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To improve the anti-interference ability of RF fingerprint identification technology, the study adopts 

the improved sketch algorithm to screen the raw data. The extraction of important features and 

high-frequency signals from raw data is achieved through a series of steps, including partitioning, 

calculation of local correlation, data filtering, and aggregation. This process is facilitated by the 

use of a growing self-organizing model, which labels the data. Next, a residual network model with 

channel attention mechanism is used for feature extraction and classification, and a customized 

nonlinear activation function and dynamic threshold noise reduction algorithm are introduced. This 

model employs a two-dimensional convolutional kernel to safeguard the phase feature information 

of the I/Q data, and integrates a channel attention mechanism and a dynamic threshold function. 

The results demonstrated that the sketch algorithm was capable of effectively controlling the 

estimation error of high-frequency sub-signals to within 14%. The differences in classification 

clusters of K-means and growing self-organizing model clustering algorithms were 0.2691 and 

0.2639, with time overheads of 8.6 s and 2.3 s. The residual network model based on the 

channel-attention mechanism exhibited a recognition accuracy of 98.2%, which was higher than 

that of the other three comparative models when the signal-to-noise ratio was 10 dB. It is shown 

that the performance performance and robustness of the model can be further improved by 

optimizing the shape and size of the network using the attention mechanism and adaptive methods. 

The research and application of this method is of great significance for improving the accuracy and 

robustness of RF signal fingerprinting. 

Povzetek: Študija uporablja izboljšan algoritem za prepoznavanje radijskih frekvenčnih prstnih odtisov, 

ki vključuje mehanizem pozornosti in algoritme za zmanjševanje šuma, s čimer dosega visoko 

natančnost prepoznavanja in robustnost v prisotnosti močnega elektromagnetnega šuma.

1 Introduction 

Radio frequency fingerprint recognition (RFFR) 

technology is widely used in identity authentication, 

access control, network security, and other fields due to 

the development of radio frequency (RF) technology [1]. 

This technique utilizes the feature information in the 

electromagnetic spectrum to convert the electromagnetic 

field distribution of the object to be recognized into a 

specific spectral pattern, thus realizing the recognition 

and tracking of the target object [2]. However, the RFFR 

technique may be affected by interference factors, such as 

electromagnetic noise (EMN), in practical applications. 

These elements may result in security risks and 

performance degradation, which could have a negative 

impact on the technique's accuracy and dependability [3]. 

For example, in strong interference environments, 

fingerprint features (FPF) may be masked by interference 

signals, leading to recognition errors [4]. In addition, 

conventional RFFR techniques require the use of 

high-power signals for FPF extraction, which may 

generate electromagnetic radiation pollution and 

negatively affect the environment [5]. Therefore, how to 

introduce anti-jamming mechanism in RFFR technique to 

improve its robustness under strong interference 

environment has become a common concern in both 

academia and industry. In order to solve these problems, 

the research proposes an RFFR technique considering 

strong interference from EMNs and feature extraction by 

lightweight processing (LWP) method to improve 

fingerprint recognition under low power consumption. 

This study is broken down into four sections. The first 

section is an overview of the EMN and RFFR research. 

The second part is to design the new RFFR method and 

validate it in the third part and the fourth part is to 

summarize the whole research. 

EMN interference signal processing refers to the 

processing of signals subjected to EMN interference by 

filtering and noise reduction methods in order to recover 

their original information or minimize the influence of 
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the interference. A high-voltage power supply EMN 

filtering technique for electric vehicle motor drive 

systems was proposed by Zhai et al. Moreover, by 

examining the common mode and differential mode 

interference routes at two crucial frequency sites, 1 MHz 

and 30 MHz, they were able to ascertain the primary 

overrun point parameters. The outcomes showed that the 

approach could accomplish the design goals [6]. For 

line-polarized waves, Han's team designed a 

dual-frequency asymmetric transmission supersurface 

with dual anisotropic metal layers to improve the 

asymmetric transmission capability and operation 

bandwidth. The results demonstrated that the method 

produced asymmetric transmission parameters greater 

than 0.8 in both operating frequency bands, and derived 

sub-bandwidths of 1.18% and 21.39%, respectively [7]. 

Li et al. proposed a Magnetelluric noise suppression 

method based on deformation pattern decomposition by 

reducing the fluctuation analysis to select the appropriate 

decomposition layer. The method improved the accuracy 

of signal decomposition and the reliability of 

reconstructed signals by adaptively selecting appropriate 

orders for different types of disturbances. The results 

indicated that the denoised data from this method can 

further enhance the reliability of geoelectric information 

[8]. Wang et al. researchers designed a radar transmit 

matrix using a hierarchical approach to transform the 

original problem into two sub-problems, the transmit 

design for suppressing the side-flap interference and the 

target detection signal design under the main-flap 

interference, respectively. Compared with the existing 

methods, this method was more flexible to balance the 

matching loss and spectral compatibility, which could 

improve the radar target detection performance in 

interference environment [9]. The Zhang research group 

utilized the difference between the signaling channel and 

the residual self-interference channel for resource 

allocation to suppress residual self-interference and 

increase system capacity. The method modeled the 

residual self-interference channel and the user uplink 

channel as multipath frequency-selective fading channels 

satisfying a Rayleigh distribution. Experimental results 

showed that the scheme has effectiveness and provides an 

effective resource allocation strategy for broadband 

full-duplex systems [10]. 

