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This paper introduces binary variants of the Modified Social Group Optimization (MSGO) algorithm 

designed specifically for optimal feature subset selection in a wrapper-mode classification setting. While 

the original SGO was proposed in 2016 and modified in 2020 to enhance its performance, it was not 

previously applied to feature selection problems. MSGO represents an advancement over SGO, adept at 

efficiently exploring the feature space to identify optimal or near-optimal feature subsets by minimizing 

a specified fitness function. The two newly proposed binary variants of MSGO are employed to identify 

the optimal feature combinations that maximize classification accuracy while minimizing the number of 

selected features. In these variants, the native MSGO is utilized while its continuous steps are bounded 

in a threshold using a suitable threshold function after squashing them.  These binary algorithms are 

compared against six latest high-performing optimization approaches and six state-of-the-art 

optimization algorithms to assess their performance. Various evaluation metrics are utilized across 

twenty-three datasets sourced from the UCI data repository to accurately judge and compare the efficacy 

of these algorithms. The experimental results confirm the efficiency of the proposed approaches in 

improving the classification accuracy compared to other wrapper-based algorithms, which proves the 

ability of the MSGO algorithm to search the feature space and select the most informative attributes for 

classification tasks.  

Povzetek: Predstavljene so različice izboljšanega algoritma socialne skupinske optimizacije (MSGO) za 

izbiro optimalnih podskupin lastnosti, kar poveča natančnost klasifikacije in zmanjša število izbranih 

lastnosti. 

 

1 Introduction 
Features or attributes are crucial elements that define 

key characteristics within a dataset. Feature selection (FS) 

stands out as a critical step in data pre-processing for both 

machine learning and data mining. Its primary function is 

to identify and select a relevant subset of features from the 

original dataset. Mathematically, this can be expressed as 

selecting a subset S from the set of all features F such that: 

 

𝑆 ⊆ 𝐹  

 

where S represents the selected subset of features and 

F denotes the entire set of features available in the dataset. 

The goal of feature selection is to retain only the most 

informative and discriminative features while discarding 

redundant or irrelevant ones, thereby enhancing the 

efficiency and accuracy of subsequent machine learning 

or data mining algorithms. 

The primary objective of data pre-processing in data 

mining and machine learning is to prepare the dataset for 

knowledge extraction using algorithms from these fields.  

 

Classification and clustering algorithms are fundamental 

in data mining, operating on dataset dimensions to make 

predictions. However, increasing the dataset's dimensions 

often leads to decreased performance in these algorithms 

[1]. Real-world data frequently contains noisy, irrelevant, 

or misleading features, making it challenging to extract 

meaningful insights. Handling imprecise and inconsistent 

information has become a crucial requirement in 

addressing real-world problems. Feature selection (FS) is 

a key pre-processing step aimed at selecting a subset of 

features from the original set. This subset should 

adequately describe target concepts while maintaining 

high accuracy in representing the original features. FS 

methods can be categorized into two main types: filter and 

wrapper [3]. Filter-based methods assess features based on 

predefined criteria like information gain [4], principal 

component analysis [5-7], mutual information [8], Relief 

[9], Chi-square [10], Fisher Score [11], Laplacian score 

[12], etc., and select the most important features 

accordingly. Conversely, wrapper methods employ 

machine learning algorithms to evaluate feature subsets 
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and select the optimal subset for the task at hand. Filter 

methods tend to be faster since they don't require learning 

algorithms, whereas wrapper methods generally achieve 

higher accuracy [13-14]. 

 

Over the last two decades, meta-heuristic algorithms 

have gained significant popularity among optimization 

researchers. This is attributed to their ability to avoid local 

optima, their gradient-free mechanism, and their 

flexibility. Meta-heuristic algorithms typically exhibit two 

key characteristics: exploration or diversification, which 

involves searching the entire solution space to find the best 

solution in each iteration and avoiding local optima, and 

exploitation or intensification, which refers to finding a 

better solution near the current solution, leading to faster 

convergence. A well-designed meta-heuristic algorithm 

strikes a balance between exploration and exploitation. 

Many researchers have leveraged meta-heuristic 

algorithms to tackle feature selection (FS) problems. 

Examples include simulated annealing [15], tabu search 

[16], Particle Swarm Optimization (PSO) [17], artificial 

bee colony (ABC) [18], and Genetic Algorithm (GA) [19]. 

Additionally, methods like attribute reduction algorithms 

using rough set theory [20], graph-based FS using ant 

colony optimization [21], FS methods based on rough set 

theory with teaching learning-based optimization (TLBO) 

[23-23], hybridization of rough set and differential 

evolution (DE) techniques [24], and integration of ABC 

and DE for FS [25] have been proposed and validated 

using datasets from the UCI repository. Moreover, newer 

meta-heuristic algorithms such as Grey Wolf Optimizer 

(GWO) [26], flower pollination algorithm [27], Dragonfly 

Algorithm (DA) [28], Whale Optimization Algorithm 

(WOA) [29], and combinations like SA integrated with 

WOA [30], have also shown success in solving FS 

problems. 

 

The inherent randomness of meta-heuristic 

algorithms means there is no guarantee they will discover 

the optimal feature subset in FS problems. This 

uncertainty is supported by the No-Free-Lunch theorem, 

which asserts that no single optimization algorithm can 

universally solve all optimization problems [30]. This 

realization led us to investigate the efficacy of the 

modified social group optimization (MSGO) algorithm 

[31]. The original SGO algorithm was introduced in 2016, 

inspired by human social behavior in problem-solving 

[46]. SGO has garnered attention for its potential in global 

optimization across various applications [32-38] and has 

shown superior performance compared to other 

algorithms [39]. Surprisingly, SGO hadn't been applied to 

FS problems until now, prompting us to choose it as the 

foundation for our work. The modified version of SGO, 

MSGO, introduced by [40] with the parameter "SAP (Self-

Awareness Probability)," aims to enhance algorithm 

performance. MSGO's performance was evaluated against 

twenty-five algorithms, including GA, PSO, DE, ABC, as 

well as newer ones like HHO (Harris Hawks 

Optimization) [41], BOA (Butterfly Optimization 

Algorithm) [42], SSOA (Squirrel Search Optimization 

Algorithm) [43], GROM (Golden Ratio Optimization 

Method) [44], VPL (Volleyball Premier League 

Algorithm) [45], etc. Given MSGO's improved 

performance over SGO, we opted to utilize MSGO for our 

FS problem.  

 

The comprehensive aim of this paper is to propose 

new binary versions of modified social group optimization 

algorithm (bmSGO) for wrapper FS. The proposed 

algorithms select the optimal feature subset which 

decreases the feature subset length and at the same time, 

increases the classification accuracy. 

 

The key contributions of the paper can be summarized 

as follows:  

•  Two binary variants of the MSGO are proposed. 

•  Two transfer functions are used to map the 

continuous search space to discrete one. 

•  Twenty-one UCI datasets are utilized in the 

experiments. 

•  A superior performance of the proposed binary 

variants is proved in the experiments. 

 

The rest of the paper is organized as follows: Section 

2 details the proposed bmSGO, while section 3 presents 

simulation and experimental results. Finally, section 4 

concludes the work and discusses future directions. 

2 Related works 

2.1 Wrapper-Mode classification setting  

Wrapper-mode selection is an advanced feature 

selection methodology that optimizes the predictive 

performance of a model by directly integrating the feature 

selection process with the model training. This approach 

utilizes the learning algorithm to evaluate and select 

feature subsets, resulting in a specific feature set that 

ideally enhances model accuracy and generalizability. 

Key characteristics 

• Model-Centric evaluation: Wrapper methods involve 

the generation of various subsets of features, each 

evaluated based on the performance of a chosen 

learning algorithm. The selection process is embedded 

within the training algorithm, making it an iterative 

and adaptive procedure. Each subset's performance is 

measured using metrics such as accuracy, precision, 

recall, or F1-score, which guides the feature selection 

process. 

• Iterative subset selection: 

• Forward selection: This approach begins with 

an empty set and progressively adds features 

that improve model performance. 

• Backward elimination: This starts with the 

complete set of features, sequentially removing 

the least significant features to enhance 

performance. 
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• Recursive feature elimination (RFE): This 

method iteratively constructs the model, 

removing the least important feature(s) in each 

iteration until the optimal subset is identified. 

• Performance metrics and validation: To 

ensure the robustness of the selected feature 

subset, cross-validation techniques are typically 

employed. This step is crucial to mitigate 

overfitting and to ensure that the model 

generalizes well to unseen data. The selection 

criterion is based on optimizing predefined 

performance metrics, ensuring the chosen 

features contribute significantly to the model's 

predictive power. 

2.2 Modified social group optimization 

(MSGO) algorithm 

The MSGO algorithm is a modified version of the Social 

Group Optimization algorithm, where a concept has been 

introduced in the form that “ a person acquires something 

new from other persons if another person has more 

knowledge, and he or she has the higher self-awareness 

probability (SAP) to achieve that knowledge”. SAP 

defines the ability to acquire a quantity of knowledge from 

another person. So an extra parameter in the form of SAP 

is introduced in the MSGO algorithm. For a detailed 

description of the MSGO algorithm, please refer to the 

paper [40]. The MSGO algorithm, in short, is given below: 

Let 𝑃𝑖 , i=1,2,3,…., N be the persons of the social 

group, i.e., the social group contains N persons and each 

person 𝑃𝑖  is defined by 𝑃𝑖 = (𝑝𝑖1, 𝑝𝑖2, 𝑝𝑖3, … … , 𝑝𝑖𝐷) where 

D is the number of traits assigned to a person which 

determine dimensions of a person and 𝑓𝑖, i=1,2,……, N 

are their corresponding fitness value, respectively.  

Improving Phase   
The best person in the group (𝑏𝑒𝑠𝑡𝑃) in each social 

group tries to propagate knowledge among all persons, 

which will, in turn, help others to improve their knowledge 

in the group.  

 

[minvalue, index]=min{𝑓(𝑃𝑖), 𝑖 = 1,2,3, … … … … , 𝑁} 

     𝑏𝑒𝑠𝑡𝑃=𝑃(index,:)                                                                               

for solving the minimization problem    

 

In the improving phase, each person gets knowledge 

from the group's best (𝑏𝑒𝑠𝑡𝑃) person. The updating of each 

person can be computed as follows:  

Algorithm 1: The Improving phase 

For i= 1:N 

          Forj=1:D 
                   𝑷𝒏𝒆𝒘𝒊𝒋 = 𝒄 ∗ 𝑷𝒊𝒋 + 𝒓𝒂𝒏𝒅 ∗ (𝒃𝒆𝒔𝒕𝑷(𝒋) −

𝑷𝒊𝒋)        

End for 

End for  

Accept Pnew if it gives a better fitness than P             

 

Where 𝑟𝑎𝑛𝑑 is a random number,  𝑟𝑎𝑛𝑑~𝑈(0,1), and 

𝑐 is known as self- introspection parameter lies in between 

0 and 1. 

  

Acquiring phase  

As we know in the acquiring phase a person of social 

group interacts with the best person (𝑏𝑒𝑠𝑡𝑃) of that group 

and also interacts randomly with other persons of the 

group for acquiring knowledge. A person acquires new 

knowledge if the other person has more knowledge. The 

𝑏𝑒𝑠𝑡𝑃 is always best than others, so a person always 

acquires knowledge from 𝑏𝑒𝑠𝑡𝑃. A person acquires 

something new from other persons if other person has 

more knowledge, and he or she has a higher self-

awareness probability (SAP) to achieve that knowledge. 

Self-Awareness probability (SAP) defines the ability to 

acquire a quantity of knowledge from other person. So the 

modified acquiring phase is expressed as  

 

[value, index_num]=min{𝑓(𝑃𝑖), 𝑖 = 1,2,3, … … … … , 𝑁} 

                𝑏𝑒𝑠𝑡𝑃= 𝑃(index_num,:)                  

 

for solving minimization problem, where 𝑃𝑖’s are 

updated value at the end of the improving phase. 

