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With the intensification of human modernization, civil engineering and building structures have 

become increasingly complex. Potential security risks have also emerged. Therefore, scientific 

structural parameter identification algorithms are particularly crucial for health monitoring of current 

complex building structures. Therefore, the traditional atomic search optimization algorithm is 

improved ground on the roulette wheel selection strategy, random walk strategy, elite selection strategy, 

and substructure technology. The numerical simulation experiment results showed that the improved 

method performed better than the atomic search optimization algorithm in identifying structures with 

more degrees of freedom. The maximum relative errors for substructure and full structure stiffness 

identification were 13% and 43.1%, respectively, indicating that the combination of the improved 

algorithm and substructure identification method had better structural parameter identification results. 

In real structural parameter identification experiments, the identification error of the improved 

algorithm was less than 10%, the identification stiffness was reduced to 58.9%, and the relative error 

was around 10%, which was better than the traditional atomic search optimization algorithm. This 

indicates the effectiveness and feasibility in identifying building structural parameters, which is 

essential to ensure the safety and durability of real engineered structures. 

Povzetek: Predlagan algoritem RREASO za identifikacijo fizikalnih parametrov strukture stavb, ki 

temelji na optimizaciji atomske iskalne metode, izboljšuje identifikacijo strukturnih poškodb s 

strategijami rulete, naključne hoje in izbire elit.

1 Introduction 

The rapid growth of the social economy and industrial 

technology has led to the emergence of many super 

high-rise buildings, large-span bridges, and spatial 

structures in civil engineering. These infrastructure 

facilities are developing towards large-scale, complex, 

and intelligent development to meet the needs of material 

life and industrial construction. Civil engineering 

structures are exposed to complex environments for a 

long time and are subjected to the coupling effects of 

loads and various external accidental factors, which 

inevitably leads to stiffness degradation or damage 

accumulation in the structure [1, 2]. However, the 

damage to the civil engineering structure has seriously 

affected the development of the national economy. If it is 

possible to regularly or in real-time inspect complex 

building structures and conduct risk analysis on them, 

corresponding measures can be taken to reduce or avoid 

accidents. Therefore, structural health monitoring has 

become one of the hot research topics in the civil 

engineering. Structural parameter identification is the 

foundation of structural health monitoring [3, 4]. 

Structural parameter identification is an important step in  

 

the health monitoring process. Recently, more scholars 

have applied various algorithms to parameter 

identification in building structures. For example, Dinh 

proposed a structural parameter identification method for 

damping structures. Compared with other parameter 

identification methods, this method had lower 

computational cost and higher detection dimensions [5]. 

Zhang et al. proposed a frequency domain non-iterative 

method for parameter identification of shear type building 

structures under earthquake action. This algorithm used 

modal information represented by spectral ratio to greatly 

improve estimation accuracy [6]. Machine learning and 

deep learning algorithms have also been extensively 

studied in the identification of structural parameters. For 

example, Bao et al. proposed a deep transfer learning 

network for structural state recognition ground on limited 

real-world training data. The embedded knowledge was 

transferred to real monitoring/testing [7]. Zhang et al. 

integrated pattern recognition and finite element model 

correction. This method used physics-based machine 

learning to identify structural damage [8]. Combining 

continuous wavelet transform and deep convolutional 

neural network, Lu et al. proposed a new sensor 
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data-driven structural damage detection method to 

improve the robustness [9]. Fallah et al. proposed a new 

comprehensive machine learning model for predicting 

two energy parameters of residential buildings and 

analyzing building characteristics [10]. Elghaish et al. 

developed a new deep learning convolutional neural 

network to classify highway cracks [11]. In the 

identification of building structural parameters, 

Malekkhaini et al. built a two-step finite element 

correction method for health monitoring of prestressed 

concrete beam bridges [12]. Funari used a generative 

programming paradigm to implement the modeling 

framework into a visual programming environment. 

Furthermore, a new parameter scanning finite element 

method suitable for architectural heritage was proposed 

[13]. 

Traditional iterative and gradient methods have high 

computational complexity, difficulty in selecting initial 

values, and weak global search capabilities. Therefore, 

Han et al. developed a parameter identification method 

ground on the Atomic Search Optimization (ASO) to 

address this issue [14]. Wangdeng et al. proposed an 

improved artificial hummingbird strategy. It was used for 

parameter identification of pumped storage units, 

improving the global search ability of the initial 

population [15]. Asna et al. proposed an effective method 

for planning fast charging stations for electric vehicles 

ground on the ASO, which improved the convergence 

speed of the algorithm [16]. Eker et al. integrated 

artificial fish swarm algorithm with simulated annealing 

algorithm. It was applied to multi-layer perceptron 

training and motor speed control. The algorithm was 

successful for optimization problems with different 

properties [17]. Bi et al. proposed an improved grey wolf 

algorithm for optimizing multi-layer perceptron 

recognition of plant diseases. It could effectively avoid 

local optimization as well as premature convergence [18]. 