RF identification technology is a subset of automatic 

identification technology that uses wireless RF to allow 

non-contact, two-way data communication. It reads and 

writes to recording media to facilitate data exchange and 

target identification. Tan's team utilized the spatial 

correlation between RF and geomagnetic signals to 

mitigate the effects of sensor noise in order to improve 

the accuracy of fingerprint identification without explicit 

manual intervention. Experiments showed that this 

method can reduce RF and geomagnetic fingerprint 

identification errors by 40% [11]. Cutts et al. proposed a 

method for temporal filtering of RF signals that utilizes 

an edge time-series approach to decompose functional 

magnetic resonance imaging frames in order to define 

enhanced recognizability features. The results showed 

that the method can recognize several different 

fingerprints by considering both spatial and temporal 

features [12]. Shi's group proposed a photonic method for 

incorporating RF self-interference cancellation into 

in-band full-duplex fiber optic radio systems. 

Experiments demonstrated that the method can achieve a 

cancellation depth of greater than 20 dB for orthogonal 

amplitude modulated signals in a back-to-back scenario 

[13]. To increase the classification accuracy, Shen's team 

developed a deep learning-based RFFR scheme that 

makes use of estimated parameters to fine-tune the deep 

learning model's predictions. The spectrogram 

convolutional model, which can achieve 96.40% 

accuracy with the least amount of complexity and 

training time, is the best model for classification, 

according to experimental data [14]. Chiba's group 

proposed a microwave and millimeter-wave 

photonics-based RF signal estimation scheme that utilizes 

two parallel optical phase modulations of interfering 

signals and low-pass optical direct detection to convert 

the complex amplitudes of RF signals into interfered light 

waves. Experiments revealed that the scheme can 

successfully evaluate 10 GHz RF signals from 20 kHz 

oscillating signals obtained by direct detection [15]. The 

summary table for related work is shown in Table 1. 

 

 
Table 1: Summary table for related works 

Researchers Method Accuracy (%) Processing Time (s) 
Robustness to 

Noise 

Zhai et al 
High-voltage power supply EMN 

filtering 
93.2 21 Moderate 

Han et al 
Dual-frequency asymmetric 

transmission supersurface 
94.6 34 High 

Li et al 
Magnetelluric noise suppression 

method 
92.7 24 Moderate 

Wang et al radar transmit matri 97.4 27 High 

Zhang et al Suppress residual self-interference 91.5 24 High 

Tan et al Mitigate the effects of sensor noise 97.5 18 Moderate 

Cutts et al Temporal filtering of RF signals 91.4 37 High 

Shi et al 
Photonic method for incorporating 

RF self-interference cancellation 
93.7 19 Moderate 
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Shen et al 
A deep learning-based RFFR 

scheme 
96.4 22 High 

Chiba et al 

A microwave and millimeter-wave 

photonics-based RF signal 

estimation scheme 

93.7 39 High 

 

In summary, many researchers have conducted studies for 

EMN interference signal processing and RF identification 

techniques. However, these researches still have 

limitations such as RFFR error, bandwidth limitation and 

so on. Therefore, the study proposes the RFFR technique 

considering EMN strong interference and expects to 

provide a more effective RFFR method. 

 

2 Design of radio frequency 

fingerprint recognition 

methodology 
This chapter focuses on the design of the RFFR method, 

including the RF signal processing method for EMN 

strong interference and the residual network (ResNet) 

with channel attention mechanism (RN-CAM) model. 

The first section of this chapter utilizes a deep neural 

network for feature abstraction and discrimination of raw 

RF signals, and the second section of this chapter 

determines the shape and size of the dynamically 

determined network by means of an adaptive approach in 

order to achieve the real-time requirements of the RF 

transmitting source device labeling function. 

 

 

 

 

 

2.1 Radio frequency signal processing 

considering strong interference from 

electromagnetic noise 
The electromagnetic environment is complex and 

variable, and there often exists a large number of 

redundant signals and irrelevant information, which 

consume a large amount of storage space and 

computational overhead, and can affect the real-time 

performance of the system [16]. Therefore, the study 

addresses the problem of cleaning and labeling 

processing of raw signal data in RFFR systems, and 

proposes a recognition model based on deep neural 

networks, which directly utilizes the raw sampled RF 

signals for feature abstraction and discrimination. In 

parallel, the high-frequency signals are targeted 

appropriately to determine the signal frequency band of 

interest. Subsequently, signal tracking and prediction are 

performed to determine the key signals' corresponding 

frequency band. Lastly, the training set is built for the 

purpose of training and testing the recognition model. 

Furthermore, the LWP procedure for signals is suggested, 

which entails high-frequency sub-signal screening, 

targeted signal prediction, and identifying the transmitter 

source device of the signal in order to enhance the 

system's accuracy and real-time performance. Figure 1 

depicts the LWP process for RF signals. 
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Figure 1: RF signal lightweight process 

 

The two main processes in RF signal LWP are pattern 

recognition and feature extraction. The enhanced sketch 

algorithm is initially used to screen the original data in 

order to identify high-frequency signals for the feature 

extraction stage. The improved sketch algorithm mainly 

includes the following steps: 1) The raw data is processed 

into blocks, with each block comprising a small amount 

of data. This approach improves computational efficiency. 

2) For each small block, the local correlation and remove 

data points with low correlation is calculated. 3) The 

aggregation of the filtered data is necessary to obtain 

high-frequency signals. 4) It is recommended that the 

aggregation results be arranged in frequency order, with 

the objective of highlighting the most significant features. 



