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The development of urban tourism has to some extent driven urban economic growth. However, it 

involves multiple industries such as transportation, accommodation, entertainment, and catering, 

which can generate significant carbon emissions. To promote the tourism economy and environment's 

coordinated development, tourism ecological efficiency is proposed. Its measurement methods have 

also attracted attention. Therefore, the city tourism ecological efficiency measurement model based on 

tourism carbon emissions and DEA-Malmquist was proposed. Then, the accuracy of measuring 

tourism ecological efficiency can be improved. This study first constructed a mixed model of least 

absolute shrinkage and selection operator-genetic algorithm-support vector regression to measure the 

carbon emissions of urban tourism industry. Subsequently, the DEA-Malmquist measurement means 

was constructed to evaluate urban tourism's ecological efficiency. The relative error and absolute 

error of the proposed intelligent model were 2.005% and 2.005%, respectively, which were 

significantly better than the comparison models. The average carbon emission from leisure vacation 

activities, sightseeing, business trips, and visiting relatives and friends was 171100, 126700, 72300, 

and 61200 tons. The overall tourism ecological efficiency of this province showed a fluctuating trend. 

The technical efficiency decreased from its highest point of 0.774 in 2019 to its lowest point of 0.706 in 

2020, and then gradually rebounded to 0.759 in 2023. Therefore, this proposed method can effectively 

measure the carbon emissions and tourism ecological efficiency of cities. It has practical operability 

and can provide an effective path for promoting tourism economy and ecological environment's 

balanced development. 

Povzetek: Algoritem za dinamično analizo ekološke učinkovitosti v mestni turistični industriji temelji 

na DEA-Malmquistovem modelu in omogoča zmanjšanje ogljičnih emisij in analizo turizma.

1 Introduction 

China's tourism industry is developing rapidly and has 

grown into the world's largest domestic tourism 

marketplace [1]. The rapidly developing tourism industry 

is bound to cause environmental pressure. Currently, 

4.4% of the global Carbon Emission (CE) comes from the 

tourism industry. This proportion will continue to grow 

[2]. China has clearly stipulated that a spatial pattern of 

resource conservation and environmental protection must 

be formed. Therefore, the focus of academic attention 

includes coordinating the contradiction between tourism 

development and CE and finding low-carbon tourism 

development paths [3-4]. Tourism Ecological Efficiency 

(EE) is a measure method using the ratio between 

economic benefits and environmental impacts. In 

accounting, CE represents environmental impact and 

tourism revenue represents economic benefits. Therefore, 

CE accounting is important for measuring the urban 

tourism industry EE [5]. Tourism EE is evaluated by the 

ratio of tourism revenue to CE, reflecting how tourism  

 

activities affect the environment. The tourism industry's 

negative impact on the environment can be objectively 

evaluated by calculating CE, thereby guiding the 

formulation of low-carbon tourism development 

strategies. 

Nowadays, scholars have discussed the relevant 

methods of CE accounting in the tourism industry. 

Yıldırım et al. proposed an analytical method aimed at 

evaluating the impact of tourists and tourism revenue in 

Mediterranean countries on CE. This study used 

econometric means to test the hypothesis and measure the 

tourism industry CE. This study took data from 15 

countries from 2001 to 2017 as an example. The increase 

in tourists led to an increase in CE before reaching a 

certain threshold. However, exceeding this threshold 

reduced CE, providing a new perspective and evidence 

for tourism CE impact assessment [6]. Zhang et al. used a 

vector error correction means and other methods to 

measure the tourism industry CE. They explored the 

causal relationship between tourism, economic growth, et 
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al. in 30 provinces of China from 2000 to 2017. This 

proposed method confirmed the long-term equilibrium 

relationship between variables through panel 

cointegration testing. GDP and the tourism industry had a 

bidirectional short-term and long-term causal correlation. 

Energy consumption had a one-way long-term and 

short-term impact on other variables [7]. Razzaq et al. 

proposed a moment quantile regression method. This 

experiment evaluated the impact of green technology 

innovation on tourism economic growth and carbon 

dioxide emissions. This method addressed the 

non-normality of data and constructed a suitable 

statistical framework. International tourism promoted 

tourism economic growth but increased carbon dioxide 

emissions. Its effectiveness varied depending on national 

development and environmental pollution [8]. 