Table 1 summarizes the research ideas and shortcomings 

of previous scholars on building structures, damage 

identification, and other related topics. 

 

 

Table 1: Summary of related work on identification of structural damage and related parameters in building structures 

Scholar Methodology Key results Limitations 

Dinh [5] 
Identification method for damping 

structure parameters 

Low computational cost and 

high detection dimension 

Difficulty in considering 

other changes in the 

building structure 

Zhang et al. [6] 

Non iterative algorithm for 

parameter identification of shear 

type building structures 

Improved estimation accuracy 

and reduced human 

intervention 

Restricted data selection 

properties 

Bao et al. [7] 

Deep transfer learning network 

based on structural state 

recognition 

High training data monitoring 

effect 

It may be difficult to 

handle non-linear 

structured data types well 

Lu et al. [8] 

The combination of sensor 

data-driven and deep convolutional 

neural networks 

High accuracy and robustness 

in damage detection 

Low data processing 

efficiency 

Fallah et al. [9] 

Using comprehensive machine 

learning models to predict building 

energy parameters 

Better recognition effect for 

building features 

The applicability of the 

method may be limited by 

region 

Elghaish et al. 

[10] 

Deep learning convolutional neural 

network model for detecting and 

classifying highway cracks 

Significant application effect 

The feature detection effect 

of highway cracks in 

different environments is 

poor 

Malekkhaini et 

al. [12] 

Health monitoring and damage 

identification of concrete beam 

bridges using a two-step finite 

element model 

High accuracy in damage 

detection 

The rationality of data 

selection is difficult to 

ensure 

Funari [13] 

Using generative programming 

paradigm to scan building 

parameters in modeling framework 

Scanning characteristics of 

building parameters that are 

relatively consistent with 

actual values 

Low accuracy in selecting 

subtle building parameters 

Han et al. [14] 
Atomic search algorithm 

identification parameters 

Improved global search 

capability 

Restricted operational 

efficiency 
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Wang et al. [15] 

Improved artificial hummingbird 

algorithm for identifying the 

parameters of the speed control 

system of pumped storage units 

Improved global search ability 

for the initial population 

The calculation resource 

consumption of the speed 

control system is relatively 

high 

Asna et al. [16] 

Multi-objective binary version 

ASO algorithm for planning 

automotive charging stations 

Improved algorithm 

convergence speed 

Difficulty in considering 

the energy consumption 

utilization of car charging 

stations 

Eker et al. [17] 

Integrating artificial fish swarm 

algorithm and simulated annealing 

algorithm to control motor Speed 

High applicability 

Performance testing may 

be significantly affected by 

scene detection 

Bi et al. [18] 
Improved grey wolf algorithm for 

optimizing multi-layer perceptrons 

High accuracy in plant disease 

identification, avoiding local 

optimization problems 

The accuracy of the 

algorithm is significantly 

affected by the size of the 

data volume 

 

At present, scholars have conducted extensive 

research on the problems related to the identification of 

building structure parameters, among which the ASO 

algorithm has been successfully applied to this area. It 

can improve the global search ability of the initial 

population and plan for fast charging of electric vehicles. 

However, the traditional ASO algorithm can easily fall 

into the local optimal or identify the structure parameters 

of the higher degree of freedom. Therefore, the study uses 

the roulette selection strategy, random walk strategy and 

elite selection strategy to optimize the selection mode of 

atomic search path. Combined with substructure 

technology, an improved ASO algorithm is proposed to 

improve the accuracy and computational efficiency for 

parameter identification of complex architectural 

structures. 

The study is divided into four parts. The first part 

summarizes the background and related research on 

identifying building structural parameters, providing a 

theoretical basis for the following text. The second part is 

to elaborate on the improved ASO. The third part is to 

verify the effectiveness of the RREASO ground on real 

structural parameter identification experiments. The last 

part summarizes the entire text. 

2 Method and materials 

A structural parameter identification method based on 

ASO is designed. Combining substructure technology, 

the roulette wheel selection strategy, random walk 

strategy, and elite selection strategy are introduced into 

the ASO to improve the algorithm. 

 

2.1 Structural parameter identification based 

on ASO 
Structural parameter identification is achieved through 

structural dynamics system identification technology. By 

utilizing the input and output information of the structural 

system, a mathematical model equivalent to the actual 

structural system is constructed. The unknown parameters 

in the model are solved [19]. The key is to define the 

equivalent standard of the system. The error function of 

the standard implementation is shown in formula (1). 