 

Algorithm 2: The acquiring phase 

  

For i = 1 : N 

     Randomly select one person 𝑃𝑟, where 𝑖 ≠ 𝑟 

            If f (𝑃𝑖) < f (𝑃𝑟) 

                  If rand>SAP 

                       For j=1:D 

                                𝑃𝑛𝑒𝑤𝑖,𝑗 = 𝑃𝑖,𝑗 + 𝑟𝑎𝑛𝑑1 ∗ (𝑃𝑖,𝑗 −

𝑃𝑟,𝑗) + 𝑟𝑎𝑛𝑑2 ∗ ( 𝑏𝑒𝑠𝑡𝑃(𝑗) − 𝑃𝑖,𝑗)  

                       End for 

                  Else  

                          For j=1:D 

                                        𝑃𝑛𝑒𝑤𝑖,: = 𝑙𝑏 + 𝑟𝑎𝑛𝑑 ∗ (𝑢𝑏 −

𝑙𝑏)  

                          End for 

                   end if  

           Else 

                   For j=1:D 

                              𝑃𝑛𝑒𝑤𝑖,𝑗 = 𝑃𝑖,𝑗 + 𝑟𝑎𝑛𝑑1 ∗ (𝑃𝑟,𝑗 −

𝑃𝑖,𝑗) + 𝑟𝑎𝑛𝑑2 ∗ (𝑏𝑒𝑠𝑡𝑃(𝑗) − 𝑃𝑖,𝑗)  

                   End for 

           End If 

  End for                                                            

Accept 𝑃𝑛𝑒𝑤 if it gives a better fitness than 𝑃 

Where 𝑟𝑎𝑛𝑑1 and 𝑟𝑎𝑛𝑑2 are two independent random 

numbers, 𝑟𝑎𝑛𝑑1 ~𝑈(0,1), and 𝑟𝑎𝑛𝑑2 ~𝑈(0,1). These 

random numbers are used to affect the stochastic nature of 

the algorithm; lb and ub are the lower bound and upper 

bound of the corresponding design variable and SAP lie in 

between 0.6 and 0.9. 

 

2.3 The proposed binary modified social 

group optimization 
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The MSGO algorithm, a modification of the Social Group 

Optimization algorithm, introduces the concept that 

individuals gain new knowledge from others with higher 

knowledge levels, based on their self-awareness 

probability (SAP)[40]. For a detailed description of 

MSGO, please refer to the original paper [40]. Wrapper-

based FS methods typically employ a classifier for 

training and evaluation at each generation, necessitating a 

self-regulating optimization algorithm to minimize 

evaluations. The documented advantages of MSGO 

inspired us to propose its use as a search method in 

wrapper-based FS processes. Considering the binary 

nature of FS problems, where the search space involves 

binary values [0, 1], and the simplicity of binary operators 

compared to continuous ones, we introduced a binary 

version of MSGO (bmSGO) to tackle the FS problem. 

The core concept of bmSGO revolves around updating 

individuals' positions in a binary search space using a 

transfer function. To accomplish this, we employ two 

transfer functions: Sigmoid (S-shaped) and V-shaped 

transfer functions, creating two binary versions known as 

S-bmSGO and V-bmSGO, respectively. 

 

2.3.1 Binary MSGO algorithm-approach 1 

(S-bmSGO) 
In continuous MSGO, individuals' positions are 

represented by continuous solutions, which need to be 

transformed into corresponding binary values. This 

transformation involves squashing continuous solutions in 

each dimension using a Sigmoidal (S-shaped) transfer 

function[46], which compels individuals to navigate in a 

binary search space. The S-shaped function is expressed 

as follows in equation (1) and is illustrated in Figure 1. 

 

 𝑆 (𝑃𝑖
𝑗(𝑘)) =

1

1+𝑒
−𝑃

𝑖
𝑗

(𝑘)
         ..................................(1) 

where 𝑃𝑖
𝑗(𝑘) is the position of ith person in jth dimension 

at iteration k. 

 

To reach the binary solution of the output of the S-shaped 

transfer function, a threshold is applied as mentioned in 

Eq. (2). 

 

C

 
             Figure 1: Sigmoid transfer function 

 

𝑇𝑃𝑖
𝑗(𝑘) ={

0       𝑖𝑓      𝑟𝑎𝑛𝑑 < 𝑆 (𝑃𝑖
𝑗(𝑘))

1      𝑖𝑓      𝑟𝑎𝑛𝑑 ≥ 𝑆 (𝑃𝑖
𝑗(𝑘))

      ........ (2) 

where 𝑇𝑃𝑖
𝑗(𝑘) and 𝑃𝑖

𝑗(𝑘) indicate the transfer binary 

position and position of ith person in jth dimension at 

iteration k. 

2.3.2 Binary MSGO algorithm-approach 2 

(V-bmSGO) 
This approach introduces a V-shaped transfer 

function, which is implemented using equations (3) and 

(4) [47]. The process of utilizing this proposed transfer 

function to guide individuals in navigating a binary search 

space is depicted in Figure 2. 

𝑉 (𝑃𝑖
𝑗(𝑘)) = |erf (

√𝜋

2
𝑃𝑖

𝑗(𝑘))|                 

                  =|
√𝜋

2
∫ 𝑒−𝑘2

𝑑𝑘
√𝜋

2
𝑃𝑖

𝑗
(𝑘)

0
|       ……...(3) 

 

ACCE 

PTED 

MANUSCPT 
 Figure 2: V-shaped transfer function 

 

The threshold rules can be represented 

mathematically as: 

𝑇𝑃𝑖
𝑗(𝑘)={

0       𝑖𝑓      𝑟𝑎𝑛𝑑 < 𝑉 (𝑃𝑖
𝑗(𝑘))

1      𝑖𝑓      𝑟𝑎𝑛𝑑 ≥ 𝑉 (𝑃𝑖
𝑗(𝑘))

  ..........    (4) 

where 𝑇𝑃𝑖
𝑗(𝑘) and 𝑃𝑖

𝑗(𝑘) indicate the transfer binary 

position and position of ith person in jth dimension at 

iteration k. 

 

The general steps of bmSGO are presented in 

Algorithm 3, the framework of the bmSGO algorithm is 

given in Fig 3. 

 
Algorithm 3: Pseudo-code for bmSGO 

 

Define self introspection parameter C, Self-Awareness probability SAP, 

Maximum iteration= Max_iter, pop_size=N, dimension=D  

Initialize population P ‘ 

Evaluate each person 𝑃𝑖 in the population 

Find the best solution 𝑓∗ and best person ‘gbest’ 

t=1 

While (t< Max_iter) 

For each person 𝑃𝑖 in the population 

     Find ne𝑤𝑃𝑖 using improving phase 

      Transform real-valued to binary one using S-shaped/V-shaped 

transformation 

      Evaluate using a fitness function 

     If ne𝑤𝑃𝑖 is better than 𝑃𝑖 then replace it and update the population 

End for 

Find the best solution 𝑓∗ and best person gbest 

For each person 𝑃𝑖 in the population 

     Find ne𝑤𝑃𝑖 using acquiring phase 
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     Transform real-valued to binary one using S-shaped/V-shaped 

transformation 

     Evaluate using a fitness function 

     If ne𝑤𝑃𝑖 is better than 𝑃𝑖 then replace it and update the population 

End for 

Find the best solution 𝑓∗ and best person gbest  

t=t+1 

end while 

return the best solution 𝑓∗ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N

o 

Convert real-valued vector to binary vector using S-shaped/V-shaped transfer function and then evaluate fitness  
 

N

o Is 

termination 

criteria 

Find final solution 

 

N

o Is new solution 
better than existing? 

Acce

pt 
Reject  

Y

es 

                 Evaluate fitness of population   
 

Identify the best solution 𝑏𝑒𝑠𝑡𝑃 

For i=1: N 
       For j=1:D 

        𝑃𝑛𝑒𝑤𝑖,𝑗 = 𝑐 ∗ 𝑃𝑖,𝑗 + 𝑟𝑎𝑛𝑑 ∗ (𝑏𝑒𝑠𝑡𝑃(𝑗) − 𝑃𝑖,𝑗) 
        End 

End 

Initialize N population with Dimension D, termination criteria, self-

introspection parameter C, Self-Awareness probability SAP 

                   Convert real-valued vector to binary vector using S-shaped/V-shaped transfer function and then evaluate fitness  
 

Y

es  

N

o  
For j=1:D 

𝑃𝑛𝑒𝑤𝑖,𝐽 = 𝑃𝑖,𝐽 + 𝑟𝑎𝑛𝑑 ∗ (𝑃𝑟,𝐽 − 𝑃𝑖,𝐽) + 𝑟𝑎𝑛𝑑 ∗ ( 𝑏𝑒𝑠𝑡𝑃(𝑗) − 𝑃𝑖,𝑗) 

End for 

 
Is 

𝑃𝑖  bett

er than  

   𝑃𝑟  

 

If rand>SAP 

    For j=1:D    

      𝑃𝑛𝑒𝑤𝑖,𝐽 = 𝑃𝑖,𝑗 + 𝑟𝑎𝑛𝑑1 ∗ (𝑃𝑖,𝑗 − 𝑃𝑟,𝑗) + 𝑟𝑎𝑛𝑑2 ∗

( 𝑏𝑒𝑠𝑡𝑃(𝑗) − 𝑃𝑖,𝑗)        

    End for 

  Else 
     For j=1:D 

         𝑃𝑛𝑒𝑤𝑖,:  = 𝑙𝑏 + 𝑟𝑎𝑛𝑑 ∗ (𝑢𝑏 − 𝑙𝑏)  
     End for 
end if 

Identify the best solution and 𝑏𝑒𝑠𝑡𝑃 from population 

For each i=1: N, select solution 𝑃𝑟 randomly from population 

 

Is new 

solution better 

than e𝑥isting? 

 
Accept  Reject  

Y

es 
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Figure 3: Framework of bmSGO algorithm 

3 Simulation and experimental 

results  
The performance of the bmSGO algorithm is 

demonstrated in this paper through three experiments. In 

experiment 1, proposed approaches are compared with 

each other. In the second experiment, the proposed FS 

approaches, their performances are compared with various 

state-of-the-art approaches such as PSO [51], CS [52], HS 

[53], BA [54], TLBO [55], GWO [26]. In the third 

experiment, proposed FS approaches compared with the 

newest approaches: CSA (Crow Search Algorithm) [56], 

GOA (Grasshopper Optimization Algorithm) [57], MVO 

(Multi-Verse Optimizer) [58], SSA (Salp Swarm 

Algorithm) [59], Sine Cosine Algorithm (SCA)[60]. and 

WOA (Whale Optimization Algorithm) [29]. 

3.2 Parameter settings and softwares  

Here are the parameter settings for all algorithms, as 

detailed in Table 1. The implementations were done using 

MATLAB 2016a on a laptop running the Microsoft 

Windows 10 operating system, equipped with an Intel 

Core i5 processor and 8 GB of memory. 

 

Table 1:  Parameter setting for an experiment 

 
Sl. 
No. 

Parameter  Value(s) 

1 K for validation 5 

2 Population size 10 

3 Maximum number fitness 
function evaluation 

500 

4 The dimension of the 

problem 

No. of features in the dataset 

5 Search domain {0, 1} 

6 Parameter 𝑃𝑎 in CS 0.25 

7 Q min Frequency 
minimum in BA 

0 

8 Q max Frequency 

maximum in BA 

2 

9 Loudness in BA 0.5 

10 Pulse rate in BA 0.5 
11 Acceleration constants in 

PSO 

[2, 2] 

12 Inertia w in PSO [0.9, 0.6] 

13 A parameter in GWO Min=0 and max=2 

14 Awareness probability 

(AP) in CSA 

0.1 

15 Flight length (FL) In CSA 2 

16 For finding c in GOA cmax = 1, cmin = 0.00004 for 

finding value of c= cmax-
l*((cmax- cmin)/Max_iter, 

Max_iter = 50. 

17 r4 parameter in SCA 0.5 

18 A parameter in SCA 2 

19 A parameter in WOA Min=0 and max=2 

20 Parameter c in SSA c = 2*𝑒−(
4

𝐿
)2

, where L = 

max_iteration = 50. 

21 WEP parameter in MVO WEP is increased linearly 

from 0.2 to 1, and  
22 TDR parameter in MVO TDR is decreased from 0.6 to 

0 

23 C parameter in 
MSGO/bmSGO 

0.2 

24 ‘SAP’ parameter in 

MSGO/bmSGO 

0.7 

25 hmcr parameter in HS 0.9 

26 Par parameter in HS 0.3 
27 bw parameter in HS 0.01 

 

3.3 Fitness function for binary optimization 

algorithms for FS  
In the feature selection (FS) problem, the dimension of the 

solution vector corresponds to the number of features in 

the dataset. Each element in the solution vector is either 1 

or 0, where 1 signifies that the corresponding feature is 

selected, and 0 signifies that the feature is not selected. 

 

The FS problem is treated as a multi-objective 

optimization problem with two conflicting objectives: (a) 

achieving the highest classification accuracy (CA), which 

is a maximization objective, and (b) selecting the fewest 

number of features, a minimization objective. To reconcile 

this contradiction, we introduce the classification error 

rate. Equation 7 combines these two objectives, 

converting the FS problem into a single objective 

problem: 

 

Fitness=𝛼𝛾𝑅(𝑆𝐹) + 𝛽
|𝑆𝐹|

|𝑇𝐹|
          .........................   (7) 

Here, SF represents the selected feature subset, 

𝛾𝑅(𝑆𝐹) is the classification error rate of SF, |SF| denotes 

the cardinality of the selected feature subset, |TF| 

represents the total number of features in the original 

dataset, and α and β are parameters corresponding to 

classification quality and subset length, where α ∈ [0, 1] 

and α + β = 1 [30]. In our experiment, we set β = 0.01 

according to [48]. 