Selvanathan et al. used autoregressive distributed lag 

model, panel framework, and other method to measure 

the tourism industry CE. Meanwhile, they explored the 

interaction between South Asia's tourism industry, energy 

consumption, et al. Through in-depth analysis of 

long-term data, this study revealed the positive 

contribution of the tourism industry to GDP. However, its 

CE had a certain negative impact. This result laid a 

theoretical foundation for subsequent research on the 

tourism industry EE [9]. Razzaq et al. developed a new 

composite index that used quantile auto-regressive 

distribution lag method and Granger quantile causality to 

measure tourism industry CE. This experiment explored 

the correlation between tourism development, 

technological innovation, and CE. This proposed model 

effectively measured the tourism industry CE. In addition, 

the environmental Kuznets curve hypothesis existed for a 

long time. There was an asymmetric bidirectional causal 

relationship between tourism, technology, and CE [10]. 

The measurement method of the tourism industry EE 

is always a hot research topic in the academic community. 

Many scholars are committed to it. Li et al. used location 

quotient index and other methods to evaluate the 

relationship between the agglomeration of China's 

provincial-level tourism industry and its EE from 2011 to 

2016. This proposed method effectively measured the 

clustering trend of the tourism industry in various regions 

and its impact on efficiency. Ultimately, the eastern 

region of China had the highest agglomeration. The 

tourism industry efficiency in this region was also 

relatively high. In addition, industrial agglomeration 

significantly improved the efficiency of the tourism 

industry nationwide, including overall, pure technical, 

and scale efficiency [11]. Liu et al. used a relaxation 

measurement model and a spatial Durbin model to 

evaluate China's tourism industry EE and explore spatial 

spillover effects and their influencing factors. This study 

analyzed 30 regions. Technological innovation, 

urbanization rate, and government support affected 

carbon efficiency positively. Economic growth and 

transportation infrastructure had a negative impact. This 

result also verified the applicability of the proposed 

model for evaluating tourism industry EE [12]. Huang et 

al. utilized a method using super efficiency relaxation and 

three spatial econometric models. They evaluated the 

tourism EE of 30 provinces and explored the influence of 

technological innovation and industrial structure 

upgrading. Based on empirical modeling, technological 

innovation alone affected tourism EE negatively. When 

combined with industrial structure upgrading, it showed a 

significant positive effect [13]. Du et al. constructed a 

mixed triangle envelope analysis ideal solution means to 

assess 248 cities' tourism EE over a 14-year period. This 

method combined the advantageous features of various 

models. This method allowed for the analysis of 

synergistic effects between relevant standards. The 

tourism EE of the selected cities was generally low. 

However, low-carbon pilot city policies significantly 

improved tourism EE through green technology 

innovation. This result also verified the proposed model’s 

effectiveness [14]. Filipiak et al. explored the tourism 

development and GDP growth's correlation and proposed 

a tourism industry EE measurement method based on 

three variables: ICT, SDG, and E&T. This method 

effectively revealed the relationship between digital 

tourism and tourism industry development and the 

correlation between tourism industry development and 

sustainability factors. The digitization of the tourism 

industry significantly improved operational efficiency 

and supported the implementation of sustainable tourism, 

verifying the applicability of the proposed model [15]. 

Table 1 is a summary of the related works to this 

study. 

 

 
Table 1: Summary of related works 

Researcher Method Dataset 
Performance 

index 
Key finding 

Yıldırım et al. 

[6] 

Econometric 

model 

Data for 15 

Mediterranean 

countries, 

2001-2017 

Carbon 

emission 

impact 

The increase in the number 

of tourists causes carbon 

emissions to rise before 

reaching the threshold, and 

then decrease after the 

threshold 

Zhang and 

Zhang [7] 

Vector error 

correction 

model, Granger 

Data from 30 

provinces in 

China, 2000-2017 

Balanced 

causality in the 

long run 

There is a two-way 

short-term and long-term 

causal relationship between 
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causality GDP and tourism. Energy 

consumption has a one-way 

long-term and short-term 

impact on other variables 

Razzaq et al. 