 ( )( ),a mY Y X X=  (1) 

In formula (1), aX  signifies the output of the 

analysis model. Y  represents the error function. mX  

represents the actual output of the actual structure. The 

main content of structural parameter identification 

includes two parts: optimization algorithm and parameter 

estimation criterion. At present, the least squares criterion 

is the most widely used parameter estimation criterion. 

Considering the complexity of the structure, constraints 

will be added when using optimization algorithms in 

practice. The objective function is composed of 

constraints and error functions, as shown in formula (2). 
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In formula (2), Q  signifies the objective function. 

i  signifies the weight coefficient. iM  represents the 

scalar error generated by the i-th constraint equation. 

After considering the constraint conditions in the 

objective function, the structural identification parameter 

problem is transformed into a constraint optimization 

problem. Its optimization model is shown in formula (3). 

 
( )  

( ) ( )( )
min , . .

,

Q s t S

y k f u k

 






=
 (3) 

In formula (3), y  signifies the output of the system. 

  represents the system parameters to be identified. u  

signifies the input. t  signifies the discrete time point. 

The objective function to minimize the error in the actual 

measured structural output and the input of the alternative 

analytical model at this point is shown in formula (4). 

 ( ) ( ) ( )
2
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= −  (4) 

In formula (4), T  represents the sampling time 

point. The optimization problem finds a suitable   to 

minimize ( )F • . In the ASO algorithm, the identification 

problem is handled as a linear multi-dimensional 

optimization problem, as shown in formula (5). 
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 ( ) ( )1 2min , , ,... nF     =  (5) 

In formula (5), the lower limit min  and upper limit 

max  of the parameter n  to be identified constitute the 

search space of the ASO. 

 

2.2 Structure based on RREASO parameter 

recognition 
The ASO algorithm performs very well in solving low 

dimensional problems. However, as the dimensionality of 

the problem increases, the problem becomes more 

complex, which makes the drawbacks of ASO more 

apparent and the recognition results are not ideal. 

Moreover, civil engineering structures are complex and 

have a high degree of freedom. The parameter 

identification problem can be transformed into 

high-dimensional and more complex nonlinear 

optimization. When dealing with such parameter 

identification, structural parameter identification methods 

based on ASO algorithm are prone to getting stuck in 

local optima. In response to this limitation, the study 

adopts roulette wheel selection, random walk, and elite 

selection strategies to increase randomization features to 

maintain population diversity, allowing particles to 

continuously explore unknown regions. The improved 

ASO algorithm is named RREASO. 

In the ASO algorithm, the roulette wheel selection 

strategy first calculates the fitness value iFit  for each 

atom. According to the calculated results, atoms are 

sorted. The probability Pi  of atoms is calculated, as 

shown in formula (6). 
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Secondly, the cumulative probability of each atom is 

calculated to construct the roulette wheel, as shown in 

formula (7). 

 
1

( )
N

i

i

q P i
=

=  (7) 

In formula (7), Pi  signifies the probability of the 

i -th atom being selected. iq  represents the cumulative 

probability of the iq -th atom. N  represents total atoms. 

Next, a roulette wheel selection is performed to randomly 

generate a number in  0,1 . If the number is less than 

iq , the i -th atom is selected to enter the next ASO 

algorithm iteration population. The roulette wheel 

selection is repeated 2N  times to select 2N  atoms 

to form a new population. For each selected atom, the 

position of the atom can be calculated. Assuming that the 

atom randomly walks around the position of the atom 

with increasing iterations, the search range of the atom is 

expanded. The relationship is shown in formula (8). 
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In formula (8), di  and ci  signify the maximum 

and minimum values of the search space boundary. bi  

signifies the maximum of the random walk of the i -th 

variable. ai  signifies the minimum of the i -th variable. 

The ASO algorithm selects the minimum fitness value as 

the elite value in the elite selection strategy at each 

iteration, and its corresponding atom is called the elite 

atom. 

In summary, the RREASO first selects 2N  better 

atoms through a roulette wheel selection strategy, and 

randomly walks the position of the selected atoms. The 

position after random walking is denoted as AR . 

Secondly, the elite atomic positions selected based on the 

elite retention strategy are randomly walked. The atomic 

positions after random walking are recorded as ER . 

Finally, the average of the two random walk positions is 

used as the final atomic position, as shown in formula (9). 
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In formula (9), t  represents the number of 

iterations. 
t

iX  signifies the position of the i -th atom at 

the t -th iteration. 

 

2.3 Structural parameter identification of 

combined substructure method and 

RREASO 

When there are too many parameters to identify in the 

structure, to further improve the convergence speed and 

computational efficiency of the RREASO, a divide and 

conquer approach is proposed. This approach divides the 

entire structure into several substructures. Each 

substructure recognition can identify all parameters. The 

substructure identification method is presented in Figure 

1. 