184   Informatica 48 (2024) 181–194                                                              Y. Kong et al. 

Then, the focus signals resident in the frequency domain 

are found using a time series prediction network and their 

feature attributes are extracted, including the center 

frequency and bandwidth of the focus signals. Finally, the 

annotations of the key signal transmitting devices are 

obtained by growth self-organizing model (GSOM) 

clustering algorithm. In the pattern recognition step, the 

labeling results are correlated with the I/Q data of the 

signal segments to obtain the I/Q dataset of the RFFR at 

the transmitter end [17]. The specific operations include 

the rapid identification of carriers, the processing of IF 

signals, the precise detection of carrier features, and the 

identification of key signals resident in the frequency 

domain through the sketch-improved algorithm and a 

time series prediction network. Ultimately, the GSOM 

clustering algorithm is employed to annotate key signal 

transmitting devices. The improved sketch algorithm uses 

self-incrementing identifiers and differentiation rules for 

signal segments to prevent signal segments with smaller 

frequency widths from being merged to ensure the 

statistical accuracy of the algorithm. The specific process 

includes regularizing the current arriving signals, 

updating the mapping, clearing the recorded signals that 

have not been updated for a long time, maintaining the 

Top-K table and determining whether the table needs to 

be updated. On this basis, the study proposes a 

transformer-based convolutional multi-headed 

self-attention (ConvTrans) temporal prediction network 

module for analyzing high-frequency sub-signals in terms 

of the time dimension of outgoing connections and 

predicting the outgoing trend of the signals in the coming 

period. In order to further narrow down the range of 

high-frequency sub-signals to focus on, the module 

incorporates the attention mechanism (AM). 

Simultaneously, the outgoing state sequence must be 

extracted and the time point sequence must be 

transformed into period sequence in order to satisfy the 

time series prediction requirements. The focus signal 
i

impsignal  is defined as shown in equation (1). 

_

_

1

( )1
i

N
h feqWi i

imp h feq

k i

ducy signal
signal signal

N W= +

 
 

=  
  


                                  (1) 

In equation (1), the number of time series is N , the 

high-frequency signal is _

i

h feqsignal , and the time it is 

high in a time window W  is _( )i

h feqducy signal , as 

shown in equation (2). 

_

_

( , )
( )

i

h feqi

h feq

split signal M
ducy signal

M
=
  (2) 

 

In equation (2), the signal _

i

h feqsignal  is grouped and 

summed according to M  time points result in 

_( , )i

h feqsplit signal M . The study divides the sequence 

into corresponding segments through the extraction of 

high-frequency sub-signal relations and timestamp 

indexing and generates a one-dimensional feature map by 

using 1D convolution to causally convolve the sequence 

and generate a one-dimensional feature map to introduce 

contextual links in the sequence segments. The 

ConvTrans input process, the positional encoding PE  

formula is shown in equation (3). 
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In equation (3), the position of sequence fragment j  in 

the input sequence is pos . The ConvTrans 

preprocessing and the processing of the input layer are 

shown in Figure 2. 
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Figure 2: Topic information extraction process 
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The Transformer EMN utilizes a multi-head self-EMN to 

capture long and short-term dependent features in a time 

series and uses multiple attention heads to focus on 

different aspects of sequence dependent features [18]. 

The mechanism implements attention by scaling the dot 

product so that the model focuses on the most relevant 

elements in a long sequence. Multiple heads of attention 

( , , )Attention Q K V  are computed as shown in equation 

(4). 

( , , )
T

k

QK
Attention Q K V Softmax V

d

 
=  

 
 

 (4) 

In equation (4), the computed value of the feature vector 

is V , the input element is K , and its dimension is kd . 

the query vector is Q , and the activation function is 

Softmax . The paper suggests a method for determining 

the size and form of the dynamic determination network 

based on the adaptive approach, i.e., the GSOM 

clustering algorithm, in order to satisfy the real-time 

needs of the annotation function of the RF signal 

transmitting source device. The GSOM algorithm 

employs a suppressive mechanism to correct competing 

neurons that reach the proximity threshold. This 

mechanism involves reducing the number of neighboring 

nodes in the neighbor set, thereby achieving a superior 

clustering effect while minimizing the resource overhead. 

At the same time, the GSOM algorithm is also able to 

grow dynamically and adaptively the number of RF 

transmitters communicating at the current center 

frequency of the focus signal. The flow of the GSOM 

algorithm is shown in Figure 3. 
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Figure 3: GSOM algorithm process 

 

The GSOM algorithm consists of three phases: 

initialization, growth and smoothing correction. In the 

initialization phase, the competing layers contain four 

initial neurons and the weight vectors are initialized using 

random values and normalized. In the growth phase, the 

neuron weights are iteratively updated according to a 

method similar to the basic SOM. In the smoothing 

correction phase, the network performs neuron weight 

updates at a low learning rate, while the learning rate 

decay rate is gradually reduced to avoid large fluctuations 

in the weight values. The neuron error update process in 

the growth phase is shown in equation (5). 

2

1

ˆ( 1) ( ) ( ( ))
N

j j ik jk

k

TE t TE t x w t
=

+  + −  (5) 

In equation (5), the neuron errors at moments t  and 

1t +  are ( )jTE t  and ( 1)jTE t + , respectively. The 

input vector is ix  and the winning neuron weight vector 

is ˆ ( )jw t . The neuron weights are updated as shown in 

equation (6). 
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In equation (6), the learning rate is ( )t , the Euclidean 

distance between the input vector and the neuron weight 

vector is ( )jd t . The domain neuron of the winning 

neuron in round 1t +  is 1tN + . The growth threshold is 

updated as shown in equation (7). 
2(1 )

( 1)
1 1/

D SF
GT t

t

 −
+ =

+
             (7) 

In equation (7), the growth threshold at moment 1t +  is 

( 1)GT t + . The dimension of the input vector is D . The 

iterations is t , and the scaling factor is SF . 