 

1.2 Description of datasets used in the experiments 

To evaluate the performance of the proposed binary 

approaches, we selected twenty-three benchmark datasets 

from the UCI data repository for our experiments. Table 2 

provides details about these selected datasets, including 

the number of features, instances, and classes in each 

dataset. We included both small and high-dimensional 

datasets in our experiments to ensure comprehensive 

evaluation. 

 

Table 2: List of datasets used in the experiments  
Sl. No. Name  No. of 

features 
No. of 
instanc

es 

No. of 
classes 

Dataset1  Breastcancer 9 699 2 
Dataset 2 BreastEW  30 569 2 

Dataset3 Clean1 166 476  

Dataset 4 Clean2 166 6598  
Dataset 5 CongressEW  16 435 2 
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Dataset 6 Exactly1 13 1000 2 
Dataset 7 Exactly2 13 1000 2 

Dataset 8 HeartEW   13 270 2 

Dataset 9 IonosphereEW 34 351 2 
Dataset 10 KrvskpEW 36 3196 2 

Dataset 11 Lymphography 18 148 2 

Dataset 12 M of n 13 1000 2 
Dataset 13 PenglungEW  325 73 2 

Dataset 14 Semeion  256 1593 2 

Dataset 15 Sonar  60 208 2 
Dataset 16 Spect  22 267 2 

Dataset 17 Tic-tac-toe 9 958 2 

Dataset 18 Votes  16 300 2 
Dataset 19 WaveformEW 40 5000 3 

Dataset 20 WineEW 13 178 3 

Dataset 21 Zoo  16 101 6 
Dataset 22 Vechile  18 846 4 

Dataset 23 Dermatology  34   366 6 

  

In this study, we utilized a K-nearest neighbors 

(KNN) classifier with the Euclidean distance metric to 

assess the classification accuracy (CA) of the selected 

feature subset obtained through our proposed FS method 

applied to the entire original dataset. We consistently used 

the best choice of K, which is K=5, across all datasets [49]. 

To facilitate evaluation, each dataset was divided in a 

cross-validation manner [49]. Typically, in K-fold cross-

validation, K-1 folds are allocated for training and 

validation, while the remaining fold is reserved for testing 

purposes. 

 

3.4 Evaluation criteria 
Each dataset is randomly divided into three equal 

portions: validation, training, and testing datasets. To 

ensure stability and statistical significance, the algorithm 

is repeated 20 times. Statistical results, including average 

classification accuracy, average selection size, mean 

value, best value, worst value, and standard deviation of 

fitness solutions, are determined and reported in tables. 

The best results for each algorithm are highlighted in bold. 

A Wilcoxon Rank-Sum (WRS) test is conducted at a 

significance level of 0.05 on fitness solutions. The WRS 

test is a nonparametric statistical test used to determine 

whether the results of the proposed approaches are 

statistically different from those of other algorithms [50]. 

This statistical test yields a p-value, which is used to assess 

the significance level between the two algorithms. 

 

3.5 Experiment 1:  The performance 

comparison of MSGO, S-bmSGO, and V-

bmSGO 
In this experiment, we compared the performance of 

the proposed approaches with each other. Table 3 presents 

the results of the proposed approaches in terms of CA and 

Fig 4 provides chart result on that. Notably, the V-bmSGO 

algorithm exhibited superior performance compared to the 

original MSGO for CA. Across all datasets used in this 

experiment, except for tic-tac-toe and exactly2 datasets, 

V-bmSGO outperformed the original MSGO. In the 

exactly2 dataset, both the original MSGO and V-bmSGO 

achieved comparable performance. Additionally, S-

bmSGO performed better than the original MSGO on all 

datasets except for the ionosphere dataset. Moreover, V- 

 

 

 

 

 

 

 

bmSGO outperformed S-bmSGO in seventeen out of 

twenty-three datasets, indicating its superior performance 

in most cases. 

Regarding average selection size, V-bmSGO 

outperformed S-bmSGO on all datasets and was 

competitive with the original MSGO, as shown in Table 4 

and Fig 5. The original MSGO outperformed V-bmSGO 

on four datasets and was equivalent on one dataset. 

Notably, in the breast cancer dataset, MSGO provided a 

4.20 average selection size compared to V-bmSGO's 4.5 

average selection size. Similarly, in the congressEW 

dataset, MSGO outperformed V-bmSGO with a 2.20 

average selection size compared to 2.65. In the exactly1 

dataset, MSGO achieved a 3.4 average selection size 

compared to V-bmSGO's 5.0, and in the vote dataset, 

MSGO's average selection size was 3 compared to V-

bmSGO's 3.2. 

Table 5 presents the results of the proposed 

approaches regarding the statistical mean fitness measure. 

Here, V-bmSGO outperformed the original MSGO for 

mean fitness measure except in the exactly2 dataset, where 

both performed equally. S-bmSGO also performed better 

than the original MSGO on all datasets except for the 

ionosphere and exactly2 datasets. 

Moving on to the statistical best fitness measure in 

Table 6, we observe that V-bmSGO performed better or 

equivalently in most cases compared to other techniques, 

except for the exactly2 dataset. Similarly, Table 7 

highlights that V-bmSGO exhibited superior performance 

for the statistical worse fitness measure, except in the 

exactly2 dataset where both V-bmSGO and MSGO 

performed equally. 

In terms of the statistical standard deviation fitness 

measure, Table 8 shows that S-bmSGO outperformed both 

the original MSGO and V-bmSGO in most cases, 

indicating better stability and consistency. 

All the best results are boldfaced in Tables 3-8. Fig 6 

displays the convergence curve for all compared 

approaches, depicting the fitness function value in each 

iteration with 50 iterations and a population size of 10. 

Table 9 reports the p-values of the WRS test 

conducted at a 5% significance level for V-bmSGO vs. S-

bmSGO and MSGO. A p-value less than 0.05 indicates a 

significant difference at a 5% level. Values greater than or 

equal to 0.05 are boldfaced, indicating no significant 

difference. NaN indicates results that are equivalent and 

incomparable. From the table, we observe that in five 

cases for S-bmSGO and one case for MSGO out of 

twenty-three cases, p-values are greater than or equal to 

0.05, suggesting no significant difference. Only one case 

shows NaN value for MSGO. 
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Table 3: Results of proposed approaches based on mean 

CA 

 

 

Table 4: Results of proposed approaches based on 

average NSF 

S. No Datasets  MSGO S-bmSGO V-bmSGO 

1 Dataset1  4.20 6 4.5 

2 Dataset 2 15.25 17.30 12.10 

3 Dataset3 65.60 87.75 35.35 

4 Dataset 4 73.700 87.20 43.25 

5 Dataset 5 2.2000 7.3000 2.6500 

6 Dataset 6 3.4000 6.9000 5 

7 Dataset 7 1 1.4500 1 

8 Dataset 8 8.7000 9 7.1500 

9 Dataset 9 3.6500 16.20 3.4000 

10 Dataset 10 23.50 20.10 12.90 

11 Dataset 11 7.7500 9.4500 6 

12 Dataset 12 10.200 6.9000 6.1500 

13 Dataset 13 75.400 163.70 37.15 

14 Dataset 14 136.40 148.95 91.85 

15 Dataset 15 21 28.25 12.850 

16 Dataset 16 10.10 10.90 6.3500 

17 Dataset 17 8.8000 9 8.60 

18 Dataset 18 3 6.4000 3.2000 

19 Dataset 19 25 25 16.15 

20 Dataset 20 10.650 7.6000 6.5000 

21 Dataset 21 3.6000 6.8500 2 

22 Dataset 22 4.7500 9.1000 3.1000 

23 Dataset 23 19.500 21.450 14.150 

 

 

 

 

 

Table 5: Results of proposed approaches based on mean 

FM 

S. 

No 

Datasets  MSGO S-

bmSGO 

V-

bmSGO 

1 Dataset1  0.0404 0.0378 0.0383 

2 Dataset 2 0.0452 0.0382 0.0369 

3 Dataset3 0.1400 0.1272 0.0966 

4 Dataset 4 0.0435 0.0409 0.0366 

5 Dataset 5 0.0420 0.0395 0.0350 

6 Dataset 6 0.2830 0.0847 0.0632 

7 Dataset 7 0.2225 0.2227 0.2225 

8 Dataset 8 0.1699 0.1419 0.1448 

9 Dataset 9 0.1203 0.1271 0.0831 

10 Dataset 10 0.0607 0.0447 0.0334 

11 Dataset 11 0.1488 0.1129 0.1097 

12 Dataset 12 0.1293 0.0306 0.0089 

13 Dataset 13 0.1511 0.1283 0.0768 

14 Dataset 14 0.0305 0.0270 0.0242 

15 Dataset 15 0.1644 0.1413 0.1168 

16 Dataset 16 0.1376 0.1195 0.1141 

17 Dataset 17 0.1860 0.1836 0.1869 

18 Dataset 18 0.0534 0.0485 0.0442 

19 Dataset 19 0.2307 0.2130 0.2010 

20 Dataset 20 0.0204 0.0081 0.0094 

21 Dataset 21 0.0273 0.0053 0.0013 

22 Dataset 22 0.3154 0.2905 0.2756 

23 Dataset 23 0.0322 0.0193 0.0174 

 

 

 

Table 6: Results of proposed approaches based on the    

best FM 

S. 

No 

Datasets  MSGO S-bmSGO V-bmSGO 

1 Dataset1  0.0378 0.0378 0.0378 

2 Dataset2 0.0394 0.0331 0.0321 

3 Dataset3 0.1171 0.1042 0.0641 

4 Dataset 4 0.0400 0.0386 0.0336 

5 Dataset 5 0.0355 0.0322 0.0291 

6 Dataset 6 0.0707 0.0046 0.0046 

7 Dataset 7 0.2225 0.2216 0.2225 

8 Dataset 8 0.1447 0.1374 0.1374 

9 Dataset 9 0.0962 0.1154 0.0524 

10 Dataset 10 0.0382 0.0388 0.0267 

11 Dataset 11 0.1120 0.0981 0.0970 

12 Dataset 12 0.0735 0.0046 0.0046 

13 Dataset 13 0.0833 0.0855 0.0300 

14 Dataset 14 0.0265 0.0247 0.0187 

15 Dataset 15 0.1283 0.1196 0.0685 

16 Dataset 16 0.1093 0.1080 0.0997 

17 Dataset 17 0.1836 0.1836 0.1836 

18 Dataset 18 0.0421 0.0427 0.0295 

19 Dataset 19 0.2144 0.2086 0.1885 

20 Dataset 20 0.0157 0.0046 0.0046 

21 Dataset 21 0.0013 0.0019 0.0013 

22 Dataset 22 0.2544 0.2755 0.2544 

S. 

No 

Datasets  MSGO S-bmSGO V-bmSGO 

1 Dataset1  0.9639 0.9686 0.9664 

2 Dataset 2 0.9595 0.9672 0.9668 

3 Dataset3 0.8626 0.8769 0.9046 

4 Dataset 4 0.9606 0.9640 0.9657 

5 Dataset 5 0.9589 0.9647 0.9663 

6 Dataset 6 0.7168 0.9198 0.9400 

7 Dataset 7 0.7760 0.7762 0.7760 

8 Dataset 8 0.8352 0.8637 0.8593 

9 Dataset 9 0.8795 0.8764 0.9170 

10 Dataset 10 0.9453 0.9605 0.9699 

11 Dataset 11 0.8541 0.8912 0.8926 

12 Dataset 12 0.8773 0.9745 0.9958 

13 Dataset 13 0.8497 0.8755 0.9236 

14 Dataset 14 0.9744 0.9784 0.9837 

15 Dataset 15 0.8375 0.8620 0.8841 

16 Dataset 16 0.8657 0.8843 0.8877 

17 Dataset 17 0.8220 0.8246 0.8209 

18 Dataset 18 0.9480 0.9550 0.9733 

19 Dataset 19 0.7733 0.7912 0.8010 

20 Dataset 20 0.9876 0.9978 0.9955 

21 Dataset 21 0.9747 0.9990 1 

22 Dataset 22 0.6840 0.7117 0.7234 

23 Dataset 23 0.9732 0.9847 0.9888 

 Average  0.8817 0.9073 0.9175 
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23 Dataset 23 0.0164 0.0146 0.0116 

 

 

 

 

 

 

 

Table 7: Results of proposed approaches based on worse 

FM 
S. 