 

Substructure

Ur

UfUg

UG
UF
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Figure 1: Schematic diagram of substructure identification method 

 

In Figure 1, U represents the displacement generated 

by the particle. F and G represent the residual structural 

degrees of freedom on both sides of the substructure. r 

represents the internal degrees of freedom of the 

substructure. g and f signify the degrees of freedom at the 

upper and lower thresholds of the substructure. For the 

sake of simplicity, e represents all the boundary degrees 

of freedom. The interaction effects on the boundary of the 

substructure are taken as inputs to the substructure system. 

The dynamic formula of the substructure is shown in 

formula (10).

  

( ) ( ) ( ) ( ) ( ) ( ) ( )
.. . .. .

Prr r e err rr rr r rr re re eM U t C U t k U t t M U t C U t k U t+ + = − − − (10)

 

The input of the substructure is the acceleration 

response signal of the degrees of freedom at the interface 

of the substructure. In practical engineering, obtaining 

velocity and displacement through integration can result 

in errors. Therefore, the accelerometer is usually applied 

to measure the dynamic response. The study introduces a 

"quasi-static displacement" vector to eliminate the need 

for velocity and displacement signals in practice, as 

shown in formula (11). 

 
*s

r r rU U U= +  (11) 

In formula (11), 
s

rU  represents the quasi-static 

displacement vector. 
*

rU  represents the relative 

displacement vector. rU  represents the displacement 

generated by the internal degrees of freedom of the 

substructure. The quasi-static displacement is the 

displacement vector generated by the internal degrees of 

freedom. It is obtained from the inertial effect, ignoring 

system excitation Pr , and damping effect, as shown in 

formula (12). 

 
1s

r rr re eU K K Ue rU−= − =  (12) 

In practical engineering, damping force is smaller 

compared with inertial force. Therefore, the study  

assumes that the velocity term in boundary motion is 

ignored. Combined with the dynamic equations of the 

substructure, the boundary motion force vector is 

acquired, as displayed in formula (13). 

( ) ( ) ( ) ( ) ( )( )
* *.. . ..

* Prr r err rr rr r re rrM U t C U t k U t t U t M M r+ + = − + (13) 

Once the boundary acceleration signal is obtained, 

the boundary motion vector can be calculated. The 

boundary mass matrix reM  of the centralized mass 

system is a zero matrix. Formula (13) can be simplified, 

as shown in formula (14). 

( ) ( ) ( ) ( ) ( )
* *.. . ..

* Prr r err rr rr r rrM U t C U t k U t t U t M r+ + = − (14) 

At this time, the objective function of minimizing 

the error in the actual measured structural output and the 

input of the alternative analytical model is updated using 

the specific collected acceleration signal, as shown in 

formula (15). 
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In formula (15), v  represents the candidate 

analysis model for identification using the RREASO 

algorithm. m  represents the measured structural system. 

S  represents the acceleration sensor number. L  

signifies the number of time points collected by the 

system. 

When combining the substructure method and 

RREASO algorithm for parameter identification, the 

relative acceleration relationship used for fitness 

evaluation is shown in formula (16). 

 ( ) ( ) ( )
*.. .. ..

r r eU t U t rU t= −  (16) 

The flowchart of using RREASO to identify 

substructure parameters is shown in Figure 2. 
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Update the positions and velocities 

of each atom

Calculate the influence coefficient 

matrix

Acceleration information of 

substructure boundary degrees 
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Estimate of acceleration for 
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the optimal atomic position
Termination conditions
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Measured acceleration of 

substructure
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Figure 2: Flow chart of RREASO identifying a substructure parameter 

 

According to the above description, the steps for 

obtaining the combined substructure method and 

RREASO algorithm are as follows. 

Firstly, the whole structure to be identified is divided 

into several substructures. A substructure with known 

acceleration of the boundary degree of freedom is taken 

for identify. The physical parameters of the substructure 

are taken as the dimensional components of each atom in 

RREASO, and the RREASO algorithm is used to identify 

them. The acceleration of the internal degrees of freedom 

of the identified substructure can be used as the known 

boundary acceleration of its adjacent substructures. Then, 

another substructure with known acceleration of 

boundary degree of freedom continues to identify, with 

the required parameters and identification methods 

consistent with step 2. The substructure acceleration of 

boundary degree of freedom at this time can be acquired 

by actual measurements or from the computed 

acceleration of the previously identified internal degrees 

of freedom of the substructures. Finally, if the adaptation 

value function of the RREASO algorithm has converged 

or reached the maximum number of iterations, the 

structure parameter identification of the next substructure 

is entered or ended the recognition. Otherwise, the speed 

and position of each atomic element in the RREASO are 

adjusted according to the adaptation value function to 

enter the next generation update. 