[8] 

Moment 

quantile 

regression 

Data for the top 

10 GDP countries 

from 1995 to 

2018 

The impact of 

green 

technologies 

on carbon 

emissions 

International tourism 

promotes the growth of 

tourism economy but 

increases carbon emissions. 

The effect varies according 

to the level of national 

development and 

environmental pollution 

Selvanathan 

et al. [9] 

Autoregressive 

distributed lag 

model 

South Asian 

countries 

Energy 

consumption 

and GDP 

Tourism contributes 

positively to GDP but 

negatively to carbon 

emissions 

Razzaq et al. 

[10] 

Quantile 

autoregressive 

distribution lag, 

Granger 

causality 

Global tourism 

data 

The impact of 

tourism carbon 

emissions 

The environmental Kuznets 

curve hypothesis has 

existed for a long time. 

There is an asymmetric 

bidirectional causal 

relationship between 

tourism, technology, and 

carbon emissions 

Li and Liu 

[11] 

Location 

quotient index, 

three-stage data 

envelopment 

analysis 

Chinese 

provincial data, 

2011-2016 

Tourism 

agglomeration 

and ecological 

efficiency 

Eastern China has the 

highest tourism 

agglomeration, which 

significantly improves 

tourism efficiency 

Liu et al. [12] 

Relaxation 

measure model, 

spatial Durbin 

model 

Data from 30 

provincial levels 

in China from 

2008 to 2019 

Spatial 

spillover effect 

and 

influencing 

factors 

Technological innovation, 

urbanization rate, and 

government support have a 

positive impact on carbon 

efficiency. Economic 

growth and transport 

infrastructure have a 

negative impact 

Huang et al. 

[13] 

Excess 

efficiency 

relaxation 

measurement 

model, spatial 

econometric 

model 

Data from 30 

provincial levels 

in China from 

2008 to 2017 

Ecological 

efficiency 

assessment 

Technological innovation 

alone has a negative effect 

on tourism eco-efficiency. 

It has a positive effect 

when combined with 

industrial structure 

upgrading 

Du et al. [14] 

Hybrid 

triangular 

envelope 

analysis ideal 

solution model 

Data of 248 cities 

in China in 2014 

Tourism 

ecological 

efficiency 

The low-carbon pilot city 

policy significantly 

improves the ecological 

efficiency of tourism 

through green technology 

innovation 

Filipiak et al. 

[15] 

Measurement of 

ICT group, SDG 

group and E&T 

group variables 

Global tourism 

data 

Tourism 

digitization 

and 

eco-efficiency 

The digitization of the 

tourism industry 

significantly improves 

operational efficiency and 

supports the realization of 

sustainable tourism 

 

In summary, there have been many research results 

on the accounting methods for the tourism industry CE 

and the measurement methods for it. However, the above 

research methods often rely on historical data and 

economic models when calculating CE and EE in the 

tourism industry. They may not fully consider the impact 
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of regional environmental policy changes, rapid 

technological progress, and global economic fluctuations. 

The accuracy of the final measurement results needs 

further improvement. Therefore, the study focuses on the 

factor of tourism CE to more accurately measure the 

urban tourism industry EE and provide reference value 

for the urban tourism industry's low-carbon development. 

The city tourism EE measurement model based on 

tourism CE and DEA-Malmquist is proposed by 

combining computer intelligence algorithm models and 

economic models. 

The innovation of this research lies in: (1) A mixed 

model of Least Absolute Shrinkage and Selection 

Operator-Genetic Algorithm-Support Vector Regression 

(Lasso-GA-SVR) is constructed to calculate the CE of 

urban tourism industry. (2) EE evaluation indicators and 

DEA-Malmquist index model are constructed to measure 

the urban tourism industry EE. The main contribution of 

this study is utilizing a Lasso-GA-SVR hybrid model to 

accurately measure the urban tourism industry CE. 