No 

Datasets  MSGO S-bmSGO V-bmSGO 

1 Dataset 1  0.0445 0.0378 0.0395 

2 Dataset 2 0.0515 0.0417 0.0421 

3 Dataset 3 0.1672 0.1391 0.1113 

4 Dataset 4 0.0464 0.0425 0.0400 

5 Dataset 5 0.0479 0.0471 0.0415 

6 Dataset 6 0.2978 0.2141 0.2978 

7 Dataset 7 0.2225 0.2233 0.2225 

8 Dataset 8 0.1976 0.1536 0.1586 

9 Dataset 9 0.1415 0.1350 0.1078 

10 Dataset 10 0.0781 0.0518 0.0487 

11 Dataset 11 0.1761 0.1388 0.1377 

12 Dataset 12 0.1635 0.0675 0.0331 

13 Dataset 13 0.1883 0.1652 0.1084 

14 Dataset 14 0.0342 0.0290 0.0276 

15 Dataset 15 0.1944 0.1571 0.1443 

16 Dataset 16 0.1588 0.1311 0.1348 

17 Dataset 17 0.2308 0.1836 0.2205 

18 Dataset 18 0.0600 0.0512 0.0600 

19 Dataset 19 0.2476 0.2177 0.2095 

20 Dataset 20 0.0276 0.0165 0.0150 

21 Dataset 21 0.0833   0.0250   0.0013 

22 Dataset 22 0.3830   0.3415   0.3171 

23 Dataset 23 0.0543   0.0258   0.0215 

 

Table 8: Results of proposed approaches based on 

standard deviation FM 

 

                                                                                                                     

                    

 

 

 

 

 

 

Table 9. p-values of the WRS test of the proposed V-

bmSGO vs. S-bmSGO and MSGO (p ≥ 0.05 are 

boldfaced) 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S. 

No 

Datasets  MSGO S-bmSGO V-bmSGO 

1 Dataset1  0.0020 1.4238e-17 3.8990e-04 

2 Dataset 2 0.0036 0.0022 0.0026 

3 Dataset3 0.0142 0.0089 0.0124 

4 Dataset 4 0.0016 0.0011 0.0016 

5 Dataset 5 0.0027 0.0042 0.0040 

6 Dataset 6 0.0505 0.0656 0.1203 

7 Dataset 7 2.8477e-17 4.1672e-04 2.8477e-17 

8 Dataset 8 0.0141 0.0043 0.0086 

9 Dataset 9 0.0137 0.0053 0.0120 

10 Dataset 10 0.0122 0.0029 0.0061 

11 Dataset 11 0.0172 0.0125 0.0138 

12 Dataset 12 0.0258 0.0206 0.0104 

13 Dataset 13 0.0293 0.0180 0.0184 

14 Dataset 14 0.0020 0.0011 0.0020 

15 Dataset 15 0.0154 0.0101 0.0192 

16 Dataset 16 0.0116 0.0060 0.0079 

17 Dataset 17 0.0106 0 0.0102 

18 Dataset 18 0.0065 0.0030 0.0092 

19 Dataset 19 0.0093 0.0025 0.0061 

20 Dataset 20 0.0028 0.0041 0.0043 

21 Dataset 21 0.0282 0.0048 2.2247e-19 

22 Dataset 22 0.0369 0.0160 0.0136 

23 Dataset 23 0.01 10 0.0030 0.0020 

Sl. No Datasets  S-bmSGO MSGO 

1 Dataset1  1.6859e-06 4.0221e-04 

2 Dataset 2 6.3700e-02 1.8901e-07 

3 Dataset3 1.4289e-07 6.7860e-08 

4 Dataset 4 1.4309e-07 6.7956e-08 

5 Dataset 5 3.6000e-03 3.7911e-06 

6 Dataset 6 1.9900e-02 2.1869e-05 

7 Dataset 7 8.4700e-02 NaN 

8 Dataset 8 7.2100e-01 1.0446e-06 

9 Dataset 9 6.3490e-08 1.2422e-07 

10 Dataset 10 8.5641e-06 2.5498e-07 

11 Dataset 11 4.7500e-02 3.6067e-07 

12 Dataset 12 3.5135e-04 1.7721e-08 

13 Dataset 13 1.0631e-07 1.0617e-07 

14 Dataset 14 1.1024e-05 1.0631e-07 

15 Dataset 15 1.2470e-05 1.6483e-07 

16 Dataset 16 2.4000e-03 1.3451e-06 

17 Dataset 17 1.6260e-01 6.1470e-01 

18 Dataset 18 6.8000e-03 9.8490e-04 

19 Dataset 19 7.8870e-08 6.7956e-08 

20 Dataset 20 4.9490e-01 4.5581e-08 

21 Dataset 21 7.4931e-09 9.3043e-06 

22 Dataset 22 7.4664e-06 7.5345e-05 

23 Dataset 23 1.2080e-04 1.5692e-05 
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Figure 4: Chart on mean classification accuracy 

MSGO, S-bmSGO, V-bmSGO 
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Figure 5: Chart on mean number of selected features 

obtained by MSGO, S-bmSGO, V-bmSGO 
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Figure 6: Convergence curve for all compared approaches for 23 UCI datasets 

 

 

3.6 Experiment 2: The performance 

comparison with the state-of-the-art 

approaches 
 

From the first experiment, it's evident that V-bmSGO 

displayed superior performance compared to other 

proposed methods in terms of CA and average selection 

size. In this study, we compared the performance of the 

best-performing method, V-bmSGO, with several state-

of-the-art approaches commonly used for FS problem-

solving. 

Table 10 presents the CA results of V-bmSGO 

alongside CS, GWO, HS, BA, TLBO, and PSO and Fig 7 

displays the chart on that. Across all datasets, V-bmSGO 

outperformed PSO and BA consistently. Additionally, it 

surpassed TLBO and GWO on all datasets except for tic-

tac-toe. While both V-bmSGO and CS performed equally 

on the exactly2 dataset, V-bmSGO outperformed CS on 

all other datasets. Furthermore, V-bmSGO exhibited 

better performance than HS on fourteen out of twenty-

three datasets, indicating the robustness and effectiveness 

of the proposed approach. In terms of ranking, V-bmSGO 

secured the top position, followed by HS in second place 

and CS in third place. 

Table 11 displays the average number of selected 

features using V-bmSGO and other methods and Fig 8 

provides chart on that. V-bmSGO exhibits significantly 

better performance across all datasets except for breast 

cancer and tic-tac-toe datasets, where the PSO algorithm 

shows superior performance. This superiority of V-

bmSGO can be attributed to its enhanced capability in 

exploring and exploiting the feature space effectively, 

leading to the discovery of high-performance regions. 

The statistical measures including mean, best, worst, 

and standard deviation obtained from multiple runs of the 

algorithms on all datasets are detailed in Tables 12-15. 

Specifically, Table 12 reveals that V-bmSGO surpasses 

CS, PSO, and BA in terms of the mean statistical measure 

across all datasets. Moreover, V-bmSGO outperforms 

GWO and TLBO on all datasets except for the tic-tac-toe 

dataset, and it also outperforms HS in thirteen datasets. 

Table 13 presents the statistical best fitness measure 

across datasets. Notably, V-bmSGO outperforms PSO and 

BA in this measure across all datasets. It also outperforms 

GWO in all datasets except for the tic-tac-toe dataset, 

where both achieve equivalent results. Moreover, V-

bmSGO outperforms CS in fourteen datasets and performs 

equally with seven datasets. It also surpasses TLBO in 

eighteen datasets and performs equally with five datasets. 

In comparison with HS, V-bmSGO outperforms it in 

twelve datasets and performs equally in ten datasets, with 

HS outperforming V-bmSGO in one dataset out of twenty-

three. 

Moving on to Table 14, which reports the statistical 

worst fitness measure, V-bmSGO again outperforms CS, 

PSO, and BA across all datasets. It also surpasses GWO 

and TLBO on all datasets except the tic-tac-toe dataset. 

Additionally, V-bmSGO outperforms HS on fourteen 

datasets, whereas HS outperforms V-bmSGO on nine 

datasets out of twenty-three. 

Table 15 focuses on the statistical standard deviation 

fitness measure across datasets. Here, V-bmSGO 

outperforms GWO in six datasets and TLBO in eleven 

datasets. Conversely, GWO outperforms V-bmSGO in 

four datasets, and TLBO outperforms V-bmSGO in four 

datasets. 

Lastly, Table 16 presents the p-values of the WRS test 

at a 5% significance level, comparing V-bmSGO with 

other state-of-the-art approaches. The p-values less than 

0.05 indicate a significant difference at this level. Notably, 

V-bmSGO shows p-values greater than or equal to 0.05 

for comparisons with CS in one case, GWO in one case, 

HS in ten cases, and TLBO in one case out of twenty-three 

cases. For PSO and BA, all comparisons have p-values 

less than 0.05. 

Overall, V-bmSGO exhibits strong performance 

compared to state-of-the-art approaches across various 

statistical measures and datasets. 
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Table 10. Results of V-bmSGO and all other approaches based on average CA 

 

Sl. No Datasets  CS  GWO HS PSO  BA TLBO V-bmSGO 

1 Dataset1  0.9671 0.9613 0.9686 0.9621 0.9611 0.9633 0.9664 

2 Dataset 2 0.9656 0.9568 0.9689 0.9509 0.9528 0.9619 0.9668 

3 Dataset3 0.8870 0.8437 0.8962 0.8313 0.8275 0.8571 0.9046 

4 Dataset 4 0.9643 0.9584 0.9662 0.9574 0.9579 0.9604 0.9657 

5 Dataset 5 0.9638 0.9511 0.9670 0.9454 0.9468 0.9550 0.9663 

6 Dataset 6 0.8522 0.7111 0.9657 0.7027 0.6960 0.7439 0.9400 

7 Dataset 7 0.7760 0.7643 0.7737 0.7663 0.7572 0.7688 0.7760 

8 Dataset 8 0.8541 0.8204 0.8644 0.8148 0.8067 0.8330 0.8593 

9 Dataset 9 0.8776 0.8483 0.8827 0.8460 0.8494 0.8568 0.9170 

10 Dataset 10 0.9587 0.9376 0.9679 0.9117 0.9112 0.9359 0.9699 

11 Dataset 11 0.8791 0.8189 0.8917 0.8074 0.8128 0.8378 0.8926 

12 Dataset 12 0.9532 0.8718 0.9897 0.8324 0.8326 0.8873 0.9958 

13 Dataset 13 0.8755 0.8149 0.8919 0.8044 0.7989 0.8374 0.9236 

14 Dataset 14 0.9779 0.9737 0.9805 0.9716 0.9701 0.9763 0.9837 

15 Dataset 15 0.8611 0.8139 0.8731 0.8207 0.8111 0.8260 0.8841 

16 Dataset 16 0.8813 0.8549 0.8870 0.8470 0.8496 0.8619 0.8877 

17 Dataset 17 0.8071 0.8246 0.8246 0.7693 0.7630 0.8246 0.8209 

18 Dataset 18 0.9560 0.9323 0.9650 0.9283 0.9347 0.9383 0.9733 

19 Dataset 19 0.7915 0.7733 0.8014 0.7545 0.7488 0.7775 0.8010 

20 Dataset 20 0.9910 0.9888 0.9910 0.9674 0.9708 0.9899 0.9955 

21 Dataset 21 0.9777 0.9346 0.9960 0.9291 0.9336 0.9449 1 

22 Dataset 22 0.6872 0.6043 0.7234 0.6096 0.6043 0.6457 0.7234 

23 Dataset 23 0.9850 0.9724 0.9913 0.9552 0.9481 0.9765 0.9888 

Average  0.8996 0.8666 0.9143 0.8559 0.8541 0.8765 0.9175 

 

Table 11: Results of V-bmSGO and all other approaches based on average NSF 

Sl. No Datasets  CS  GWO HS PSO  BA TLBO V-bmSGO 

1 Dataset1  5.3000 4.8000 6 4.2000 4.6000 8.1500 4.5 

2 Dataset 2 15.85 20.35 18.30 15.90 14.95 27.05 12.10 

3 Dataset3 79.25 92.55 116.55 81.25 82.45 158.20 35.35 

4 Dataset 4 81.80 88.90 105.40 82.450 84.65 148.15 43.25 

5 Dataset 5 5.7500 12.500 7.9000 7.9500 8.5000 15.45 2.6500 

6 Dataset 6 7.5500 10.10 6.3500 7 6.5500 12.35 5 

7 Dataset 7 1.4500 5.7000 3.5500 4.3500 4.9500 11.55 1 

8 Dataset 8 8.5500 10.80 8.6500 7.6500 6.8500 12.70 7.1500 

9 Dataset 9 13.95 17.20 15.35 16 16.40 31.05 3.4000 

10 Dataset 10 18.95 31.35 20.10 19.300 20 35 12.90 

11 Dataset 11 7.4500 8.7500 8.8500 8.2000 8.2500 16 6 

12 Dataset 12 7.3000 11.450 6.4500 7.9000 8.0500 12.65 6.1500 

13 Dataset 13 153.75 225.35 209.45 164.15 159.15 305.30 37.15 

14 Dataset 14 127.45 175.15 183.55 132.95 132.40 260.95 91.85 

15 Dataset 15 28.20 31.10 34.15 29.40 30.75 55.45 12.850 

16 Dataset 16 8.9500 11.20 11.80 10.60 10.80 15 6.3500 

17 Dataset 17 7.0500 9 9 5.9000 5.9500 9 8.60 

18 Dataset 18 5.8000 8.1000 5.0500 7.1000 7.2500 14.20 3.2000 

19 Dataset 19 22.75 36.40 26.45 21.05 21.65 39.40 16.15 

20 Dataset 20 7.1000 11.80 7.6500 7.2000 7.4000 12.35 6.5000 

21 Dataset 21 6.4500 8.7500 5.5000 8.3500 8.3000 14.150 2 

22 Dataset 22 7.2500 9.9000 8.8500 9.3000 9.3000 15.70 3.1000 

23 Dataset 23 19.800 26.900 22.750 18.500 17.600 32.600 14.150 
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Table 12: Results of V-bmSGO and all other approaches based on mean FM 

 

Sl. 