3 Results 

A numerical simulation experiment for parameter 

identification of a 10 story and 25 story shear type frames, 

and a system parameter identification experiment of a 

five-story metal frame structure are designed to verify the 

effectiveness and feasibility of the RREASO. 

 

3.1 Numerical simulation of structural 

parameter identification based on RREASO 
Firstly, numerical simulations are conducted on the 

parameters of a 10-story shear frame. The parameter 

identification results of the ASO are compared to verify 

the effectiveness of the RREASO in dealing with 

structural parameter identification problems with more 

degrees of freedom. The numerical simulation experiment 

settings are displayed in Table 2. 

 

 
Table 2: Experimental setup 

Numerical simulation Term Value 

Floor stiffness(KN/m) 

1 2.00E+06 

2 1.96E+06 

3 1.92E+06 

4 1.88E+06 

5 1.84E+06 

6 1.80E+06 

7 1.76E+06 

8 1.72E+06 

9 1.68E+06 

10 1.64E+06 

Mode damping ratio 

First order 5% 

Second order 12% 

Parameter 

Time history 10s 

Sampling interval 0.02s 

White Gaussian noise 10% 

Iterations 3000 

 

The objective function established by numerical 

simulation in Table 2 is the error norm between the 

acceleration signals output by the real structure and the  

 

candidate estimation model. Each operating condition 
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undergoes 20 independent calculations and the average is 

the final recognition result. The search space is defined as 

a true value between 0.5 and 2.0 times. The structural 

system is a centralized mass system, with the mass of the 

structure concentrated on each floor slab. It is assumed 

that the mass of the structural parameters to be identified 

in the system is known. The structural response 

information collected in actual engineering may not be 

complete, this study divides the response information in 

numerical simulation into two situations: fully 

measurable and partially measurable. The structural 

parameter identification results of the ASO and RREASO 

are shown in Figure 3. 
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Figure 3: Structural parameter identification results of ASO and RREASO 

 

From Figure 3, the structural parameter 

identification problem was 12 dimensions. The average 

relative error of the two different methods was less than 

10%. When the structural measurement information was 

complete (all measurable), the error of ASO in 

identifying n9 was 7.52% (maximum error). The 

identification results of other parameters were less than 

5%. The error of RREASO in identifying n9 was 5.13% 

(maximum error), and the other parameter identification 

results were also less than 5%. When the structural 

measurement information was incomplete (partially 

measurable), the maximum error of RREASO 

identification was 5.26%, and the error of all other 

parameters was less than 5%. The maximum error of 

ASO identification was 9.87%, except for n5, n7, and A1 

which were greater than 5%. The remaining errors were 

all less than 5%. When the response information was 

partially measurable, the maximum error for RREASO 

identification was 5.3%, while the error recognized by 

ASO was 9.9%. The results show that the recognition 

efficiency of RREASO algorithm is better than ASO 

algorithm in terms of known quality and 10% noise. This 

method also has good parameter recognition ability for 

structures with more degrees of freedom. This is because 

the RREASO algorithm retains the characteristics of few 

ASO algorithm parameters and simple algorithm 

implementation. However, in the atomic search path 

selection, the RREASO algorithm does not add any 

complex operators in the original ASO algorithm. 

Therefore, the structure parameter identification method 

based on RREASO has great development potential and 

application prospect. The identification convergence 

process based on ASO and RREASO algorithms under 

both fully measurable and partially measurable response 

information conditions is shown in Figure 4. 
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Figure 4: Identification convergence process of ASO and RREASO 
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From Figure 4, compared with the ASO, the 

RREASO had a faster recognition convergence speed, 

stronger ability to jump out of local optima, and global 

optimization ability. This advantage can save much 

computation time when dealing with higher dimensional 

problems. Therefore, the RREASO is more suitable for 

solving structural parameter identification problems with 

multiple degrees of freedom. 

Secondly, to verify the effectiveness of combining 

substructure with RREASO in identifying large structural 

parameters with multiple degrees of freedom, numerical 

simulation experiments are conducted on parameter 

identification of a 25-story shear type structure. 

Assuming that the quality and damping of the simulation 

structure are known, the structure parameters to be 

identified are stiffness. Rayleigh damping matrix is used 

for damping. The system parameters of the simulation 

model are shown in Table 3. 

