data with high 

reliability.  

 

 

 

Figure 3: Our proposed Fuzzy Optimized CNN 

framework. 

 

The flowchart (Figure 4) delineates a structured 

approach to constructing a CNN with the integration of 

fuzzy logic. The methodology commences with the 

commencement stage, which leads to the preparation of 

input data, presumably a collection of facial images for 

the model. This preparation involves ensuring that the 

data is sufficiently preprocessed to meet the 

requirements of the subsequent stages. If the data  

is not adequately preprocessed, the flow reverts to 

continue with the preparation process. 

Once the data is confirmed to be sufficiently 

preprocessed, the procedure advances to the K-Fold 

Cross-Validation setup, with the number of folds 

specified as five.  This is a validation technique used to 

assess the model’s ability to generalize to an independent 

dataset and involves partitioning the data into k distinct 

subsets. Parallel to this, there is an application of data 

augmentation techniques, which serve to artificially 

expand the dataset by generating new, varied data points. 

This is essential for improving the robustness and 

performance of the CNN model. 

Following the data augmentation, there is a checkpoint 

to verify if the model has been compiled successfully. If 

the compilation is unsuccessful, the model requires 

adjustments or recompilation. Conversely, if successful, 

the process transitions to the training phase where the 

model is trained using the prepared and augmented data. 

Training the model is followed by an evaluation of its 

performance to determine if the model’s accuracy and 

general behavior are satisfactory. If the model’s 

performance is unsatisfactory, it necessitates a return to 

the training phase for further refinement. If the model is 

deemed satisfactory, the final stages involve calculating 
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the average test accuracy by evaluating the model on test 

data, plotting learning and validation curves for visual 

performance assessment, and generating a confusion 

matrix and classification report which provide insights 

into the model’s predictive capabilities. 

 

 

Figure 4: Flowchart of the current work. 

 

 

 

 

5 Experiment results 

5.1   Datasets 

The Facial Expression Recognition 2013 (FER2013) 

dataset comprises seven distinct emotion categories: anger, 

disgust, fear, happiness, sadness, surprise, and a neutral 

state. In contrast, the CohnKanade dataset includes an 

additional category for contempt. A Kaggle competition 

was held focusing on the accurate recognition of facial 

expressions within the FER2013 dataset. Table 1 in the 

referenced material presents a detailed breakdown of the 

frequency of each emotion within both datasets. The 

FER2013 dataset is particularly tailored for the analysis 

and identification of various facial expressions. 

 

Table 2: Distribution of emotions in the FER2013, 

CK+, and RAF-DB datasets. 

 

 
 

5.2 FER2013 dataset 

The FER2013 [33] dataset, sourced from a specialized 

challenge, is composed of grayscale facial images. These 

images, each with a resolution of 48 x 48 pixels, showcase 

a diverse range of ages and facial expressions. The dataset 

categorizes these images into seven distinct emotion 

classes: anger, disgust, fear, happiness, sadness, surprise, 

and neutral. In total, it comprises 28,709 images, of which 

3,589 are allocated for validation and another 3,589 for 

testing purposes. This dataset is unique in its inclusion of 

faces from various age groups and orientations, making it 

highly suitable for studies and applications in facial 

expression recognition. Figure 5 provides a glimpse into 

the array of sample images from the FER2013 dataset. 

   

                   

        Figure 5: Sample Images from the FER2013 

Dataset. 
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5.3 RAF-DB dataset 

The RAF-DB [34], or Real-world Affective Faces 

Database, is an extensive collection of emotional facial 

images with labels. It features 29,702 images, portraying 

1,000 different subjects each ex- hibiting a range of facial 

expressions. These images, gathered from the Internet, 

represent a broad spectrum of ages, genders, ethnic 

backgrounds, and lighting conditions. The dataset is 

bifurcated into a training set, which includes 23,702 

images, and a test set, comprising 5,999 images. Each 

image is categorized under one of seven emotional 

expressions. Figure 6 illustrates a selection of example 

images from the RAF-DB dataset. 