Furthermore, a comprehensive evaluation of urban 

tourism industry EE is conducted using the 

DEA-Malmquist index model. This comprehensive 

model can elevate the evaluating accuracy and reliability. 

This can offer a scientific basis for formulating 

low-carbon development strategies for the urban tourism 

industry. This can promote tourism and environmental 

protection's sustainable development. 

2 Methods and materials 

This study first constructs an urban tourism CE 

measurement model based on the Lasso-GA-SVR hybrid 

model. Subsequently, a city tourism EE measurement 

model based on tourism CE and DEA-Malmquist is 

constructed. Firstly, this study combines the feature 

selection ability of Lasso regression, the optimization 

ability of GA, and the predictive ability of Support 

Vector Regression (SVR). This can optimize model 

parameters, reduce measurement errors, and address the 

limitations of traditional intelligent measurement models 

in complex data processing. This study conducts the 

urban tourism EE measurement after obtaining the urban 

tourism CE. 

 

2.1 Methods for calculating carbon emissions 
The calculation of tourism EE relies on an accurate 

evaluation of economic benefits and environmental costs' 

correlation. CE is a core indicator for measuring 

environmental costs. Therefore, CE measurement in the 

tourism industry is a key link in ensuring the tourism EE 

assessing effectiveness. Through precise CE data, the 

environmental impact of tourism activities can be 

analyzed in depth. The existing calculation methods can 

provide effective predictions in specific scenarios. 

However, they typically perform less stably in complex 

and highly variable data environments, which are more 

sensitive to outliers and noise [16]. In contrast, the 

combination calculation model can elevate the model's 

generalization ability and accuracy by integrating 

multiple calculation methods. This study proposes a 

Lasso-GA-SVR that can elevate CE calculation's 

accuracy and stability. Lasso-GA-SVR combines the 

feature selection ability of Lasso regression, optimization 

ability of GA, and prediction ability of SVR to optimize 

model parameters and reduce prediction errors [17]. 

Lasso evaluates the importance of explanatory variables 

by compressing estimated values and generating sparse 

solutions. Lasso can solve various problems such as 

multicollinearity and model overfitting. In Figure 1, the 

tourism industry has complexity and industry relevance. 

Tourism activities involve multiple fields, such as 

transportation, accommodation, catering, and 

entertainment, each with a different source of CE [18]. 

From the perspective of tourist consumption, it should 

comprehensively consider factors such as transportation 

mode, accommodation type, dietary habits, and 

entertainment activities. These factors have both direct 

and indirect impacts on tourism CE [19]. 

 

Tourism accommodation: Tourist 

hotels’ energy consumption mainly 

comes from consuming water, 

electricity, and gas.

Tourism transportation: 

Transportation and passenger 

transportation are one of the three pillar 

industries of the tourism industry. The 

distance and transportation choices of 

tourists can affect the carbon emissions of 

the tourism industry.

Tourism activities: Various types of tourism 

activities involve multiple facilities and 

generate different carbon emissions.

Tourism catering: Different 

types of food will generate different 

energy consumption, thus affecting 

the overall carbon emissions.

Tourism shopping and entertainment: 

Tourism souvenirs and products do not 

directly generate carbon emissions, but the 

electricity consumed during storage and 

storage will generate carbon emissions.

Factors influencing the 

calculation of tourism carbon 

emissions

 

Figure 1: Relevant factors affecting carbon emissions measurement in the tourism industry 
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Given the strong multicollinearity among the 

tourism industry CE's various affecting factors, Lasso 

regression analysis is used to select characteristic 

variables, represented by equation (1). 

 
2

1

ˆ arg min
p

j

j

y x   
=

= − + ‖ ‖  (1) 

In equation (1),  represents the coefficient vector 

estimated by Lasso regression. y  represents a 

dependent variable. j  represents the coefficient of the 

independent variable. p  represents the quantity of 

independent variables. x  represents a characteristic 

value.   represents a regularization parameter. 