 

 
Table 3: 25 layer shear structure system parameters 

System parameter Setting 

Mass (kg) 1.20E+03 

Stiffness (KN/m) 1.20E+06 

First order damping ratio 5% 

Second order damping ratio 5% 

Structural response wave EI Centro 

Sampling interval 0.02s 

Collect points 2688 

 

When RREASO identifies each substructure, the 

termination condition is 500 iterations. When identifying 

the entire structure, the termination condition is 3000 

iterations. The search space is 0.5-2 times the true value,  

 

and the number of atoms is set to 50. The identification 

error of the full structure and substructure is shown in 

Figure 5. 
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Figure 5: Identification error of full structure and substructure stiffness based on RREASO 

 

From Figure 5, the maximum relative error for 

stiffness identification in the RREASO combined 

substructure identification method was 13%. Except for 

n5, n22, and n24, where the relative recognition error was 

greater than 10%, the relative recognition error of all 

other parameters was less than 10%. In the full structure 

parameter identification based on RREASO, the 

maximum relative error for stiffness identification was 

43.1%, with relative errors greater than 10% for n12, n13, 

n21, n22, n23, and n24. The average error was 8.4% for 

all parameter identification. Compared with the full 

structure parameter identification method based on 

RREASO, the structural parameter identification results 

using RREASO combined with substructure 

identification method are better. 

 

3.2 Application of structural parameter 

identification based on RREASO 
To further verify the RREASO in identifying real 

structural parameters, the study applies the RREASO 

algorithm to the system parameter identification of a 

five-story metal frame structure vibration model. Two 

types of copper columns are selected for the experiment. 

The copper columns are connected to the aluminum alloy 

floor slab through L-shaped connectors and bolts to form 

a frame. The metal plate at the bottom of the frame is 

fixed on the vibration table, with a frame height of 30cm 

and a total height of 150cm. Each floor of the framework 

is connected by four copper columns to two aluminum 
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alloy floor slabs, forming a five-story framework. Five 

out of six acceleration sensors are arranged in the sensor 

support of each layer, and the other is arranged in the 

frame bottom plate to record the acceleration signal of the 

vibration table. The sensor support is fixed to the floor 

slab by bolts. The relevant parameters of the framework 

structure are displayed in Table 4. 

 

 
Table 4: Relevant parameters of the five-story metal frame structure 

Copper 

pillar type 
Size(hxbxI) 

Inter-layer theoretical 

stiffness(N/m) 
Inter-layer mass 

A type of 

column 
0.003mx0.030m×0.24m 47240 1-4 layers 7.2523 kg 

Class II 

column 
0.003mx0.014m×0.24m 22044 

5 layer 6.5421 kg 

Young's modulus of 

copper(N/m²) 
1.0×10l 

 

The excitation equipment used in the study is a 

single degree of freedom electric servo vibration 

reduction platform. A sine sweep signal with a frequency 

ranging from 1Hz to 15Hz is used as the input signal. Its 

scanning rate is 0.5 octaves per minute (OCT/min). The 

accelerometer fixed at the bottom plate of the frame  

 

records the input signal. A part of the excitation signal is 

shown in Figure 6. The acquisition instrument is 

Donghua DH8303 dynamic signal acquisition instrument. 

The sampling frequency for acceleration time history is 

200Hz. 
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Figure 6: Time history curve of structural excitation acceleration 

 

A total of six structural conditions are built to verify 

the recognition effect of the RREASO, as displayed in 

Table 5. The structural excitation remains consistent 

under each working condition. 

 

 
Table 5: Testing conditions for frame structures 

Working condition Working conditions Theoretical stiffness reduction 

1 
The copper columns used in the framework are all Class I 

columns 
0 

2 Replace the first layer of 4 columns with Class II columns First layer reduction of 53.34% 

3 
Replace the 2nd floor of 4 copper columns with Class II 

columns 

Second layer reduction of 

53.34% 

4 Replace the 3rd floor of 4 columns with Class II column Third layer reduction of 53.34% 

5 Replace the 4th floor of 4 columns with Class II columns 
Fourth layer reduction of 

53.34% 

6 Replace the 5th floor of 4 columns with Class II columns Fifth layer reduction of 53.34% 

 

In Table 5, condition 1 shows that all copper 

columns used in the structure are Class I columns, and the 

structural state is non-destructive. In working condition 2, 

Class II columns are used to replace the four coppers  

 

columns on the first floor. In working condition 3, Class 

II columns are used to replace the four copper columns 
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on the second floor. In working condition 4, Class II 

columns are used to replace the four copper columns on 

the third layer. In working condition 5, Class II columns 

are used to replace the four copper columns on the fourth 

layer. In working condition 6, Class II columns are used 

to replace the four copper columns on the fifth floor. 

Based on the acceleration signals measured in the 

experiment, ASO and RREASO algorithms are used to 

identify the inter story stiffness of the frame structure. 