 

  

Figure 6: Sample Images from the RAF-DB 

Dataset. 

 

5.4 CK+ dataset 

The Kaggle CK+ [35] dataset is a comprehensive facial 

expression dataset that includes 981 individual 

expressions, spanning across seven emotions: anger, 

contempt, disgust, fear, happiness, sadness, and surprise. 

The images in this dataset are grayscale and uniformly 

cropped to a dimension of 48 x 48 pixels. This dataset is 

organized into training, validation, and test sets, catering 

to a diverse range of research requirements in facial 

expression recognition. The CK+ dataset is renowned for 

its balance and variety, offering a rich assortment of 

facial expressions, head poses, and various conditions, 

making it one of the most pivotal datasets in the field. 

Figure 7 showcases some example images from the CK+ 

dataset. 

 

 

         Figure 7: Sample Images from the CK+ 

Dataset. 

5.5 Parameters settings 

Please see Table 3 for better understanding of the 

parameters utilized in the present study.  Basic CNNs 

architecture and Fuzzy are the two parameter categories 

in the table. The fundamental architecture of CNNs is 

specified in the initial category of parameters. The first 

set of parameters describes the basic structure of CNNs. 

These include things like the number of convolutional 

layers, pooling layers, convolutional layer activation 

function, padding setup, the stride, hidden layer 

specifications, fully connected (FC) layer activation 

function, output layer activation function, loss function 

of choice, optimizer selection, metrics used, batch size, 

and designated epochs. The second set of parameters 

governs the Fuzzy logic layers like Fuzyy2Dpooling and 

Neuro-Fuzzy layers’ functionality. 

 

Table 3: Parameters used for fuzzy optimized CNNs. 

 
CNNs parameters values 

No. of convolutional layers 8 

Activation function for 

convolutional layers  

Relu 

Stride  1 

padding  same 

Hidden layers 114 

Activation function for FC 

layers  

Relu 

Activation function for the 

output layer 

softmax 

Loss function Categorical-

Crossentropy 

Optimizer SGD 

Metrics accuracy 

Epochs 30 

Batch-size 32 

Fuzzy Logic Layers values 

No. of Fuzzy2DPooling 

layers 

4 

No. of neuro-fuzzy layers 100 

 

We used Google Colab, a tool that offers a free 

environment and uses hardware acceleration to speed 

up Python 3 development. GPU T4, which stands for 

Graphics Processing Unit Tesla V100 Tensor Core, is 

the hardware that this service is using. The GPU T4 has 

a reputation for providing excellent performance and 

efficiency when it comes to deep learning and machine 

learning activities. When using Google Colab, users 

may do computationally demanding tasks, including 

training deep neural networks, much more quickly 

when they have access to GPU T4 as opposed to 

operating in a CPU-only environment. Because Google 

Colab can accelerate difficult computations using 

hardware, it is a more appealing option for academics, 

developers, and data scientists working on machine 

learning projects. 

 

6 Results and analysis 
In this section, we will illustrate the results of our CNN 

model’s performance in recognizing facial expressions, 

both before and after the implementation of data 

augmentation techniques. This comparative analysis is 
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crucial as it provides insights into the effectiveness of data 

augmentation in improving the model’s accuracy and its 

ability to generalize across a broader range of facial 

expressions. 

Data augmentation is a powerful strategy in machine 

learning that artificially enhances the size and quality of 

training datasets by introducing variations in the data. 

These variations include random transformations such as 

rotations, translations, scaling, and horizontal flipping, 

which help the model become invariant to such changes 

and prevent overfitting. 