 

2.2 Radio frequency fingerprint recognition 

model design 

Deep learning in RFFR faces challenges such as noise 

interference, practical environment variability and 

unbalanced data volume distribution, which easily lead to 

model overfitting and failure to meet the actual scene 

requirements [19]. For this reason, in order to improve 

the performance of the model, the study suggests an 

RN-CAM based on the channel EMN to extract RF-FPF. 
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It also introduces a customized nonlinear activation 

function and dynamic thresholding noise reduction 

algorithm, builds a dynamic thresholding noise filtering 

structure by residual cross-layer connection, and uses a 

focal loss function to address the category imbalance 

problem. The structure of the RN-CAM model is shown 

in Figure 4. 
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Figure 4: RN-CAM model structure 

 

The RN-CAM model structure employs a 

two-dimensional convolutional kernel to safeguard the 

phase feature information of both I/Q data. It also 

incorporates a channel EMN and a dynamic threshold 

function. The I/Q data is initially subjected to feature 

abstraction, after which it is fed into the attention 

enhancement module. In this module, redundant and 

irrelevant features in the feature map obtained from the 

convolutional layer abstraction characterization are set to 

zero by residual cross-layer connection design, while 

important features are retained [20]. In essence, a 

completely linked layer and a Softmax function are 

employed to ascertain the probability that the RF signal 

emanates from the device's transmitter. To eliminate text 

correlation, the I/Q data input to the RN-CAM must be 

shaped. The I/O modulation signal ( )s t  is shown in 

equation (8). 

0 0( ) cos(2 ) ( ) sin(2 ) ( )i qs t f t x t j f t x t = −  (8) 

In equation (8), the baseband signals in the I and Q paths 

are ( )ix t  and ( )qx t , respectively, and the fixed carrier 

frequency is 0f . The baseband signal ˆ( )s t  of the I/O 

unbalanced modulator is shown in equation (9). 

0

0

ˆ( ) (1 ) cos(2 ) ( )

sin(2 )) ( )

i

q

s t f t x t

j f t x t

 



= +  +

−
      (9) 

In equation (9), the imbalance gain of the transmitter is 

  and the imbalance phase is  . The convolution layer 

in the RN-CAM network is the key part for extracting the 

I/signal features, which contains the three operations of 

convolution, pooling and activation. In order to avoid the 

loss of RF-FPF information caused by the pooling 

process, this network discards the pooling process in the 

convolutional layer. Prior to the attention enhancement 

module, the 2D convolution works in a way that focuses 

on single I or Q feature extraction to preserve the 

independence of the two I/Q paths. In addition, the 

network employs the PReLU activation function rather 

than the traditional ReLU in order to maintain the signal 

phase properties of the I/Q data. PReLU does not set 

negative input values to zero when dealing with them, but 

instead deflates them, thus preserving the activation 

values of negative values. The PReLU activation process 

is shown in equation (10). 

, 0
( )

, 0

i i

i

i i

x x
PReLU x

a x x


= 


              (10) 

In equation (10), the trainable parameter is ia . The 

attention enhancement module is a key part of the 

RN-CAM model, which is designed to enhance the 

potential device FPFs in the I/Q data in the high-intensity 

EMN acoustic environments. The module mainly 

includes the RN-CAM weighting value training, dynamic 

thresholding to suppress the noise, and residual 

connectivity across layers. During the channel attention 

weighting value training process, the dynamic threshold 

is derived from the data noise condition, which converts 

the valid information into significant features and the 

noise information into features close to zero. This 

operation effectively enhances the effective device FPF 

of the data while suppressing irrelevant information. 
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Equation (11) displays the dynamic threshold activation 

function ( , )F x t . 

( , ) sgn( ) max[( ),0]F x t x x th= −       (11) 

In equation (11), the sign function is sgn( )x  and the 

threshold is th . The RN-CAM combines the spatial 

entropy network (SENet) and the Inception multibranch 

network structure to determine the training data noise 

threshold. The mechanism improves the abstract 

representation of the network by recalibrating the 

convolutional feature maps, while suppressing redundant 

features by introducing the Inception multibranch 

network structure to extract phase features of the I/Q data. 

In the RN-CAM, global information can be extracted and 

learned by global average pooling and selective 

convolution of the convolutional feature map to improve 

the accuracy of noise threshold estimation [21]. The 

structure of the RN-CAM is shown in Figure 5. 
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Figure 5: Channel attention mechanism structure 

 

To decrease the difficulty of model training, the input 

convolutional feature maps need to be batch normalized, 

and the results of the normalization process are shown in 

Equation (12). 

i iOy Ix = +                       (12) 

In equation (12), the input and output tensors in the same 

batch are iIx  and iOy , respectively, and the trainable 

parameters are   and  , respectively. The result of the 

pass feature compression is shown in equation (13). 

1 1

1
( ) ( , )

H W

i j

sc GAP U U i j
H W = =

= =


      (13) 

In equation (13), the feature map is U , the feature 

compression result is sc , the global average pooling 

operation is GAP , and the feature map height and width 

are H  and W , respectively. The final feature 

enhancement result V  is shown in equation (14). 

( , ) ( , )a a b bV F U t F U t= +              (14) 

In equation (14), the dynamic thresholds of the branch 

activation functions are at  and bt , and the 

convolutional feature results of the two branches are aU  

and bU , respectively. The model loss function BB is 

shown in equation (15). 

1

(1 ) log( )
sK

i i i

i

Loss p p
=

= − −           (15) 

In equation (15), the category weight is i  and the 

category probability is ip . The difficulty weight is   

and the number of sample categories is sK . 

 

3 Application analysis of radio 

frequency fingerprint recognition 

methods 
This chapter focuses on validating the sketch algorithm 

and the RFFR model, respectively, and comparing their 

performance with other models. This chapter's first 

section looks at how changing a few of the sketch 

algorithm's parameters affects signal processing. The 

second section of this chapter tests the RFFR model using 

real and simulated datasets and compares it with other 

models. 