The identification results are shown in Figure 7. 
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Figure 7: Real structure identification results under different working conditions 

 

In Figure 7, the search space of both algorithms is 

0.5-2.0 times the theoretical value of inter layer stiffness. 

The iterations are 1000. From Figure 7, in operating 

condition 1, the relative errors of using RREASO to 

identify n1, n2, and n4 were less than 10%, while the 

relative errors of identifying n3 and n5 were 11.6% and 

31.9%, respectively. The ASO algorithm and RREASO 

recognition results were not significantly different. In 

working condition 2, the error in identifying n2, n3, and 

n4 using RREASO was less than 10%, while the error in 

identifying n3 using ASO was 24.2%. In working 

condition 3, the error of the RREASO recognition result 

for n1 was less than 10%. The ASO recognition result for 

n1 was 17.6%, which was 8.9% higher than the RREASO 

method. The recognition results of the ASO method for 

n2-n5 were not significantly different from those of the 

RREASO method. In working condition 4, the error of 

RREASO identification for n1, n2, and n4 was less than 

10%, and the error of n3 identification result was less 

than 20%. The ASO recognition error for n4 was 69.6%, 

which deviated significantly from the theoretical value. In 

working condition 5, the recognition errors of RREASO 

for n1 and n4 were both less than 10%, while the ASO for 

n1 and n4 were 16.9% and 11.2%, respectively. In 

working condition 6, the RREASO identification errors 

for n1, n2, n3, and n5 were 35.3%, 18.9%, 2.3%, and 

9.3%, respectively. The ASO for n1, n2, n3, and n5 were 

74.0%, 35.3%, 17.2%, and 16.7%, respectively, and the 

recognition effect was lower than RREASO. 

To verify the RREASO in identifying real structural 

damage, the stiffness reduction results identified by 

RREASO in condition 1 are used as the reference state. It 

is compared with the other five conditions. The stiffness 

reduction results identified by ASO and RREASO under 

various operating conditions are shown in Figure 8. 
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Figure 8: Identification results of stiffness reduction under various working conditions 



RREASO Building Structure Physical Parameter Identification… Informatica 48 (2024) 55–68 65 

 

From Figure 8 (a), in working condition 2, the 

theoretical stiffness reduction of the first layer was 53.3%. 

The stiffness reduction of the first and second layers 

identified by RREASO was 58.7% and 2.2%, 

respectively. The identification error was less than 10%, 

which was better than the ASO. The identification results 

of the third, fourth, and fifth layers showed a negative 

reduction in stiffness. It indicated no reduction in 

stiffness. From Figure 8 (b), in working condition 3, the 

theoretical stiffness of the second layer was reduced by 

53.3%, the RREASO identification stiffness was reduced 

by 58.9%, and its identification relative error was about 

10%, while the ASO identification stiffness was reduced 

by 47.4%. From Figure 8 (c), in working condition 4, the 

theoretical stiffness of the third layer was reduced by 

53.3%, and the RREASO identification stiffness was 

reduced by 57.7%, with a relative identification error of 

only 8.2%. The relative recognition error of the other 

layers was less than 8%. The stiffness reduction of the 

third layer identified by ASO was 35.90%. From Figure 8 

(d), in working condition 5, the theoretical stiffness of the 

fourth layer was reduced to 53.3%. RREASO reduced the 

recognition stiffness to 54.4%, while ASO reduced the 

recognition stiffness to 53.5%. The recognition results of 

the two algorithms are not significantly different. From 

Figure 8 (e), in working condition 6, the theoretical 

stiffness of the fifth layer was reduced to 53.3%. The 

RREASO reduced the recognition stiffness to 67.8%, 

while ASO reduced the recognition stiffness to 70.1%. 

The results of both methods in identifying the stiffness 

reduction of each layer are not very good, but RREASO 

has better recognition performance than ASO. 

To further verify the effectiveness of the proposed 

method, the monitoring data from Bridge A is adopted. 

After 19 years of operation, the damage has accumulated, 

including concrete cracking, steel corrosion, pier damage, 

etc. The first maintenance and reinforcement project was 

carried out from July 2006 to February 2007. Specific 

reinforcement measures include replacement and 

reinforcement of closed sections, full bridge cable 

replacement, and bridge deck renovation, etc. The second 

repair was conducted form December 2008 to May 2009. 

Before the second maintenance, the structural health 

monitoring system with 15 acceleration sensors as the 

main component was designed for the bridge, so as to 

timely detect the structural damage leading to major 

disasters of the bridge, and improve the safety and 

reliability of the bridge. The structural dynamic response 

system in the structural health monitoring system fully 

recorded the vibration data of bridge A from the health 

state to the damage state (January 2008 to July 2008). 