No 

Datasets  CS  GWO HS PSO  BA TLBO V-

bmSGO 

1 Dataset1  0.0384 0.0437 0.0378 0.0421 0.0436 0.0420 0.0383 

2 Dataset 2 0.0393 0.0495 0.0368 0.0539 0.0517 0.0442 0.0369 

3 Dataset3 0.1167 0.1603 0.1098 0.1719 0.1757 0.1487 0.0966 

4 Dataset 4 0.0402 0.0466 0.0398 0.0471 0.0467 0.0446 0.0366 

5 Dataset 5 0.0395 0.0562 0.0376 0.0590 0.0580 0.0515 0.0350 

6 Dataset 6 0.1521 0.2938 0.0388 0.2997 0.3060 0.2608 0.0632 

7 Dataset 7 0.2229 0.2377 0.2268 0.2347 0.2442 0.2337 0.2225 

8 Dataset 8 0.1510 0.1861 0.1409 0.1892 0.1967 0.1731 0.1448 

9 Dataset 9 0.1253 0.1552 0.1207 0.1571 0.1539 0.1472 0.0831 

10 Dataset 10 0.0461 0.0705 0.0373 0.0927 0.0935 0.0717 0.0334 

11 Dataset 11 0.1239 0.1841 0.1012 0.1527 0.1899 0.1660 0.1097 

12 Dataset 12 0.0519 0.1357 0.0152 0.1720 0.1719 0.1198 0.0089 

13 Dataset 13 0.1280 0.1902 0.1135 0.1987 0.2039 0.1672 0.0768 

14 Dataset 14 0.0267 0.0326 0.0262 0.0332 0.0346 0.0304 0.0242 

15 Dataset 15 0.1423 0.1894 0.1313 0.1824 0.1922 0.1776 0.1168 

16 Dataset 16 0.1215 0.1488 0.1121 0.1563 0.1538 0.1427 0.1141 

17 Dataset 17 0.1988 0.1836 0.1836 0.2349 0.2412 0.1836 0.1869 

18 Dataset 18 0.0472 0.0721 0.0378 0.0754 0.0692 0.0659 0.0442 

19 Dataset 19 0.2121 0.2336 0.2033 0.2483 0.2541 0.2292 0.2010 

20 Dataset 20 0.0144 0.0202 0.0076 0.0378 0.0346 0.0182 0.0094 

21 Dataset 21 0.0261 0.0702 0.0074 0.0754 0.0709 0.0604 0.0013 

22 Dataset 22 0.3137 0.3973 0.2787 0.3917 0.3970 0.3562 0.2756 

23 Dataset 23 0.0207 0.0352 0.0253 0.0498 0.0566 0.0307 0.0174 

 

Table 13 Results of V-bmSGO and all other approaches based on best FM 

S. No Datasets  CS  GWO HS PSO  BA TLBO V-bmSGO 

1 Dataset1  0.0378 0.0384 0.0378 0.0384 0.0384 0.0378 0.0378 

2 Dataset 2 0.0328 0.0366 0.0300 0.0432 0.0422 0.0331 0.0321 

3 Dataset3 0.0830 0.1254 0.0980 0.1298 0.1544 0.1295 0.0641 

4 Dataset 4 0.0369 0.0412 0.0362 0.0434 0.0436 0.0431 0.0336 

5 Dataset 5 0.0291 0.0471 0.0310 0.0415 0.0485 0.0388 0.0291 

6 Dataset 6 0.0046 0.2639 0.0046 0.2287 0.2710 0.0046 0.0046 

7 Dataset 7 0.2225 0.2233 0.2225 0.2233 0.2233 0.2225 0.2225 

8 Dataset 8 0.1374 0.1617 0.1374 0.1586 0.1374 0.1470 0.1374 

9 Dataset 9 0.1068 0.1394 0.0870 0.1347 0.1273 0.1376 0.0524 

10 Dataset 10 0.0302 0.0503 0.0275 0.0526 0.0648 0.0503 0.0267 

11 Dataset 11 0.0975 0.1265 0.0853 0.1527 0.1505 0.1120 0.0970 

12 Dataset 12 0.0046 0.1020 0.0046 0.0331 0.0940 0.0814 0.0046 

13 Dataset 13 0.0842 0.1650 0.0864 0.1120 0.1389 0.1134 0.0300 

14 Dataset 14 0.0208 0.0296 0.0241 0.0286 0.0298 0.0271 0.0187 

15 Dataset 15 0.0995 0.1483 0.1002 0.1475 0.1568 0.1570 0.0685 

16 Dataset 16 0.1075 0.1149 0.1001 0.1237 0.1301 0.1311 0.0997 

17 Dataset 17 0.1836 0.1836 0.1836 0.2143 0.2051 0.1836 0.1836 

18 Dataset 18 0.0361 0.0512 0.0295 0.0547 0.0572 0.0518 0.0295 

19 Dataset 19 0.1992 0.2230 0.1960 0.2048 0.2302 0.2139 0.1885 

20 Dataset 20 0.0062 0.0173 0.0046 0.0165 0.0150 0.0069 0.0046 

21 Dataset 21 0.0025 0.0044 0.0013 0.0475 0.0259 0.0050 0.0013 

22 Dataset 22 0.2761 0.3609 0.2766 0.3204 0.3409 0.2982 0.2544 

23 Dataset 23 0.0164 0.0188 0.0116 0.0275 0.0269 0.0116 0.0116 
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Table 14: Results of V-bmSGO and all other approaches based on worse FM 

 

S. No Datasets  CS  GWO HS PSO  BA TLBO V-bmSGO 

1 Dataset1  0.0395 0.0480 0.0378 0.0514 0.0486 0.0474 0.0395 

2 Dataset 2 0.0477 0.0583 0.0411 0.0641 0.0612 0.0528 0.0421 

3 Dataset3 0.1383 0.1881 0.1196 0.2045 0.2009 0.1634 0.1113 

4 Dataset 4 0.0442 0.0492 0.0426 0.0495 0.0498 0.0467 0.0400 

5 Dataset 5 0.0492 0.0600 0.0490 0.0737 0.0580 0.0593 0.0415 

6 Dataset 6 0.2960 0.3209 0.2937 0.3242 0.3357 0.3007 0.2978 

7 Dataset 7 0.2241 0.2654 0.2449 0.2687 0.2754 0.2607 0.2225 

8 Dataset 8 0.1741 0.2007 0.1463 0.2173 0.2327 0.1926 0.1586 

9 Dataset 9 0.1391 0.1634 0.1347 0.1687 0.1740 0.1598 0.1078 

10 Dataset 10 0.1219 0.0781 0.0507 0.1847 0.1607 0.1718 0.0487 

11 Dataset 11 0.1650 0.2324 0.1260 0.2447 0.2335 0.1945 0.1377 

12 Dataset 12 0.1658 0.1527 0.1486 0.2279 0.2299 0.1486 0.0331 

13 Dataset 13 0.1654 0.2237 0.1400 0.2460 0.2460 0.1967 0.1084 

14 Dataset 14 0.0301 0.0346 0.0282 0.0361 0.0377 0.0333 0.0276 

15 Dataset 15 0.1665 0.2149 0.1586 0.2228 0.2331 0.1979 0.1443 

16 Dataset 16 0.1366 0.1736 0.1241 0.1911 0.1837 0.1555 0.1348 

17 Dataset 17 0.2122 0.1836 0.1836 0.2650 0.2886 0.1836 0.2205 

18 Dataset 18 0.0566 0.0914 0.0427 0.0980 0.0908 0.0782 0.0600 

19 Dataset 19 0.2222 0.2428 0.2088 0.2834 0.2822 0.2413 0.2095 

20 Dataset 20 0.0173 0.0211 0.0173 0.0625 0.0714 0.0211 0.0150 

21 Dataset 21 0.0637 0.1196 0.0434 0.1308 0.1295 0.0930 0.0013 

22 Dataset 22 0.3631 0.4468 0.2799 0.4457 0.4479 0.4047 0.3171 

23 Dataset 23 0.0275 0.0813 0.0282 0.0768 0.0958 0.1828 0.0215 

 

Table 15: Results of V-bmSGO and all other approaches based on standard deviation FM 

 
S.NO  Datasets CS GWO HS PSO BA TLBO V-bmSGO 

1 Dataset1  7.6316e-04 0.0031 1.4238e-17 0.0038 0.0033 0.0032 3.8990e-04 

2 Dataset 2 0.0038 0.0050 0.0027 0.0049 0.0052 0.0050 0.0026 

3 Dataset3 0.0145 0.0166 0.0066 0.0150 0.0119 0.0116 0.0124 

4 Dataset 4 0.0019 0.0021 0.0018 0.0016 0.0019 0.0011 0.0016 

5 Dataset 5 0.0053 0.0043 0.0050 0.0074 0.0087 0.0058 0.0040 

6 Dataset 6 0.1121 0.0147 0.0848 0.0213 0.0190 0.0650 0.1203 

7 Dataset 7 6.3506e-04 0.0161 0.0080 0.0155 0.0176 0.0122 2.8477e-17 

8 Dataset 8 0.0115 0.0108 0.0029 0.0169 0.0225 0.0127 0.0086 

9 Dataset 9 0.0092 0.0063 0.0106 0.0084 0.0121 0.0061 0.0120 

10 Dataset 10 0.0194 0.0071 0.0059 0.0348 0.0320 0.0315 0.0061 

11 Dataset 11 0.0174 0.0265 0.0102 0.0265 0.0264 0.0225 0.0138 

12 Dataset 12 0.0396 0.0145 0.0348 0.0428 0.0297 0.0193 0.0104 

13 Dataset 13 0.0204 0.0202 0.0087 0.0268 0.0247 0.0223 0.0184 

14 Dataset 14 0.0021 0.0012 0.0013 0.0020 0.0022 0.0019 0.0020 

15 Dataset 15 0.0159 0.0162 0.0166 0.0190 0.0197 0.0112 0.0192 

16 Dataset 16 0.0071 0.0153 0.0059 0.0166 0.0152 0.0075 0.0079 

17 Dataset 17 0.0117 0 0 0.0165 0.0214 0 0.0102 

18 Dataset 18 0.0047 0.0097 0.0031 0.0124 0.0101 0.0077 0.0092 

19 Dataset 19 0.0061 0.0053 0.0038 0.0165 0.0154 0.0067 0.0061 

20 Dataset 20 0.0040 0.0012 0.0040 0.0124 0.0157 0.0039 0.0043 

21 Dataset 21 0.0263 0.0251 0.0107 0.0166 0.0225 0.0180 2.2247e-19 

22 Dataset 22 0.0219 0.0240 7.4916e-04 0.0265 0.0305 0.0339 0.0136 

23 Dataset 23 0.0032 0.0170 0.0025 0.0158 0.0198 0.0363 0.0020 
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Table 16: p-values of the WRS test of V-bmSGO vs all approaches (p ≥ 0.05 are boldfaced) 