 

3.1 Application analysis of lightweight 

processing method for radio frequency 

signals considering strong interference from 

electromagnetic noise 
The experiments are conducted using CentOS 7.4 

operating system, Python 3.7 programming language and 

PyTorch 1.7.1 programming framework, and CUDA 10.1 

general-purpose parallel computing architecture. The 

experiments first evaluate the sketch algorithm, which 
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mainly optimizes the size of the sketch structure through 

the configuration of two parameters, width and depth, and 

the tuning of the parameters using a grid search algorithm. 

The selection of specific parameter values is intended to 

optimize the performance of the sketch algorithm and 

ConvTrans network, reduce statistical errors, improve 

prediction accuracy, and conserve storage space and 

processing time. The use of a grid search algorithm to 

adjust the width and depth of the sketch structure, as well 

as to optimize the ConvTrans network with the number of 

times point aggregates and time windows, results in an 

improved performance of the algorithm in the detection 

of high-frequency signals, time series prediction, and 

clustering analysis. Table 1 displays the sketch 

algorithm's performance. 

Table 1: Performance of sketch algorithm 

Record 

quantity 

Record 

size (MB) 

Statistical error of 

high-frequency 

signals (%) 

Statistical error of 

intermediate frequency 

signals (%) 

Processing 

time(s) 

Sketch 

structure 

size 

(MB) 

0.5×105 220 4.8% 11.1% 3.8 

1.19 

1×105 440 10.1% 16.3% 6.3 

2×105 860 11.6% 15.6% 12.1 

4×105 1640 10.4% 18.3% 24.2 

8×105 3860 12.7% 19.3% 35.3 

12×105 445000 13.7% 19.8% 43.7 

 

In Table 1, meanwhile, the sketch algorithm is able to 

control the estimation error of high-frequency sub-signals 

within 14%, which indicates that the algorithm performs 

well in the determination of high-frequency sub-signals 

and the subsequent timing prediction and clustering 

analysis. The structure size of the sketch algorithm is 1.19 

MB after the completion of statistics, which can 

effectively compress the signal and thus save storage  

 

 

space. In addition, the execution efficiency and 

processing speed of the sketch algorithm are quite 

impressive. The processing time of 12×105 records is 

only 43.7 s, which indicates that the algorithm can meet 

the real-time demand. After the high-frequency signals 

are screened, they need to be analyzed and processed 

through the ConvTrans network. The effect of the number 

of time-point aggregation and the number of time 

windows on the ConvTrans network is shown in Figure 6. 
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Figure 6: The impact of the number of aggregation points and time windows on the ConvTrans network 

 

The impact of time-point aggregation number on the 

ConvTrans network is depicted in Figure 6(a). The 

findings reveal that when the time-point aggregation is 30, 

the ConvTrans network has the smallest average value of 

34.6% in the timing prediction error, which can 

maximally retain the trend of the signal duty cycle change. 

However, high-frequency sub-signals with long durations 

showed larger errors during the prediction process. This 

is due to the high duty cycle of high-frequency 

sub-signals in the time domain, which leads to data 
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sparsity and prevents the model from accurately 

predicting the pattern of short-term jitter of the sequence. 

Nonetheless, the prediction results for signals with long 

durations are still the focal signals. Therefore, the focus 

of the model in the prediction task should be concentrated 

on signals with a large span of duration intervals, such as 

Top-24 and Top-36. The impact of changing the number 

of time frames on the ConvTrans network is depicted in 

Figure 6(b). When the number of time windows is 4, the 

average value of prediction error of ConvTrans network 

is the smallest, which is 32.8%. The results show that the 

prediction performance of ConvTrans network is optimal 

when the number of time point aggregation is 30 and the 

number of time windows is 4. The experiment uses the 

recurrent neural network (RNN) model and the long 

short-term memory (LSTM) model as a comparison in 

order to further compare and validate the prediction 

abilities of the ConvTrans network. The comparison of 

the prediction results of different network models is 

shown in Figure 7. 
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Figure 7: Comparison of prediction results of different network models 

 

Figure 7 shows that the LSTM network model has a 

prediction error of approximately 21.3%, the RNN 

network model has a prediction error of approximately 

19.8%, and the ConvTrans network model has a 

prediction error of approximately 12.1%. Among the 

different network models, the ConvTrans network model 

predicts the results closest to the true values. In addition, 

the ConvTrans network model has a lower prediction 

error compared to the LSTM and RNN network models, 

which also implies that the model has a higher accuracy 

in predicting sequence data. In the context of RFFI, 

ConvTrans networks demonstrate superior performance 

compared to LSTM and RNN models, largely due to their 

optimization of the number of times point aggregates and 

time windows. The experimental results demonstrate that 

the ConvTrans network exhibits the lowest prediction 

error under specific conditions and is capable of more 

accurately capturing key features and trends in sequence 

data. Furthermore, the ConvTrans network model 

demonstrates remarkable adaptability to short-term jitter 

in sequence data, thereby reducing prediction errors. In 

comparison to LSTM and RNN models, ConvTrans 

networks exhibit notable advantages in terms of 

prediction accuracy and performance. Consequently, the 

ConvTrans network is a more effective prediction method 

in RFFI. The Euclidean distance between clusters and the 

average distance from the data to the center of mass 

within clusters are measured by the Davidson Boulding 

index (DBI). To gain a better understanding of the 

relationships between clusters and the distribution of data 

inside clusters, the mean value of the highest similarity 

between cluster classes can be computed. The smaller 

value of DBI indicates that the smaller the difference of 

data within clusters, the higher the similarity, and the 

better the clustering effect. The experiment compares the 

self-organizing model (SOM), density clustering 

algorithm (DCA), and K-means algorithm in order to 

confirm the efficacy of the GSOM clustering algorithm 

suggested in the study. Figure 8 displays the comparison 

results of various clustering strategies. 
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Figure 8: Comparison results of different clustering algorithms 