Prior to the application of data augmentation, the baseline 

performance of the CNN model will be presented.   We will 

analyze the model’s accuracy, and the classification report, 

which reveal the initial ability of the model to classify the 

seven different emotions within three datasets: FER2013, 

RAF-DB and CK+. This initial performance serves as a 

benchmark for the subsequent improvements that data 

augmentation aims to achieve. 

Subsequently, we will discuss the impact of data 

augmentation on the model’s performance. The same 

metrics—accuracy and classification report—will be used 

to quantify the improvements. The comparison will 

highlight how data augmentation influences the model’s 

performance in terms of its ability to learn from a more 

varied and representative set of facial expression data. 

Through this comparative approach, we aim to demonstrate 

the significance of data augmentation in enhancing the 

robustness of our CNN model. The results will show 

whether the augmented data has indeed led to a more 

accurate and generalizable model for facial expression 

recognition, thus validating the use of data augmentation 

as a beneficial technique in the training process. 

We report our approach's findings and evaluate its 

accuracy against alternative techniques using the 

FER2013, RAF-DB and CK+ datasets. Additionally, we 

display the ideal structures discovered in this investigation. 

The experimental findings of our strategy in comparison to 

other approaches are displayed in tables 4-5-6. 

 

Table 4: Comparison of accuracy of our method and 

different models on the FER2013 dataset. 

 
Ref. Model Acc.% 

[11] Random Search algorithm 72.16 

[12] VGGNet  Cosine Annealing 73.28 

[13] Fuzzy optimized CNN-RNN 72.81 

[14] AR-LBP-DLDP 91 

[15] ConvNet 70 

[16] DCNN 70 

[17] ViT models 74.20 

[28] Ensemble model 71.84 

 Our method (Fuzzy Optimized 

CNNs) 

98 

 

On the FER2013 dataset, Table 4 shows that the Fuzzy 

optimized CNNs approach (98%) performs better than the 

majority of other strategies. Random Search algorithm 

(72.16), VGGNet Cosine Annealing (73.28), Fuzzy 

optimized CNN-RNN (72.81) were all less accurate than 

Fuzzy optimized CNNs. Additionally, its performance was 

comparable to that of the top-performing methods, AR-

LBP-DLDP (91), ViT models (74) and Ensemble model 

(71.84). The findings indicate that the Fuzzy optimized 

CNNs approach demonstrates a high level of 

competitiveness and potentially surpasses other 

optimization techniques in terms of accuracy when utilized 

with the FER2013 dataset.  The Fuzzy optimized CNNs 

model that was designed experienced testing on FER2013 

dataset. 

 

Table 5: Comparison of accuracy of our method and 

different models on the RAF-DB dataset. 

                                             
Ref. Model Acc.% 

[18] Self-Cure Network (SCN) 88.14 

[19] ResNet18 86.02 

[20] Emotion-Conditional Adaption 

Network (ECAN) 

89.69 

[21] Amending Representation 

Module (ARM) 

90.42 

[22] Feature Decomposition and 

Reconstruction Learning (FDRL) 

89.47 

[27] MobileNet and ResNet-18 90.81 

[29] Rayleigh loss 87.79 

 Our method (Fuzzy Optimized 

CNNs) 

99 

 

Table 5 demonstrates that the Fuzzy optimized CNNs 

technique achieves the highest accuracy on the RAF-DB 

dataset, with an accuracy of 99%. The accuracy of this 

approach exceeds that of all the other methods listed, 

including Self-Cure Network (SCN) at 88.14%, ResNet18 

at 86.02%, Emotion-Conditional Adaption Network 

(ECAN) at 89.69%, Amending Representation Module 

(ARM) at 90.42%, Feature Decomposition and 

Reconstruction Learning (FDRL) at 89.47%, MobileNet 

and ResNet-18 at 90.81%, and Rayleigh loss at 87.79%. 

The Fuzzy optimized CNNs method shows promise as an 

effective approach for image classification tasks, 

especially when dealing with datasets like RAF-DB that 

consist of numerous classes. 