1

p

j

j

 
=

  is a parameter penalty term. When   is large, 

that is, when the penalty for parameters is large, the 

non-zero variables in the regression coefficients are 

smaller, and the retained variables are smaller. When   

is small, more variables are retained. SVR minimizes the 

error between the model and real data by finding an 

optimal function [20-21]. The basic idea is to map data to 

a high-dimensional space and find the optimal hyperplane 

to achieve regression. This method is suitable for 

complex nonlinear regression problems and has high 

prediction accuracy. Assuming the training sample is 

( ) ( ) 1 1, , , ,n nD x y x y=  , SVR is to find a function 

( )f x  that minimizes the predicted value ( )f x  and the 

error of the true value y , represented by equation (2). 

 ( ) ,f x w x b= +  (2) 

In equation (2), w  represents a weight vector. b  

represents a bias term.  refers to the inner product 

operation. SVR trains models by minimizing the sum of 

intervals and errors [22]. The interval is defined as the 

absolute difference between y  and ( )f x . The loss 

function is represented by equation (3). 

 

 ( )2 *

1

1
min

2

n

i i

i

imize w C  
=

 
+ + 

 
‖ ‖  (3) 

 

In equation (3), 2w‖ ‖  represents the weight 

vector’s norm. C  represents a regularization parameter. 
  represents a relaxation variable. The optimization of 

SVR can be expressed as equation (4).  
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1
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2
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n
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i

i i i i i i
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imize w C right

subject to y w x b quad langle w x b y

 

   

 

=

  
+ +  

  

− −  +  + −  + 



‖ ‖

 (4) 

 

In equation (4), ò represents the set tolerance value 

used to determine the range of support vectors. The 

optimal w  and b  are found by solving the above 

optimization problem, thus obtaining SVR. 

SVR significantly depends on selecting kernel 

functions and setting regularization parameters. Improper 

selection of these parameters may lead to overfitting or 

underfitting [23]. GA can enhance the model's 

adaptability to complex data and overall prediction 

accuracy by simulating natural selection and selecting the 

optimal parameter combination. This further enhances the 

model's accuracy and robustness in CE calculation in the 

tourism industry. Therefore, this study introduces the GA 

to optimize the parameter selection of SVR. The fitness 

function is ( )g m , represented by equation (5). 

 ( ) ( )( )g m accuracy SVR m=  (5) 

In equation (5), m  represents the parameter vector. 

Based on the fitness function, individuals with better 

performance are selected for crossover and mutation. 

Then, the new parameter combination is generated to 

explore the parameter space and find the optimal solution, 

represented by equation (6). 

 
( )

( )

1 2,new parent parent

new new

m crossover m m

m mutate m

=

=
 (6) 

 

This process simulates natural selection and 

improves the accuracy and adaptability of SVR by 

continuously iterating and optimizing until the optimal 

parameter combination is found. Therefore, the 

constructed Lasso-GA-SVR can predict the tourism 

industry CE [24-25]. The tourism industry CE reflects the 

total carbon dioxide generated by the industry in energy 

consumption. Given that the tourism industry covers a 

wide range of sectors, the CE generated includes both 

direct and indirect sources, which increases the 

complexity of CE measurement. It is necessary to clearly 

define the constituent sectors of the tourism industry to 

accurately measure. In Figure 2, the tourism industry is 

usually divided into three levels: direct, indirect, and 

related tourism. When estimating CE, four main sources 

of CE, namely tourism transportation, accommodation, 

catering, and activities, are selected to generate 

significant CE. 
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Figure 2: Specific sectors of the tourism industry and their main components of carbon emission systems 

 

Models are established to measure four main sources 

of CE. The tourism transportation CE is represented by 

equation (7). 

 

 

T

j i i ij

T

j i i ij

C i F C

E l G C





 =


=




 (7) 

 

In equation (7), i  represents the mode of 

transportation. i  means the proportion of tourism in 

the i th transportation mode. iF  represents CE. iG  

represents energy consumption. ijC  means the i th 

passenger transportation mode's passenger turnover in 

region j . The calculation for tourism accommodation 

CE is represented by equation (8). 