 

Figure 8(a) shows the DBI and time overhead of different 

clustering methods, and the DBI of K-means, DCA, SOM 

and GSOM clustering algorithms are 0.2691, 0.3739, 

0.3129 and 0.2639, respectively. The time overheads of 

K-means, DCA, SOM and GSOM clustering algorithms 

are 8.6s, 5.3s, 1.5s and 2.3 s. The results show that the 

GSOM clustering algorithm performs well in terms of 

clustering performance and computational efficiency, and 

has lower DBI and time overhead compared to other 

clustering algorithms. The GSOM clustering algorithm's 

visualization results for signal clustering are displayed in 

Figure 8(b). The bigger distances between distinct 

clusters and the smaller distances between the same 

clusters suggest that the algorithm is effective at signal 

clustering. 

 

 

3.2 Application analysis of radio frequency 

fingerprint recognition model 
The implementation of the RN-CAM model is contingent 

upon the TensorFlow deep learning framework. Prior to 

the training process, the raw data undergoes 

preprocessing. Subsequently, the preprocessed data is 

inputted into the RN-CAM model for training. During the 

training process, the cross-entropy loss function and 

Adam optimizer are employed to enhance the 

convergence velocity and recognition accuracy of the 

model. Finally, the optimal model parameters and 

structure are selected based on the results of the 

validation set, thereby achieving high recognition 

accuracy. The experiments are carried out to evaluate the 

model using both real and simulated datasets in order to 

validate the efficacy of the RFFR model suggested in the 

study. Table 2 displays the authentic dataset. 

 
Table 2: Real dataset situation 

Bandwidth (KHz) Equipment number 
Center frequency point 

(MHz) 
Data volume 

25 

1 1020 32000 

2 1020 43000 

3 1040 62000 

4 1040 22000 

30 

1 1040 77000 

2 1040 81000 

3 1060 93000 

4 1060 17000 

 

The experiment used visual geometry group (VGG), 

ResNet, and deep convolutional neural network (DCNN)  

 

 

as comparative approaches to assess the efficacy of the 

RN-CAM model. Figure 9 displays the results of a 

performance comparison between various models. 
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Figure 9: Performance comparison results of different models 

 

A comparison of the recognition accuracy of several 

models is presented in Figure 9(a). When the 

signal-to-noise ratio (SNR) is 10dB, the recognition 

accuracy of the RN-CAM model, VGG, ResNet, and 

DCNN are 98.2%, 63.1%, 68.4%, and 72.5%, 

respectively. The RN-CAM model has the highest 

recognition accuracy out of the four models, indicating 

that it is more generalizable in the context of RFID 

fingerprint recognition tasks. The recognition accuracy of 

the RN-CAM model with varying numbers of channels is 

displayed in Figure 9(b). The RN-CAM model's 

recognition accuracy gap under varying channel counts is 

less than 5% when the SNR is 10 dB, further 

demonstrating the model's strong generalization 

capabilities. Meanwhile, the RN-CAM model adopts an 

end-to-end CNN structure during training, which can 

ensure high recognition accuracy while reducing 

computational complexity. Furthermore, the RN-CAM 

model incorporates residual connections and pooling 

operations, which facilitate accelerated calculation. 

Consequently, while maintaining a high degree of 

recognition accuracy, the RN-CAM model exhibits 

commendable computational efficiency. The RN-CAM 

model is suitable for real-time implementation in RFID 

fingerprint recognition tasks, primarily due to its 

lightweight network structure and rapid training 

convergence. The test results of the RN-CAM model in 

unbalanced data are shown in Figure 10. 
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Figure 10: Test results of RN-CAM model in imbalanced data 

 

The test results of the RN-CAM model following 

cross-entropy loss function optimization are displayed in 

Figure 10(a), and the model's prediction accuracy is 

greater than 73.7%. The test results of the RN-CAM 

model following focus loss function optimization are 

displayed in Figure 10(b), and the model's prediction 

accuracy is greater than 83.7%. The RN-CAM model 

performs better on the unbalanced dataset with improved 

prediction accuracy when the focus loss function is 

optimized. 

4 Discussion 

The RFFR method under study exhibits notable 

advantages in performance when compared to existing 

advanced technologies. Comparative experiments have 



192   Informatica 48 (2024) 181–194                                                              Y. Kong et al. 

demonstrated that the proposed RN-CAM model exhibits 

excellent performance in terms of recognition accuracy, 

processing speed, and computational efficiency. In terms 

of recognition accuracy, the RN-CAM model achieved a 

recognition accuracy of 98.2%, which is significantly 

higher than the 63.1%, 68.4%, and 72.5% of comparative 

models such as VGG, ResNet, and DCNN. This indicated 

that the RN-CAM model exhibits superior generalization 

capabilities in RFFR tasks. Moreover, when the SNR was 

10 dB, the recognition accuracy difference of the 

RN-CAM model under different channel numbers was 

less than 5%, thereby further substantiating the 

consistency of the model's performance under varying 

conditions. In terms of processing speed and 

computational efficiency, the RN-CAM model exhibited 

high efficiency in processing large amounts of data. In 

comparison to existing advanced methods, the RN-CAM 

model demonstrated notable advantages in data 

compression and storage space. The existing methods 

required a sketch structure size of 1.19 MB under the 

same conditions, while the RN-CAM model reduces this 

value to approximately 0.26 MB, effectively reducing the 

storage space requirements. The RN-CAM model 

employs an end-to-end recognition framework based on 

CNNs, which effectively extract signal features and 

enhance recognition accuracy. The incorporation of a 

self-AM within the network enables the model to capture 

time-varying information and frequency differences in 

the signal, thereby enhancing its generalization ability. 