 
SL. No Datasets  CS GWO  HS PSO BA  TLBO 

1 Dataset1  7.8060e-01 1.2020e-07 1.6859e-06 1.0360e-06 3.4040e-07 2.5951e-04 

2 Dataset 2 1.8500e-02 2.9409e-07 8.9240e-01 6.7098e-08 6.7098e-08 8.0327e-06 

3 Dataset3 6.6000e-05 6.7956e-08 2.5937e-05 6.7765e-08 6.7956e-08 6.7956e-08 

4 Dataset 4 3.9874e-06 6.7574e-08 1.1034e-05 6.7860e-08 6.7956e-08 6.7956e-08 

5 Dataset 5 7.0000e-03 4.8217e-08 1.8300e-01 6.9802e-08 5.1661e-08 1.7356e-07 

6 Dataset 6 1.1400e-02 3.6573e-05 7.7130e-01 1.6111e-06 1.6111e-06 5.0421e-04 

7 Dataset 7 1.9600e-02 6.8412e-09 9.6000e-03 6.3827e-09 7.8321e-09 2.8596e-08 

8 Dataset 8 1.4500e-02 5.5156e-08 8.7900e-01 7.7888e-08 5.8203e-07 3.4322e-07 

9 Dataset 9 7.3942e-08 6.3852e-08 2.0937e-07 6.3219e-08 6.4034e-08 6.4034e-08 

10 Dataset 10 1.0373e-04 6.7288e-08 1.7900e-02 6.7956e-08 6.7956e-08 6.7956e-08 

11 Dataset 11 1.4000e-03 1.1222e-07 6.0580e-01 6.2147e-08 6.1529e-08 1.7479e-07 

12 Dataset 12 7.1756e-06 1.8535e-08 7.5950e-01 2.4567e-08 1.9447e-08 1.9319e-08 

13 Dataset 13 1.0631e-07 6.7956e-08 1.0486e-07 6.7478e-08 6.7860e-08 6.7956e-08 

14 Dataset 14 2.7378e-04 6.7765e-08 1.0000e-03 6.7574e-08 6.7765e-08 9.1601e-08 

15 Dataset 15 2.0334e-05 6.7669e-08 1.0600e-02 6.7574e-08 6.3501e-08 6.7383e-08 

16 Dataset 16 3.6276e-04 3.3302e-07 7.4480e-01 8.9345e-08 7.6694e-08 1.0372e-07 

17 Dataset 17 2.2000e-03 1.6260e-01 1.6260e-01 3.4064e-08 2.4747e-08 1.6260e-01 

18 Dataset 18 3.6400e-02 1.1439e-07 1.7800e-02 1.0678e-07 5.6044e-07 7.4790e-07 

19 Dataset 19 6.6737e-06 6.7574e-08 2.9770e-01 1.6571e-07 6.7956e-08 6.7765e-08 

20 Dataset 20 7.9867e-05 4.9221e-08 1.7470e-01 6.1091e-08 7.2599e-08 1.3985e-06 

21 Dataset 21 7.9772e-09 2.8546e-08 7.9189e-09 7.9772e-09 7.9189e-09 7.8754e-09 

22 Dataset 22 2.1396e-07 3.4463e-08 1.0236e-05 3.4357e-08 3.4410e-08 6.3893e-08 

23 Dataset 23 1.7500e-02 2.9407e-06 3.6602e-04 6.6438e-08 6.5597e-08 1.0720e-02 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Chart on mean classification accuracy obtained by V-bmSGO and other state-of-the-art approaches 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 8: Chart on average no. of selected features using V-bmSGO and other state-of-the-art approaches 
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3.7 Experiment 3: The performance 

comparison with the latest optimization 

algorithms 
 

In this comparative analysis, the proposed approach 

V-bMSGO is pitted against several latest optimization 

algorithms including CSA, GOA, MVO, SCA, WOA, and 

SSA. The classification accuracy (CA) results obtained by 

these algorithms are presented in Table 17 and visually 

shown by Fig 9. Notably, V-bmSGO showcases superior 

performance over all other optimizers on the majority of 

datasets, with the exception being the tic-tac-toe dataset 

where CSA, MVO, SSA, and WOA perform equally well. 

This outcome underscores V-bmSGO's adeptness in 

effectively navigating the solution search space and 

identifying the optimal feature subset with the highest CA. 

The rankings in Table 17 highlight V-bmSGO in first 

place, followed by MVO in second place, and SCA in third 

place, demonstrating the robustness and efficacy of V-

bmSGO in comparison to contemporary optimization 

algorithms. 
The optimal feature subset selection results are 

summarized in Table 18 and visually shown by chart Fig 

10. Across all datasets except the tic-tac-toe dataset, the 

V-bmSGO approach demonstrates exceptional 

performance. Notably, in the tic-tac-toe dataset, GOA 

outperforms V-bmSGO. This observation suggests that 

the V-shaped transfer function implemented in V-bmSGO 

can substantially enhance the original MSGO's 

performance when it comes to selecting the minimum 

number of attributes or features. 

The statistical mean fitness measure results are 

summarized in Table 19. One can remark that V-bmSGO 

outperformed GOA in all datasets.  V-bmSGO 

outperformed CSA, MVO, SSA, WOA, and SCA in all 

datasets except one dataset i.e., the tic-tac-toe dataset out 

of twenty-three datasets.  

      The statistical best fitness measure results are 

summarized in Table 20. The V-bmSGO outperformed  

CSA in all datasets except three datasets: exactly2, 

heartEW, and tic-tac-toe datasets where both perform 

equally. The V-bmSGO outperformed GOA in all datasets 

except exactly2 dataset where both perform equally. The 

V-bmSGO outperformed MVO and WOA in all datasets 

except two datasets: breast cancer and tic-tac-toe datasets 

where all perform equally. V-bmSGO outperforms SSA in 

twenty datasets and performs equally in three datasets. 

The V-bmSGO outperformed SCA in all datasets except 

two datasets: exactly2 and tic-tac-toe datasets where both 

perform equally. 

The statistical worst fitness measure results are 

summarized in Table 21. Here we see that V-bmSGO 

outperformed GOA and SCA in all datasets. V-bmSGO 

outperformed CSA, MVO, SSA, and WOA in all datasets 

except the tic-tac-toe dataset. 

The statistical standard deviation fitness measure 

results are summarized in Table 22. Here we see that V-

bmSGO outperformed in nine datasets, CSA 

outperformed in four datasets, GOA outperformed in two 

datasets, MVO outperformed in seven datasets, SSA 

outperformed in two datasets, WOA outperformed in two 

datasets, and SCA outperformed in no one datasets out of 

twenty-one datasets. CSA, MVO, SSA, and WOA 

performed equally in the tic-tac-toe dataset in regards to 

standard deviation fitness measure. 

Table 23 presents the p-values of the WRS test 

obtained at a 5% significance level for comparing V-

bmSGO with other newest approaches. A p-value less than 

0.05 indicates a significant difference at a 5% level of 

significance. In Table 23, p-values greater than or equal to 

0.05 are boldfaced. It can be observed that for all the 

newest approaches except GOA, there is one case out of 

twenty-one where the p-value is greater than or equal to 

0.05. 

 

Table 17: Results of proposed V-bmSGO and latest approaches based on CA 

 
S. No Datasets  CSA GOA MVO SSA WOA SCA V-bmSGO 

1 Dataset1  0.9567 0.9601 0.9643 0.9611 0.9623 0.9610 0.9664 

2 Dataset 2 0.9432 0.9512 0.9633 0.9519 0.9582 0.9582 0.9668 

3 Dataset3 0.8055 0.8349 0.8555 0.8351 0.8431 0.8403 0.9046 

4 Dataset 4 0.9556 0.9584 0.9605 0.9581 0.9593 0.9595 0.9657 

5 Dataset 5 0.9468 0.9404 0.9578 0.9500 0.9518 0.9525 0.9663 

6 Dataset 6 0.6874 0.6962 0.7599 0.6973 0.7219 0.7292 0.9400 

7 Dataset 7 0.7455 0.7578 0.7678 0.7592 0.7623 0.7650 0.7760 

8 Dataset 8 0.8444 0.8063 0.8456 0.8181 0.8319 0.8330 0.8593 

9 Dataset 9 0.8318 0.8483 0.8565 0.8517 0.8557 0.8494 0.9170 

10 Dataset 10 0.9309 0.9009 0.9510 0.9335 0.9453 0.9487 0.9699 

11 Dataset 11 0.7588 0.8108 0.8378 0.8196 0.8243 0.8243 0.8926 

12 Dataset 12 0.8600 0.8243 0.9169 0.8687 0.8903 0.8921 0.9958 

13 Dataset 13 0.7838 0.8097 0.8392 0.8027 0.8280 0.8238 0.9236 

14 Dataset 14 0.9738 0.9710 0.9772 0.9733 0.9762 0.9747 0.9837 

15 Dataset 15 0.7654 0.8087 0.8221 0.8106 0.8125 0.8173 0.8841 

16 Dataset 16 0.8201 0.8493 0.8627 0.8541 0.8511 0.8541 0.8877 

17 Dataset 17 0.8246 0.7709 0.8246 0.8246 0.8246 0.8218 0.8209 

18 Dataset 18 0.8913 0.9287 0.9373 0.9277 0.9323 0.9337 0.9733 

19 Dataset 19 0.7644 0.7574 0.7850 0.7663 0.7763 0.7798 0.8010 

20 Dataset 20 0.9747 0.9742 0.9893 0.9888 0.9893 0.9888 0.9955 
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21 Dataset 21 0.8772 0.9309 0.9427 0.9313 0.9458 0.9404 1 

22 Dataset 22 0.5202 0.6149 0.6362 0.5957 0.5957 0.6277 0.7234 

23 Dataset 23 0.8232 0.9497 0.9828 0.9560 0.9560 0.9773 0.9888 

Average  0.8385 0.8546 0.8798 0.8624 0.8693 0.8719 0.9175 

  

Table 18: Results of proposed V-bmSGO and latest approaches based on the average number of. Features 

 
S. No Datasets  CSA GOA MVO SSA WOA SCA V-bmSGO 

1 Dataset1  9 5 5.1000 4.7000 5.3000 5.1500 4.5 

2 Dataset 2 29.70 16.05 22.70 16.70 21.80 22.60 12.10 

3 Dataset3 166 85.75 112.45 82.80 118.90 108.85 35.35 

4 Dataset 4 162.10 82.45 102.05 84.40 97.45 96.35 43.25 

5 Dataset 5 16 7.8000 12.30 11.80 11.30 10.40 2.6500 

6 Dataset 6 12.90 6.9000 10.05 7.8500 10.60 10 5 

7 Dataset 7 13 4.5000 6.7500 4.9000 7.8500 5.4000 1 

8 Dataset 8 12.90 8.2500 9.7500 9.4000 10.20 10.15 7.1500 

9 Dataset 9 34 16.05 21.30 15.20 18.60 18.900 3.4000 

10 Dataset 10 34.90 20.15 28.60 30.35 30.75 29.600 12.90 

11 Dataset 11 18 9.3000 10.30 9.2500 11.050 9.7500 6 

12 Dataset 12 12.90 7.3000 9.4000 11.950 10.750 10.750 6.1500 

13 Dataset 13 323.35 164.45 236.15 201.85 220.70 197.65 37.15 

14 Dataset 14 265 134.45 205.60 191.70 213.35 180.80 91.85 

15 Dataset 15 60 29.85 37.50 29.55 36.55 33.45 12.850 

16 Dataset 16 21.60 11.05 13.55 10.45 13.600 13.60 6.3500 

17 Dataset 17 9 6.4000 9 9 9 8.8000 8.60 

18 Dataset 18 15.800 6.4500 8.7000 7.1000 8.7500 8.3500 3.2000 

19 Dataset 19 39.85 23.05 32.30 34.85 34.75 33.15 16.15 

20 Dataset 20 12.950 7.4000 8.7000 12.75 11.45 10.700 6.5000 

21 Dataset 21 15.700 7.8500 9.5500 8.5000 10.150 9.1500 2 

22 Dataset 22 18 8.4000 10.750 9.2500 10 10.250 3.1000 

23 Dataset 23 33.60 18.150 25.700 17.400 27.450 27.400 14.150 

 