 

 

H

j j j

H

j j j

C n N

E n N

 

 

 =


=

 (8) 

In equation (8), jN  and j  represent the 

occupancy rates of beds and rooms in a hotel in region j , 

respectively.   and   represent the unit CE and unit 

energy consumption values per bed per night, 

respectively. n  represents a constant. The tourism 

activity CE is represented by equation (9). 

 

 

A

j k jk

A

j k jk

C n M P

E n M P





 =


=




 (9) 

 

In equation (9), k  means the type of tourism 

activity. M  means the quantity of tourists received.   

and   represent the average CE and average energy 

consumption generated by a tourist participating in the 

k th tourism activity, respectively. jkP  represents the 

proportion of regional j  tourists participating in the 

k th category tourism activity. The CE of tourism 

catering is represented by equation (10). 

 

 

( )

( )

1

1

n
C

j i i i

i

n
C

j i i

i

C n D E p

E n D E p


=

=


= 



 = 





 (10) 

 

In equation (10), n  means the quantity of tourists. 

D  means the average day that tourists travel. iE  is the 

i th energy consumed by each tourist for daily dining. 

ip  is the i th energy source’s heat conversion 

coefficient. i  is the CE coefficient of the i th energy 

source. Therefore, the tourism industry’s CE and energy 

consumption are represented by equation (11). 

 

 

T H A C

j j j j j

T H A C

j j j j j

C C C C C

E E E E E

 = + + +


= + + +

 (11) 

 

Therefore, Figure 3 shows the tourism industry CE 

measurement model based on Lasso-GA-SVR 

constructed in the study. Firstly, an analysis of 

influencing factors is conducted to identify various 

factors that affect the tourism industry CE, providing a 

foundation for subsequent model construction. 

Subsequently, data collection is carried out to collect data 

related to the tourism industry CE, providing data support 

for model training. In the model construction stage, Lasso 

regression is used for feature selection. GA optimizes the 

parameter selection of SVR. SVR is used for CE 

prediction. The prediction accuracy and robustness can be 

improved by iteratively optimizing model parameters. 

Finally, the trained model is used to predict the tourism 

industry's CE. 
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Analysis of influencing factors

Start 

Data collection

Collect data related to carbon emissions from 

areas such as transportation, accommodation, 

catering, and entertainment

Using Lasso GA-SVR model to predict carbon 

emissions

Using trained models to predict carbon 

emissions in the tourism industry

End

Identify and analyze various factors that 

affect carbon emissions, including modes of 

transportation, types of accommodation, 

dietary habits, and entertainment activities

Collect data related to carbon emissions from 

areas such as transportation, accommodation, 

catering, and entertainment

Tourism transportation

Tourism accommodation

Tourism activities

Tourism catering

Lasso regression for feature selection

GA algorithm for optimizing parameter 

selection in SVR

SVR for prediction

 

Figure 3: Model for measuring carbon emissions based on Lasso-GA-SVR 

 

2.2 Construction of an urban tourism 

ecological efficiency measurement model 

based on tourism carbon emissions and 

DEA-Malmquist 
The calculation of urban tourism CE provides important 

data support for the evaluation of tourism EE. Firstly, a 

calculation model for tourism CE and energy 

consumption is established. Quantitative analysis is 

conducted through actual data to accurately assess how 

urban tourism affects the environment. Next, the 

DEA-Malmquist productivity index model is utilized to 

dynamically analyze cities' tourism EE to reveal the 

efficiency changes in the tourism industry [26]. The Data 

Envelopment Analysis (DEA) model is an efficiency 

evaluation means using mathematical programming, 

especially suitable for dealing with efficiency problems in 

multi-input and multi-output situations. Figure 4 shows 

the categories and characteristics of DEA [27]. In the 

measurement of urban tourism EE, DEA can evaluate and 

compare the tourism resource consumption and 

environmental effects of different cities. DEA identifies 

decision-making units with relatively low efficiency by 

setting various inputs and outputs for the tourism industry. 

DEA points out potential directions for efficiency 

improvement. 