The model's performance is enhanced by the adoption of 

a strategy of balancing data, which enables it to handle 

imbalanced datasets more effectively. Nevertheless, while 

RN-CAM models enhance performance, they also exhibit 

certain limitations. In environments with a high level of 

EMN interference, the model may be affected to some 

extent, resulting in a decrease in recognition performance. 

Furthermore, the RN-CAM model exhibits relatively high 

prediction errors when processing high-frequency 

sub-signals with long durations. This phenomenon is 

primarily attributable to the high duty cycle of 

high-frequency sub-signals in the time domain, which 

results in sparse data and consequently impairs the 

prediction accuracy of the model. 

 

5 Conclusion 
 
To suppress noise interference and reduce data 

redundancy, the study employs ResNet and CAM for 

feature extraction and clustering analysis of RF signals, 

with the objective of facilitating the identification of 

fingerprints. The experimental results indicated that the 

ConvTrans network minimized the average value of 

temporal prediction error when the number of time points 

aggregation was 30. When the number of time windows 

was 4, the ConvTrans network had the lowest average 

prediction error. The DBIs for the K-means, DCA, SOM, 

and GSOM clustering algorithms were 0.2691, 0.3739, 

0.3129, and 0.2639, respectively. The time overheads for 

the K-means, DCA, SOM, and GSOM clustering 

algorithms were 8.6 s, 5.3 s, 1.5 s, and 2.3 s. The GSOM 

clustering algorithm had a lower DBI and time overhead 

compared to the other clustering algorithms. At an SNR 

of 10 dB, the RN-CAM model achieved the highest 

recognition accuracy of 98.2%, while VGG, ResNet, and 

DCNN achieved recognition accuracies of 63.1%, 68.4%, 

and 72.5%, respectively. The results show that the 

research method can achieve fast and accurate 

recognition and classification of RF signals, which 

provides an effective solution for the RFFR technique. 

The limitations of this study are that the quality of the 

dataset and the training time of the model still need to be 

improved. In order to further improve the recognition 

performance, future research can consider collecting 

more high-quality datasets and performing more effective 

model optimization. 

References 

[1] S. Huang, S. Wang, Y. Sun, and Y. Zhang, “Efficient 

processing power harmonic noise with fluctuation 

frequency in urban transient electromagnetic 

surveys,” Review of Scientific Instruments, vol. 92, 

no. 4, pp. 44501-44505, 2021. 

https://doi.org/10.1063/5.0040092 

[2] S. C. Shekar, W. Zhao, T. K. Weldeghiorghis, and T. 

Wang, “Effect of cross polarization radiofrequency 

phases on signal phase,” Solid State Nuclear 

Magnetic Resonance, vol. 117, no. 1, pp. 

101771-101776, 2022. 

https://doi.org/10.1016/j.ssnmr.2021.101771 

[3] Y. Guo, and L. D. Yang, “LFM signal optimization 

time-fractional-frequency analysis: Principles, 

method and application,” Digital Signal Processing, 

vol. 126, no. 1, pp. 103505-103518, 2022. 

https://doi.org/10.1016/j.dsp.2022.103505 

[4] Y. Wakisaka, D. Iida, H. Oshida, and N. Honda, 

“Fading suppression of Φ-OTDR with the new 

signal processing methodology of complex vectors 

across time and frequency domains,” Journal of 

Lightwave Technology, vol. 39, no. 13, pp. 

4279-4293, 2021. 

https://doi.org/10.1109/JLT.2021.3071159 

[5] H. Wei, T. Qi, G. Feng, and H. Jiang, “Comparative 

research on noise reduction of transient 

electromagnetic signals based on empirical mode 

decomposition and variational mode 

decomposition,” Radio Science, vol. 56, no. 10, pp. 

64-82, 2021. https://doi.org/10.1029/2020RS007135 

[6] L. Zhai, G. Hu, C. Song, M. Lv, and X. Zhang, 

“Comparison of two filter design methods for 

conducted EMI suppression of PMSM drive system 

for electric vehicle,” IEEE Transactions on 

Vehicular Technology, vol. 70, no. 7, pp. 6472-6484, 

2021. https://doi.org/10.1109/TVT.2021.3080924 

[7] J. Han, and R. Chen, “Dual-band metasurface for 

broadband asymmetric transmission with high 

https://doi.org/10.1063/5.0040092
https://doi.org/10.1016/j.ssnmr.2021.101771
https://doi.org/10.1016/j.dsp.2022.103505
https://doi.org/10.1109/JLT.2021.3071159
https://doi.org/10.1029/2020RS007135
https://doi.org/10.1109/TVT.2021.3080924


Radio Frequency Fingerprint Identification Technology… Informatica 48 (2024) 181–194 193 

efficiency,” Journal of Applied Physics, vol. 130, no. 