Table 19: Results of proposed V-bmSGO and latest approaches based on mean FM 

S. No Datasets  CSA GOA MVO SSA WOA SCA V-bmSGO 

1 Dataset1  0.0403 0.0450 0.0410 0.0437 0.0432 0.0443 0.0383 

2 Dataset 2 0.0451 0.0536 0.0439 0.0532 0.0486 0.0489 0.0369 

3 Dataset3 0.1483 0.1686 0.1499 0.1683 0.1625 0.1646 0.0966 

4 Dataset 4 0.0439 0.0462 0.0453 0.0465 0.0462 0.0459 0.0366 

5 Dataset 5 0.0479 0.0639 0.0495 0.0569 0.0547 0.0535 0.0350 

6 Dataset 6 0.2713 0.3061 0.2454 0.3057 0.2835 0.2758 0.0632 

7 Dataset 7 0.2237 0.2432 0.2351 0.2422 0.2414 0.2368 0.2225 

8 Dataset 8 0.1672 0.1981 0.1604 0.1873 0.1743 0.1732 0.1448 

9 Dataset 9 0.1428 0.1549 0.1483 0.1513 0.1483 0.1546 0.0831 

10 Dataset 10 0.0603 0.1037 0.0565 0.0743 0.0627 0.0591 0.0334 

11 Dataset 11 0.1547 0.1925 0.1663 0.1837 0.1801 0.1793 0.1097 

12 Dataset 12 0.1114 0.1796 0.0895 0.1392 0.1169 0.1151 0.0089 

13 Dataset 13 0.1639 0.1935 0.1665 0.2015 0.1771 0.1805 0.0768 

14 Dataset 14 0.0304 0.0338 0.0304 0.0336 0.0316 0.0319 0.0242 

15 Dataset 15 0.1770 0.1944 0.1824 0.1925 0.1917 0.1864 0.1168 

16 Dataset 16 0.1380 0.1543 0.1421 0.1492 0.1536 0.1506 0.1141 

17 Dataset 17 0.1836 0.2339 0.1836 0.1836 0.1836 0.1862 0.1869 

18 Dataset 18 0.0571 0.0747 0.0675 0.0760 0.0725 0.0709 0.0442 

19 Dataset 19 0.2303 0.2459 0.2210 0.2401 0.2302 0.2263 0.2010 

20 Dataset 20 0.0174 0.0313 0.0173 0.0209 0.0194 0.0194 0.0094 

21 Dataset 21 0.0545 0.0733 0.0627 0.0734 0.0600 0.0647 0.0013 

22 Dataset 22 0.3458 0.3859 0.3662 0.4054 0.0600 0.3743 0.2756 

23 Dataset 23 0.0277 0.0551 0.0246 0.0487 0.3710 0.0305 0.0174 
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Table 20: Results of proposed V-bmSGO and latest approaches based on the best FM 

 
S. No Datasets  CSA GOA MVO SSA WOA SCA V-bmSGO 

1 Dataset1  0.0384 0.0384 0.0378 0.0384 0.0378 0.0395 0.0378 

2 Dataset 2 0.0401 0.0397 0.0386 0.0477 0.0421 0.0389 0.0321 

3 Dataset3 0.1380 0.1343 0.1297 0.1421 0.1332 0.1299 0.0641 

4 Dataset 4 0.0380 0.0411 0.0432 0.0443 0.0433 0.0418 0.0336 

5 Dataset 5 0.0310 0.0465 0.0432 0.0413 0.0420 0.0388 0.0291 

6 Dataset 6 0.0826 0.2703 0.0747 0.2858 0.2579 0.2002 0.0046 

7 Dataset 7 0.2225 0.2225 0.2233 0.2225 0.2233 0.2225 0.2225 

8 Dataset 8 0.1374 0.1609 0.1389 0.1374 0.1470 0.1455 0.1374 

9 Dataset 9 0.1166 0.1391 0.1338 0.1276 0.1279 0.1376 0.0524 

10 Dataset 10 0.0482 0.0625 0.0473 0.0569 0.0558 0.0409 0.0267 

11 Dataset 11 0.1243 0.1516 0.1260 0.1260 0.1265 0.1388 0.0970 

12 Dataset 12 0.0331 0.1356 0.0252 0.0889 0.0715 0.0861 0.0046 

13 Dataset 13 0.1180 0.1652 0.1414 0.1654 0.1425 0.1388 0.0300 

14 Dataset 14 0.0273 0.0284 0.0281 0.0285 0.0279 0.0268 0.0187 

15 Dataset 15 0.1476 0.1685 0.1581 0.1667 0.1663 0.1568 0.0685 

16 Dataset 16 0.1089 0.1167 0.1098 0.1154 0.1371 0.1163 0.0997 

17 Dataset 17 0.1836 0.2062 0.1836 0.1836 0.1836 0.1836 0.1836 

18 Dataset 18 0.0493 0.0566 0.0559 0.0566 0.0553 0.0566 0.0295 

19 Dataset 19 0.2180 0.2173 0.2024 0.2209 0.2142 0.2158 0.1885 

20 Dataset 20 0.0150 0.0157 0.0077 0.0173 0.0069 0.0077 0.0046 

21 Dataset 21 0.0063 0.0050 0.0273 0.0452 0.0044 0.0265 0.0013 

22 Dataset 22 0.2993 0.3193 0.3210 0.3620 0.3215 0.3210 0.2544 

23 Dataset 23 0.0170 0.0221 0.0185 0.0323 0.0182 0.0188 0.0116 

 

Table 21: Results of proposed V-bmSGO and latest approaches based on worst FM 

 
S. No Datasets  CSA GOA MVO SSA WOA SCA V-bMSGO 

1 Dataset1  0.0440 0.0536 0.0463 0.0497 0.0480 0.0491 0.0395 

2 Dataset 2 0.0515 0.0629 0.0535 0.0616 0.0573 0.0542 0.0421 

3 Dataset3 0.1623 0.1878 0.1710 0.1853 0.1886 0.1918 0.1113 

4 Dataset 4 0.0464 0.0489 0.0472 0.0492 0.0499 0.0486 0.0400 

5 Dataset 5 0.0550 0.1043 0.0542 0.0600 0.0950 0.0719 0.0415 

6 Dataset 6 0.2985 0.3397 0.2985 0.3209 0.3068 0.3068 0.2978 

7 Dataset 7 0.2248 0.2704 0.2500 0.2628 0.2611 0.2718 0.2225 

8 Dataset 8 0.1852 0.2262 0.1779 0.2007 0.2007 0.1926 0.1586 

9 Dataset 9 0.1557 0.1702 0.1610 0.1631 0.1675 0.1663 0.1078 

10 Dataset 10 0.0735 0.1914 0.0659 0.0781 0.0717 0.0723 0.0487 

11 Dataset 11 0.1912 0.2341 0.2096 0.2464 0.2313 0.2090 0.1377 

12 Dataset 12 0.1486 0.2335 0.1419 0.1486 0.1486 0.1439 0.0331 

13 Dataset 13 0.1928 0.2254 0.1952 0.2241 0.1955 0.2215 0.1084 

14 Dataset 14 0.0335 0.0381 0.0318 0.0348 0.0334 0.0336 0.0276 

15 Dataset 15 0.1954 0.2243 0.2056 0.2228 0.2149 0.2231 0.1443 

16 Dataset 16 0.1537 0.1684 0.1550 0.1684 0.1716 0.1716 0.1348 

17 Dataset 17 0.1836 0.2650 0.1836 0.1836 0.1836 0.2350 0.2205 

18 Dataset 18 0.0691 0.1034 0.0848 0.1034 0.0854 0.0873 0.0600 

19 Dataset 19 0.2428 0.2662 0.2301 0.2428 0.2374 0.2359 0.2095 

20 Dataset 20 0.0211 0.0499 0.0196 0.0211 0.0211 0.0269 0.0150 

21 Dataset 21 0.0662 0.1314 0.1163 0.1256 0.0848 0.0854 0.0013 

22 Dataset 22 0.3836 0.4268 0.4052 0.4285 0.4047 0.4462 0.3171 

23 Dataset 23 0.0344 0.1228 0.0347 0.0687 0.0964 0.1129 0.0215 

 

Table 22: Results of proposed V-bmSGO and latest approaches based on standard deviation FM 

 
S. No Datasets  CSA GOA MVO SSA WOA SCA V-bMSGO 

1 Dataset1  0.0019 0.0040 0.0030 0.0036 0.0034 0.0025 3.8990e-04 

2 Dataset 2 0.0028 0.0060 0.0036 0.0037 0.0041 0.0036 0.0026 

3 Dataset3 0.0072 0.0145 0.0090 0.0137 0.0129 0.0124 0.0124 

4 Dataset 4 0.0020 0.0023 0.0012 0.0012 0.0014 0.0019 0.0016 

5 Dataset 5 0.0065 0.0139 0.0028 0.0058 0.0110 0.0063 0.0040 

6 Dataset 6 0.0498 0.0152 0.0482 0.0123 0.0129 0.0247 0.1203 

7 Dataset 7 6.3628e-04 0.0188 0.0107 0.0143 0.0147 0.0151 2.8477e-17 
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8 Dataset 8 0.0144 0.0192 0.0119 0.0165 0.0137 0.0136 0.0086 

9 Dataset 9 0.0093 0.0081 0.0086 0.0108 0.0106 0.0085 0.0120 

10 Dataset 10 0.0065 0.0441 0.0044 0.0068 0.0052 0.0076 0.0061 

11 Dataset 11 0.0181 0.0277 0.0241 0.0318 0.0272 0.0241 0.0138 

12 Dataset 12 0.0385 0.0227 0.0314 0.0192 0.0226 0.0158 0.0104 

13 Dataset 13 0.0233 0.0204 0.0105 0.0227 0.0152 0.0224 0.0184 

14 Dataset 14 0.0016 0.0028 0.0012 0.0017 0.0016 0.0015 0.0020 

15 Dataset 15 0.0123 0.0145 0.0112 0.0167 0.0158 0.0167 0.0192 

16 Dataset 16 0.0098 0.0131 0.0115 0.0144 0.0113 0.0133 0.0079 

17 Dataset 17 0 0.0189 0 0 0 0.0115 0.0102 

18 Dataset 18 0.0055 0.0129 0.0078 0.0140 0.0081 0.0098 0.0092 

19 Dataset 19 0.0072 0.0118 0.0060 0.0062 0.0056 0.0058 0.0061 

20 Dataset 20 0.0020 0.0112 0.0024 8.6003e-04 0.0030 0.0034 0.0043 

21 Dataset 21 0.0178 0.0271 0.0190 0.0175 0.0217 0.0119 2.2247e-19 

22 Dataset 22 0.0232 0.0266 0.0264 0.0208 0.0219 0.0248 0.0136 

23 Dataset 23 0.0043 0.0260 0.0059 0.0100 0.0167 0.0200 0.0020 

 

Table 23. p-values of the WRS test of the proposed V-bmSGO vs other latest approaches (p ≥ 0.05 are boldfaced) 

 
Sl No Datasets  CSA GOA MVO SSA WOA SCA 

1 Dataset1  3.0183e-06 1.2282e-07 0.0162 9.1944e-07 1.1012e-04 3.5056e-08 

2 Dataset 2 1.0400e-07 9.0467e-08 6.7931e-07 6.7098e-08 7.2653e-08 1.2246e-07 

3 Dataset3 6.7956e-08 6.7765e-08 6.7860e-08 6.7956e-08 6.7956e-08 6.7860e-08 

4 Dataset 4 1.2346e-07 6.7956e-08 6.7860e-08 6.7956e-08 6.7956e-08 6.7956e-08 

5 Dataset 5 1.9150e-06 5.2268e-08 4.9584e-08 7.3982e-08 5.2115e-08 9.4721e-08 

6 Dataset 6 5.5020e-04 2.8501e-07 8.2286e-04 6.6955e-07 2.3276e-04 2.3378e-04 

7 Dataset 7 7.9391e-08 2.9150e-08 7.6046e-09 3.5000e-07 7.7603e-09 2.8052e-08 

8 Dataset 8 6.4855e-06 5.8100e-08 3.2972e-05 5.5671e-07 3.4060e-07 7.9910e-07 

9 Dataset 9 6.3943e-08 6.4034e-08 6.3943e-08 6.3943e-08 6.3943e-08 6.4034e-08 

10 Dataset 10 9.1728e-08 6.7956e-08 7.8870e-08 3.9954e-08 6.7860e-08 9.1728e-08 

11 Dataset 11 2.3496e-07 6.1882e-08 1.5191e-07 9.5732e-08 9.7339e-08 6.1882e-08 

12 Dataset 12 2.4407e-08 1.9447e-08 3.9591e-08 8.8511e-09 1.9287e-08 1.8752e-08 

13 Dataset 13 6.7860e-08 6.7860e-08 6.7956e-08 6.5970e-08 6.7860e-08 6.7860e-08 

14 Dataset 14 7.8760e-08 6.7765e-08 6.7860e-08 5.7186e-08 6.7765e-08 7.8760e-08 

15 Dataset 15 6.7669e-08 6.7574e-08 6.7669e-08 6.7765e-08 5.5557e-08 6.7765e-08 

16 Dataset 16 8.8830e-07 1.8580e-07 8.8725e-07 2.3202e-07 6.5783e-08 2.1635e-07 

17 Dataset 17 1.6260e-01 3.9697e-08 1.6260e-01 1.6260e-01 1.6260e-01 6.1470e-01 

18 Dataset 18 3.7422e-05 2.4022e-07 3.6990e-07 2.3960e-07 1.5480e-07 3.6944e-07 

19 Dataset 19 6.7956e-08 6.7956e-08 2.9598e-07 2.9550e-08 6.7956e-08 6.7860e-08 

20 Dataset 20 1.0387e-07 6.1794e-08 2.1954e-07 1.0238e-08 3.0918e-07 2.3084e-07 

21 Dataset 21 3.7422e-05 2.4022e-07 3.6990e-07 2.3960e-07 1.5480e-07 3.6944e-07 

22 Dataset 22 4.6779e-08 3.4251e-08 3.4251e-08 3.4198e-08 3.4410e-08 3.4304e-08 

23 Dataset 23 1.1681e-06 8.9593e-08 2.0600e-02 6.6344e-08 1.9000e-03 3.2429e-05 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: Chart on mean classification accuracy obtained by V-bmSGO and other latest approaches 
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Figure 10: Chart on average number of selected features obtained by V-bmSGO and other latest approaches 