When evaluating the RREASO prediction 

performance, only 300 continuous data are intercepted. 

Among these 300 data samples, the first 200 data samples 

are used as the training set for predicting the next data 

point (201 data point) (which is also known as one-step 

prediction). The second data to 201 data are used as the 

training set for predicting the next data point (202 data 

point), and so on. The one-step prediction is repeated 100 

times. The prediction results of environmental vibration 

data in the damage state are shown in Figure 9. 
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Figure 9: Prediction results of environmental vibration data in the damaged condition 

 

In Figure 9, the vibration data in the damaged 

condition is from acceleration sensor # 1 during 

01:00-02:00 on July 31,2008. Figure 9 (a) shows the 

prediction results of the RREASO algorithm on the 

environmental vibration data in the damaged state. The 

RMSE of SBL was 0.0116. From Figure 9 (b), most of 

the inferred weights were zero, and the number of non w 

(i. e. w in equation 2) was only 44. The results show that 

the prediction results are more consistent with the 

measured data, and the research algorithm is feasible. 

4 Discussion 

The numerical simulation results showed that when all 

the response information was measurable, the maximum 

relative error of ASO and RREASO was 7.5% and 5.1%, 

while the recognition result of other parameters was also 

less than 5%. When the response information was 

measurable, the maximum error of RREASO and ASO 
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was 5.3% and 9.9% respectively. The results show that 

the maximum identification error and mean error of 

RREASO are smaller than the ASO identification results, 

whether the test information is complete or not. The 

result is in line with the results of Han et al. [15] in the 

parameter identification study for the speed regulation 

system of pumped storage units. The ASO is influenced 

by the complex scene structure when improving the 

global search power of the initial population, leading to 

increased identification error. Compared with the ASO 

method, the parameter identification results based on the 

RREASO method were better, and the performance of the 

RREASO algorithm was somewhat improved. This is 

because the RREASO algorithm retains a small number 

of ASO algorithm parameters and simple algorithm 

implementation characteristics. In the atom search path 

selection, the RREASO algorithm does not add any 

complex operators to the original ASO algorithm, which 

can identify more complex building structures. In the 

identification method using RREASO binding 

substructures, the maximum relative error of stiffness 

identification was 13%, and less than 10% except for n5, 

n22, and n24. In the RREASO-based full structure 

parameter identification, the maximum relative error of 

stiffness identification was 43.1%, with n12, n13, n21, 

n22, n23, and n24 all greater than 10%. The results show 

that when identifying the low-level structure parameters, 

the whole structure parameters based on RREASO is 

more effective. The stiffness of the upper part of the 

structure becomes worse. When using the 

RREASO-based substructure identification method, the 

identification results of each substructure are roughly the 

same and the recognition effect is good. This result is 

consistent with the multi-objective binary results based 

on ASO algorithm proposed by Asna et al. [16] for the 

planning of fast charging stations for electric vehicles. In 

general, compared with the RREASO-based full structure 

parameter identification method, the structural parameter 

identification results using RREASO combined with 

substructure identification method are better, because the 

convergence speed of the algorithm is improved when the 

method is used for the construction parameter 

identification target. 

5 Conclusion 

With the development of large-scale, complex and 

intelligent infrastructure facilities, the civil engineering 

structure damage is becoming increasingly prominent. 

Accordingly, starting from the idea of increasing the 

randomization features of the algorithm and maintaining 

population diversity, this paper combined substructure 

techniques to introduce roulette wheel selection strategy, 

random walk, and elite selection strategy into the ASO 

algorithm, and improved the ASO algorithm. The 

numerical simulation experimental results showed that 

the parameter identification results of RREASO 

algorithm were less than 5%, which was better than ASO 

algorithm. It indicated that the global search ability of the 

improved algorithm and the identification accuracy were 

improved. The improved algorithm was applied to the 

structural parameter identification of the five-layer metal 

frame structure model. The experimental results showed 

that the identification error of RREASO algorithm was 

less than 10%, the identification stiffness was reduced to 

58.85%, and the relative error was about 10%, which was 

better than ASO algorithm. The improved algorithm was 

effective and feasible for the identification of building 

structure damage. First of all, the improved ASO 

algorithm has been improved compared with the original 

ASO algorithm. The identification accuracy of the 

algorithm is higher than other methods. However, in 

terms of computational efficiency, it still needs to be 

improved compared with other methods. In addition, the 

ASO algorithm can be applied to finite element model 

correction in structural dynamics in the future. Finally, 

the proposed method is only well verified in numerical 

simulation and small-scale shear frame test model 

parameters identification. In the future, attempts can be 

made to identify more complex structural model 

parameters, and even actual engineering structural 

parameters can be identified. 
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