 

DEA model 

categories

Non radial model

SBM-DEA

Radial model

CCR

BCC

The CCR model and BCC 

model are based on 

constant returns to scale 

and cannot solve the 

problem of looseness, 

resulting in certain 

deviations in measurement 

results and high efficiency 

values.

The SBM model considers 

relaxation variables and can 

effectively identify 

indicators that lead to DEA 

inefficiency.

 

Figure 4: Types and characteristics of DEA models 

 

In Figure 4, DEA can be divided into two categories, 

namely radial and non-radial models. However, 

traditional DEA cannot reflect decision-making units’ 

dynamic efficiency changes at different times. Therefore, 
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the Malmquist index is introduced in this study [28]. The 

Malmquist index can calculate total factor productivity. It 

does not require price information, which can measure 

panel data based on time series. It can identify the reasons 

for changes in total factor productivity. It contains 

Technical Efficiency Change (TEC) and Technical 

Progress Change (TPC). The Malmquist index model is 

shown in equation (12). 

 

( )
( )

( )
( )

1/2
, 1 1

1/2
1 1 1 1 1

1

, ,

, ,

t t t t

t t t t t t

t t t t t t

TFP M M M

D x y D x y

D x y D x y

+ +

+ + + + +

+

 = =  = 

 
 
  

 (12) 

 

In equation (12), ( ),t tx y  and ( )1 1,t tx y+ +
 mean 

the input-output relationship of the t  and 1t +  periods, 

respectively. The change from ( ),t tx y  to ( )1 1,t tx y+ +
 

is the change in EE. tD  and 1tD +  are the output 

distance functions for the t  and 1t +  periods, 

respectively. If 1TPE  , productivity rises. If 1TPE  , 

productivity shows a downward trend. On the foundation 

of Fixed Scale Return (CRS), the Malmquist index can be 

decomposed into TEC and TPC. TEC measures whether 

output is approaching the optimal production boundary. If 

TEC>1, the Decision-Making Unit (DMU) efficiency 

increases from t  to 1t + , which decreases if TEC<1 

[29]. Whether the TPC measurement technology 

improves or not, that is, whether the forefront of EE 

moves. If TPC>1, it indicates progress in DMU 

technology. On the contrary, it indicates a technological 

retreat. Equation (12) is further decomposed to obtain 

equation (13). 
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( )

( )
( )

( )
( )

1 1 1 1 1

, 1

1 1 1 1

1/2

, , ,

, , ,

t t t t t t t t t

c c ct t

c t t t t t t t t t

c c C

D x y D x y D x y
M

D x y D x y D x y

TEC TPC

+ + + + +

+

+ + + +

 
 =  
  

= 

 (13) 

 

Since equation (13) is decomposed under CRS 

conditions, it is not possible to determine the contribution 

of economies of scale to productivity. Under the 

condition of Variable Returns to Scale (VRS), a technical 

efficiency index can be degraded into Pure Technical 

Efficiency Index (Pech) and Scale Efficiency Index 

(Sech), as shown in equation (14) [30]. 
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In equation (14), if Pech > 1, pure technical 

efficiency increases. Otherwise, it indicates a decrease. If 

Sech > 1, scale efficiency increases. On the contrary, it 

indicates a decrease. 

This study selects prefecture level cities as DMU, 

mainly based on their high autonomy and 

representativeness in tourism resource allocation and 

management. This choice enables research to measure 

and compare the tourism industry EE of provincial capital 

cities at the prefecture level (city level) scale. This helps 

to identify differences in resource utilization and 

environmental protection among cities. The tourism 

industry has strong industry relevance and 

comprehensiveness. Therefore, when selecting EE 

indicators, it should comprehensively reflect the tourism 

industry's core characteristics. It should meet the 

requirements of DEA to ensure accurate reflection of its 

input-output situation. When constructing an indicator 

system, multi-dimensional input and output indicators 

that can represent the basic operation of the tourism 

industry should be selected. Meanwhile, it is necessary to 

follow the usage conditions of DEA for data to ensure the 

scientific and accurate evaluation. This indicator setting 

helps to deeply analyze the tourism industry EE and 

provides a basis for sustainable development strategies in 

the tourism industry. Figure 4 shows the relevant 

principles that should be followed when selecting 

indicators. 