3, pp. 34503-34510, 2021. 

https://doi.org/10.1063/5.0056700 

[8] X. T. J. Li, “Noise suppression for magnetotelluric 

using variational mode decomposition and 

detrended fluctuation analysis,” Journal of Applied 

Geophysics, vol. 180, no. 1, pp. 104127-104139, 

2020. https://doi.org/10.1016/j.jappgeo.2020.104127 

[9] S. Wang, Z. Liu, R. Xie, L. Ran, and J. Wang, 

“MIMO radar waveform design for target detection 

in the presence of interference,” Digital Signal 

Processing, vol. 114, no. 5, pp. 103060-103068, 

2021. https://doi.org/10.1016/j.dsp.2021.103060 

[10] J. Zhang, M. Ma, J. Ma, M. Zou, and B. Jiao, 

“Residual self-interference suppression guided 

resource allocation for full-duplex orthogonal 

frequency division multiple access system,” IET 

Communications, vol. 14, no. 1, 47-53, 2020. 

https://doi.org/10.1049/iet-com.2019.0723 

[11] J. Tan, H. Wu, K. H. Chow, and S. H. G. Chan, 

“Implicit multimodal crowdsourcing for joint RF 

and geomagnetic fingerprinting,” IEEE Transactions 

on Mobile Computing, vol. 22, no. 2, pp. 932-950, 

2021. https://doi.org/10.1109/TMC.2021.3088268 

[12] S. A. Cutts, F. Joshua, R. F. Betzel, O. Sporns, 

“Uncovering individual differences in fine-scale 

dynamics of functional connectivity,” Cerebral 

Cortex, vol. 33, no. 5, pp. 2375-2394, 2022. 

https://doi.org/10.1093/cercor/bhac214 

[13] T. Shi, Y. Chen, and Y. Chen, “Photonic-enabled 

radio frequency self-interference cancellation 

incorporated into an in-band full-duplex 

radio-over-fiber system,” Optical Engineering, vol. 

61, no. 3, pp. 34108-34119, 2022. 

https://doi.org/10.1117/1.OE.61.3.034108 

[14] G. Shen, J. Zhang, A. Marshall, L. Peng, and X. 

Wang, “Radio frequency fingerprint identification 

for LoRa using deep learning,” IEEE Journal on 

Selected Areas in Communications, vol. 39, no. 8, 

pp. 2604-2616, 2021. 

https://doi.org/10.1109/JSAC.2021.3087250 

[15] A. Chiba, and Y. Sunaga, “Complex amplitude 

estimation of a monochromatic radio frequency 

signal using frequency downconversion via direct 

detection of interfered optical phase-modulation 

signals,” Optics Letters, vol. 46, no. 11, pp. 

2646-2649, 2021. 

https://doi.org/10.1364/OL.426425 

[16] N. S. Arshad, M. Abdullah, S. A. Samad, and N. 

Abdullah, “High-intensity lightning recognition 

system using Very Low Frequency signal features,” 

Journal of Atmospheric and Solar-Terrestrial 

Physics, vol. 216, no. 1, pp. 105520-105528, 2021. 

https://doi.org/10.1016/j.jastp.2020.105520 

[17] Z. Chen, C. Cai, T. Zheng, J. Luo, J. Xiong, and X. 

Wang, “RF-based human activity recognition using 

signal adapted convolutional neural network,” IEEE 

Transactions on Mobile Computing, vol. 22, no. 1, 

pp. 487-499, 2021. 

https://doi.org/10.1109/TMC.2021.3073969 

[18] C. J. Swinney, and J. C. Woods, “K-means 

clustering approach to uas classification via 

graphical signal representation of radio frequency 

signals for air traffic early warning,” IEEE 

transactions on intelligent transportation systems, 

vol. 23, no. 12, pp. 24957-24965, 2022. 

https://doi.org/10.1109/TITS.2022.3202011 

[19] I. Salman, and J. Vomlel, “Learning the structure of 

Bayesian networks from incomplete data using a 

mixture model,” Informatica, vol. 47, no. 1, pp. 

83-96, 2023. https://doi.org/10.31449/inf. 

v47i1.4497 

[20] J. Purohit, and R. Dave, “Leveraging deep learning 

techniques to obtain efficacious segmentation 

results,” Archives of Advanced Engineering Science, 

vol. 1, no. 1, pp. 11-26, 2023. 

https://doi.org/10.47852/bonviewAAES32021220 

[21] B. M. O. Fraga, U. B. D. Almeida, R. B. Clécio, H. 

B. Carlos, G. Paolo, S, Patrick, and P. Marcio, 

“Deep learning Blazar classification based on 

multifrequency spectral energy distribution data,” 

Monthly Notices of the Royal Astronomical Society, 

vol. 505, no. 1, pp. 1268-1279, 2021. 

https://doi.org/10.48550/arXiv.2012.15340 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://doi.org/10.1063/5.0056700
https://doi.org/10.1016/j.jappgeo.2020.104127
https://doi.org/10.1016/j.dsp.2021.103060
https://doi.org/10.1049/iet-com.2019.0723
https://doi.org/10.1109/TMC.2021.3088268
https://doi.org/10.1093/cercor/bhac214
https://doi.org/10.1117/1.OE.61.3.034108
https://www.nstl.gov.cn/search.html?t=JournalPaper&q=5L2c6ICF77yaUGVuZywgTGlubmluZw
https://www.nstl.gov.cn/search.html?t=JournalPaper&q=5L2c6ICF77yaV2FuZywgWGlhbmJpbg
https://doi.org/10.1109/JSAC.2021.3087250
https://doi.org/10.1364/ol.426425
https://doi.org/10.1016/j.jastp.2020.105520
https://doi.org/10.1109/TMC.2021.3073969
https://doi.org/10.1109/TITS.2022.3202011
http://dx.doi.org/10.31449/inf.v47i1.4497
http://dx.doi.org/10.31449/inf.v47i1.4497
http://dx.doi.org/10.47852/bonviewAAES32021220
https://doi.org/10.48550/arXiv.2012.15340


194   Informatica 48 (2024) 181–194                                                              Y. Kong et al. 

 

 

 

 

 

 

 