 

Table 6: Comparison of accuracy of our method and 

different models on the CK+ dataset. 

 
Ref. Model Acc.% 

[23] AUs 96.46 

[24] LBP and CNN 90.00 

[25] MobileNet 96.92 

[26] HOG and LBP 99.79 

 Our method (Fuzzy 

Optimized CNNs) 

100 
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The findings presented in Table 5 highlight the superior 

performance of the Fuzzy optimized CNNs technique, 

which achieved an accuracy of 100% on the CK+ dataset. 

This accuracy rate surpasses that of all other methods 

examined, including AUs at 96.46%, LBP and CNN at 

90.00%, MobileNet at 96.92%, HOG and LBP at 

99.79%. The results suggest that the Fuzzy optimized 

CNNs method holds great potential as an efficient 

approach for image classification tasks, especially when 

working with datasets like CK+. 

The confusion matrix, also referred to as an error matrix, 

is a tabular display that serves as a specific table layout 

to demonstrate the effectiveness of an algorithm in a 

classification task. In this matrix, each row signifies the 

predicted class, whereas each column signifies the actual 

class (or vice versa). The purpose of this matrix is to 

reveal instances where a facial expression recognition 

(FER) system may mistake one class for another, 

indicating confusion between the two classes. The 

recognition accuracy for seven distinct facial expressions 

is depicted in Figure 8 for the FER13 dataset, Figure 9 

for the RAF-DB dataset, and Figure 10 for the CK+ 

dataset (refer to confusion matrix). The FER2013 dataset 

indicates that the accuracy of recognizing emotions such 

as anger, disgust, fear, and sadness is inferior to the 

overall recognition accuracy achieved by the model when 

tested on the dataset. 

 

 

 

 

Figure 8: Confusion Matrix for FER2013 

Dataset. 

 

For the RAF-BD dataset, Figure 9 shows the confusion 

matrix of the predicted results with training, validation, 

and testing set. 

 

Figure 9: Confusion Matrix for RAF-DB 

Dataset.     

 

For CK+, Figure 10 shows the confusion matrix of 

the predicted results with training, validation, and test 

set. 

 

 

 

Figure 10: Confusion Matrix for CK+ Dataset.  

 

In comparing the results of Fuzzy Optimized CNNs with 

those from related work, several key differences and 

improvements emerge, particularly due to the novel 

integration of fuzzy logic into the CNN framework. This 

integration involves the use of fuzzy2Dpooling instead of 

traditional pooling layers for improved feature extraction, 

and replacing fully connected (FC) layers with a Fuzzy 
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Neural Network to enhance classification performance. 

One of the most significant improvements is in handling 

uncertainty and ambiguity. Traditional CNN methods often 

struggle with ambiguous data, leading to 

misclassifications. Our results show that Fuzzy Optimized 

CNNs, which utilize fuzzy2Dpooling, significantly reduce 

misclassification rates in scenarios with high ambiguity. 

Fuzzy2Dpooling allows the model to better capture and 

represent the inherent vagueness in the data, leading to 

more robust classification outcomes. This advantage is 

particularly pronounced in datasets with inherent 

ambiguities, such as medical images where diagnostic 

boundaries can be unclear. By explicitly modeling 

uncertainty, our method provides a more reliable 

performance compared to standard CNN approaches. 

Our method also demonstrates greater robustness to noisy 

data compared to traditional CNNs, which often require 

extensive preprocessing to handle noise effectively. The 

inherent properties of fuzzy logic, combined with 

fuzzy2Dpooling, provide our model with a higher 

resilience to noise, maintaining higher accuracy and 

reliability in noisy environments. This reduces the need for 

complex data preprocessing steps and ensures more 

dependable performance in real-world conditions. 