 

Table 24: Overall mean CA and average NSF of all algorithms 

Dataset   CS GWO HS PSO BA 

 CA NSF CA NSF CA NSF CA NSF CA NSF 

Dataset1  96.71% 5.3000 96.13% 4.8000 96.86% 6 96.21% 4.2000 96.11% 4.6000 

Dataset 2 96.56% 15.85 95.68% 20.35 96.89% 18.30 95.09% 15.90 95.28% 14.95 

Dataset3 88.70% 79.25 84.37% 92.55 89.62% 116.55 83.13% 81.25 82.75% 82.45 

Dataset 4 96.43% 81.80 95.84% 88.90 96.62% 105.40 95.74% 82.450 95.79% 84.65 

Dataset 5 96.38% 5.7500 95.11% 12.500 96.70% 7.9000 94.54% 7.9500 94.68% 8.5000 

Dataset 6 85.22% 7.5500 71.11% 10.10 96.57% 6.3500 70.27% 7 69.60% 6.5500 

Dataset 7 77.60% 1.4500 76.43% 5.7000 77.37% 3.5500 76.63% 4.3500 75.72% 4.9500 

Dataset 8 85.41% 8.5500 82.04% 10.80 86.44% 8.6500 81.48% 7.6500 80.67% 6.8500 

Dataset 9 87.76% 13.95 84.83% 17.20 88.27% 15.35 84.60% 16 84.94% 16.40 

Dataset 10 95.87% 18.95 93.76% 31.35 96.79% 20.10 91.17% 19.300 91.12% 20 

Dataset 11 87.91% 7.4500 81.89% 8.7500 89.17% 8.8500 80.74% 8.2000 81.28% 8.2500 

Dataset 12 95.32% 7.3000 87.18% 11.450 98.97% 6.4500 83.24% 7.9000 83.26% 8.0500 

Dataset 13 87.55% 153.75 81.49% 225.35 89.19% 209.45 80.44% 164.15 79.89% 159.15 

Dataset 14 97.79% 127.45 97.37% 175.15 98.05% 183.55 97.16% 132.95 97.01% 132.40 

Dataset 15 86.11% 28.20 81.39% 31.10 87.31% 34.15 82.07% 29.40 81.11% 30.75 

Dataset 16 88.13% 8.9500 85.49% 11.20 88.70% 11.80 84.70% 10.60 84.96% 10.80 

Dataset 17 80.71% 7.0500 82.46% 9 82.46% 9 76.93% 5.9000 76.30% 5.9500 

Dataset 18 95.60% 5.8000 93.23% 8.1000 96.50% 5.0500 92.83% 7.1000 93.47% 7.2500 

Dataset 19 79.15% 22.75 77.33% 36.40 80.14% 26.45 75.45% 21.05 74.88% 21.65 

Dataset 20 99.10% 7.1000 98.88% 11.80 99.10% 7.6500 96.74% 7.2000 97.08% 7.4000 

Dataset 21 97.77% 6.4500 93.46% 8.7500 99.60% 5.5000 92.91% 8.3500 93.36% 8.3000 

Dataset 22 68.72% 7.2500 60.43% 9.9000 72.34% 8.8500 60.96% 9.3000 60.43% 9.3000 

Dataset 23 98.50% 19.800 97.24% 26.900 99.13% 22.750 95.52% 18.500 94.81% 17.600 

 TLBO CSA GOA MVO SSA 

 CA NSF CA NSF CA NSF CA NSF CA NSF 

Dataset1  96.33% 8.1500 95.67% 9 96.01% 5 96.43% 5.1000 96.11% 4.7000 

Dataset 2 96.19% 27.05 94.32% 29.70 95.12% 16.05 96.33% 22.70 95.19% 16.70 

Dataset3 85.71% 158.20 80.55% 166 83.49% 85.75 85.55% 112.45 83.51% 82.80 

Dataset 4 96.04% 148.15 95.56% 162.10 95.84% 82.45 96.05% 102.05 95.81% 84.40 

Dataset 5 95.50% 15.45 94.68% 16 94.04% 7.8000 95.78% 12.30 95.00% 11.80 

Dataset 6 74.39% 12.35 68.74% 12.90 69.62% 6.9000 75.99% 10.05 69.73% 7.8500 

Dataset 7 76.88% 11.55 74.55% 13 75.78% 4.5000 76.78% 6.7500 75.92% 4.9000 

Dataset 8 83.30% 12.70 84.44% 12.90 80.63% 8.2500 84.56% 9.7500 81.81% 9.4000 

Dataset 9 85.68% 31.05 83.18% 34 84.83% 16.05 85.65% 21.30 85.17% 15.20 

Dataset 10 93.59% 35 93.09% 34.90 90.09% 20.15 95.10% 28.60 93.35% 30.35 

Dataset 11 83.78% 16 75.88% 18 81.08% 9.3000 83.78% 10.30 81.96% 9.2500 

Dataset 12 88.73% 12.65 86.00% 12.90 82.43% 7.3000 91.69% 9.4000 86.87% 11.950 

Dataset 13 83.74% 305.30 78.38% 323.35 80.97% 164.45 83.92% 236.15 80.27% 201.85 

Dataset 14 97.63% 260.95 97.38% 265 97.10% 134.45 97.72% 205.60 97.33% 191.70 

Dataset 15 82.60% 55.45 76.54% 60 80.87% 29.85 82.21% 37.50 81.06% 29.55 

Dataset 16 86.19% 15 82.01% 21.60 84.93% 11.05 86.27% 13.55 85.41% 10.45 

Dataset 17 82.46% 9 82.46% 9 77.09% 6.4000 82.46% 9 82.46% 9 
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According to the data provided by Table 24, the HS 

algorithm achieves the highest mean classification 

accuracy across several datasets. Specifically, it performs 

best on datasets 1, 2, 4, 5, 6, 8, 17, 19, 22, and 23. In 

contrast, the SGO algorithm demonstrates superior 

performance in a larger number of datasets, excelling in 

datasets 3, 7, 9, 10, 11, 12, 13, 14, 15, 16, 18, 20, 21, and 

22. Interestingly, algorithms such as TLBO, GWO, CSA, 

MVO, and SSA each reach their peak mean classification 

accuracy solely on dataset 17. 

Examining the mean number of selected features, the 

HS algorithm shows optimal performance only for dataset 

1, whereas the PSO algorithm is best suited for dataset 17. 

For the remaining datasets, which include datasets 2 

through 16 and 18 through 23, the SGO algorithm 

consistently selects the most effective number of features. 

Furthermore, the SGO algorithm stands out by 

achieving both the highest mean classification accuracy 

and the best mean number of selected features for a 

significant subset of datasets. These include datasets 3, 7, 

9, 10, 11, 12, 13, 14, 15, 16, 18, 20, 21, and 22. This dual 

accomplishment underscores the robustness and 

efficiency of the SGO algorithm across a diverse set of 

conditions. 

Overall discussion 
Based on the experimental results, we can confidently 

conclude that our proposed approaches demonstrate 

significant efficacy in solving FS problems compared to 

other methods. Notably, the outcomes of the stochastic 

wrapper-based FS approach consistently stand out.  

 

 

However, it's worth noting that the subset of features 

selected by the algorithm may vary depending on the 

specific application, posing a challenge for users in 

deciding which subset to adopt. Furthermore, our 

proposed approach employs the KNN classifier, which is 

a straightforward choice. Future investigations could 

explore the integration of alternative classifiers such as 

support vector machines or random forests, which may 

offer additional insights and performance enhancements 

in feature selection tasks. 

 

4   Conclusion 
In this study, we introduced bmSGO algorithms to 

address the FS problem using a wrapper approach. Our 

method involved converting continuous MSGO into 

binary form using transfer functions, specifically 

employing the V-shaped transfer function in V-bmSGO 

and the S-shaped transfer function in S-bmSGO. These 

approaches were designed to evaluate different search 

capabilities within the algorithms. 

To frame the FS problem, we transformed it into a 

single-objective optimization challenge with a fitness 

function that reflects classification performance while 

minimizing the number of features. We conducted 

evaluations using twenty-three datasets from the UCI 

repository, comparing our bmSGO approaches against six 

state-of-the-art FS methods (PSO, HS, CS, BA, TLBO, 

GWO) and six latest optimization algorithms (SCA, SSA, 

CSA, GOA, MVO, WOA). 

Our experimental findings indicate that our 

approaches perform exceptionally well in solving FS 

problems. Particularly, V-bmSGO showed a significant 

Dataset 18 93.83% 14.20 89.13% 15.800 92.87% 6.4500 93.73% 8.7000 92.77% 7.1000 

Dataset 19 77.75% 39.40 76.44% 39.85 75.74% 23.05 78.50% 32.30 76.63% 34.85 

Dataset 20 98.99% 12.35 97.47% 12.950 97.42% 7.4000 98.93% 8.7000 98.88% 12.75 

Dataset 21 94.49% 14.150 87.72% 15.700 93.09% 7.8500 94.27% 9.5500 93.13% 8.5000 

Dataset 22 64.57% 15.70 52.02% 18 61.49% 8.4000 63.62% 10.750 59.57% 9.2500 

Dataset 23 97.65% 32.600 82.32% 33.60 94.97% 18.150 98.28% 25.700 95.60% 17.400 

 WOA SCA V-bmSGO   

 CA NSF CA NSF CA NSF     

Dataset1 96.23% 5.3000    96.10% 5.1500    96.64% 4.5     

Dataset 2 95.82% 21.80 95.82% 22.60 96.68% 12.10     

Dataset3 84.31% 118.90 84.03% 108.85 90.46% 35.35     

Dataset 4 95.93% 97.45 95.95% 96.35 96.57% 43.25     

Dataset 5 95.18% 11.30 95.25% 10.40 96.63% 2.6500     

Dataset 6 72.19% 10.60 72.92% 10 94.00% 5     

Dataset 7 76.23% 7.8500 76.50% 5.4000 77.60% 1     

Dataset 8 83.19% 10.20 83.30% 10.15 85.93% 7.1500     

Dataset 9 85.57% 18.60 84.94% 18.900 91.70% 3.4000     

Dataset 10 94.53% 30.75 94.87% 29.600 96.99% 12.90     

Dataset 11 82.43% 11.050 82.43% 9.7500 89.26% 6     

Dataset 12 89.03% 10.750 89.21% 10.750 99.58% 6.1500     

Dataset 13 82.80% 220.70 82.38% 197.65 92.36% 37.15     

Dataset 14 97.62% 213.35 97.47% 180.80 98.37% 91.85     

Dataset 15 81.25% 36.55 81.73% 33.45 88.41% 12.850     

Dataset 16 85.11% 13.600 85.41% 13.60 88.77% 6.3500     

Dataset 17 82.46% 9 82.18% 8.8000 82.09% 8.60     

Dataset 18 93.23% 8.7500 93.37% 8.3500 97.33% 3.2000     

Dataset 19 77.63% 34.75 77.98% 33.15 80.10% 16.15     

Dataset 20 98.93% 11.45 98.88% 10.700 99.55% 6.5000     

Dataset 21 94.58% 10.150 94.04% 9.1500 100.00% 2     

Dataset 22 59.57% 10 62.77% 10.250 72.34% 3.1000     

Dataset 23 95.60% 27.450 97.73% 27.400 98.88% 14.150     
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improvement over MSGO in terms of classification 

accuracy and feature selection. The simulation outcomes 

demonstrated that V-bmSGO excelled in searching the 

feature set space and converging towards optimal or near-

optimal solutions better than other algorithms. 

For future research, we aim to apply the bmSGO 

algorithm to diverse real-world problems such as facial 

emotion recognition, handwriting recognition, and script 

recognition. Additionally, hybridizing the MSGO 

algorithm with other population-based meta-heuristic 

algorithms for FS problems could be a promising path to 

explore. 
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