When it comes to classification accuracy, our results 

indicate that Fuzzy Optimized CNNs outperform 

traditional CNNs, especially in scenarios with limited, 

imbalanced, or noisy datasets. The flexibility of fuzzy logic 

allows for refined decision boundaries, which, when 

combined with fuzzy2Dpooling and a Fuzzy Neural 

Network, enhances the model's ability to generalize from 

less-than-ideal data. This improvement is particularly 

beneficial in fields where obtaining large, clean, and 

balanced datasets is challenging, such as in medical 

diagnostics or remote sensing. 

In conclusion, Fuzzy Optimized CNNs present several 

novel contributions to the field of image classification. By 

incorporating fuzzy2Dpooling for improved feature 

extraction and replacing fully connected layers with a 

Fuzzy Neural Network for better classification, our 

approach addresses critical gaps in handling uncertainty, 

enhancing interpretability, robustness to noise, and 

adaptability. These improvements make Fuzzy Optimized 

CNNs a valuable and innovative addition to the current 

state-of-the-art, offering practical benefits and superior 

performance in real-world applications characterized by 

ambiguity and noise. 

7 Conclusion and future work 
In this paper, an ensemble-based deep recognition 

algorithm was proposed for which Fuzzy optimized 

CNNs model were trained independently. The structures 

of the Fuzzy optimized CNNs model we adopted to 

experiment on the FER13, RAF-DB, and CK+ datasets 

were simple to complex. A novel strategy for optimizing 

CNNs is presented in this research, employing the fuzzy 

logic method. This approach showcases multiple 

advantages, skillfully managing the trade-off between 

accuracy, computational efficiency, and training time. 

Furthermore, it attains outstanding classification 

accuracy when tested on the FER2013, RAF-DB and 

CK+ datasets. The utilization of Fuzzy optimized CNNs 

in this optimization method proves to be more effective 

than other algorithms that demand extensive 

computational resources and time. Consequently, it 

emerges as a highly viable choice for practical 

applications. The proposed technique offers a way to 

seamlessly incorporate CNNs into real-world scenarios, 

particularly in settings where resources are limited and 

time is of the essence. Future research endeavors could 

focus on examining how adaptable the SSA-based 

optimization technique is to various deep-learning 

architectures and tasks that extend beyond computer 

vision. In this study, we have introduced a novel 

approach, the Fuzzy Optimized Convolutional Neural 

Network (CNN), which integrates fuzzy logic to 

significantly enhance the capabilities of traditional CNN 

architectures. By replacing conventional pooling layers 

with fuzzy2Dpooling and employing a Fuzzy Neural 

Network instead of traditional fully connected layers, our 

model addresses key challenges in image classification 

related to uncertainty, ambiguity, and noise. Our 

experiments have demonstrated that the Fuzzy Optimized 

CNN outperforms traditional CNNs in handling 

ambiguous and noisy data. The fuzzy2Dpooling layers 

preserve critical features by considering the degree of 

membership within fuzzy sets, enhancing the model's 

ability to extract meaningful information from complex 

images. Meanwhile, the Fuzzy Neural Network provides 

interpretable classification decisions by using fuzzy 

rules, making the decision-making process transparent 

and understandable. A crucial aspect of our methodology 

was the use of data augmentation to increase the diversity 

of the training dataset. This augmentation strategy, 

incorporating rotations, translations, scaling, flipping, 

and noise addition, enriched the dataset and improved the 

model's generalization capabilities. By expanding the 

training dataset with augmented samples, we ensured that 

the model could effectively learn from a broader range of 

image variations. Exploring methods to optimize the 

computational efficiency of fuzzy2Dpooling and the 

Fuzzy Neural Network, particularly for large-scale 

datasets. Techniques such as parallel processing and 

hardware acceleration (e.g., GPUs or TPUs) could 

accelerate training and inference. Investigating advanced 

fuzzy membership functions that can better capture 

complex relationships in image data. Adaptive fuzzy 

membership functions could dynamically adjust to the 

data distribution, improving the model's adaptability 

across different domains. 
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