 



Dynamic Analysis of Ecological Efficiency in Urban Tourism… Informatica 48 (2024) 35–54 43 

The selected indicators can not only reflect tourism input 

and output, but also ensure the logical causal relationship 

between the indicators.

To ensure the rationality and reliability of the 

ecological efficiency calculation results of the tourism industry, 

the selected indicators should be accessible from existing statistical 

data and quantifiable.

The selected indicators should be able to be collected 

from existing statistical data and have appeared in relevant 

literature to ensure the reliability of the data source and 

reflect reality.

Data 

collectability

Data reliability

Data correlation

 

Figure 5: Principles for constructing tourism ecological efficiency indicators 

 

According to the principles in Figure 5, this study 

adjusts the tourism EE indicators to ensure the evaluating 

scientificity and accuracy. In general, the more indicators 

selected, the more accurately the efficiency value can be 

reflected. However, when using DEA, the ratio of 

indicators to decision-making units needs to be controlled 

below 1/3. Therefore, this study selects 3 input and 2 

output indicators, covering 12 decision-making units 

(excluding sub-provincial cities), in accordance with 

DEA standards. These three types of indicators include 

input, expected output, and unexpected output to 

comprehensively evaluate the tourism industry's EE in 

Figure 6. 
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Figure 6: Tourism ecological efficiency indicator system 

 

In Figure 6, labor input, capital input, and energy 

consumption are selected as the main input indicators to 

comprehensively reflect the resource allocation and 

environmental burden of the tourism industry. Total 

tourism revenue (including domestic and inbound tourism 

revenue) and the quantity of tourists received are 

regarded as expected output indicators. Tourism CE is 

used as an unexpected output indicator. The total tourism 

revenue and visitors can effectively measure the 

economic performance and attractiveness of the regional 

tourism industry. However, CE reflects the tourism 

industry’s environmental impact, especially the CE 

situation dominated by the four major sectors of tourism 

transportation, accommodation, catering, and activities. 

These indicator settings meet the proportion requirements 

of DEA for data quantity. That is, indicators should not 

exceed one-third of the decision-making units, ensuring a 

comprehensive evaluation of the tourism industry's EE. 

3 Results 

First, this study validated the CE measurement 

performance of Lasso-GA-SVR, selecting CE data from a 

certain province as the dataset. Lasso-GA-SVR was 

compared and validated with the currently popular 

PCA-GA-SVR and GA-SVR. Subsequently, taking a 

certain province as an example, the DEA-Malmquist 

model was used to measure urban tourism EE. 
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3.1 Performance verification of carbon 

emission calculation models for the tourism 

industry 
This study used CE data from a certain province from 

2002 to 2022 as the research object to validate the 

proposed tourism industry CE calculation model. A 

Lasso-GA-SVR combined prediction model was 

established and used to calculate the tourism industry CE 

of the province in 2023. Meanwhile, the feasibility and 

effectiveness of this model were verified by comparing 

multiple combination models. This study selected 

time-series data from a certain province from 2002 to 

2022 for empirical analysis. The CE factor data, energy 

consumption, energy conversion standard coal reference 

coefficient, and impact factor data were sourced from the 

China, China Energy, and provincial statistical yearbooks, 

respectively. This experiment was conducted on servers 

equipped with high-performance computing processors 

and large capacity memory. This study used 80% 

(2002-2017) of data as the model building and parameter 

optimization's training set. The remaining 20% 

(2018-2022) was utilized as the test set to validate the 

model's generalization ability and prediction accuracy. 

The experimental software environment included Python 

programming language, SVR implementation using 

Scikit learn library, and GA optimization using DEAP 

library, with Linux operating system. 

This study set the penalty factor C  and kernel 

function parameter g  to have a value range of 0-100. 

Based on the complexity and target accuracy of the 

dataset, the population size was 20 individuals. The 

maximum iteration was 200 times, with a crossover 

probability of 0.7 and a mutation probability of 0.1. 

Through repeated selection, crossover, and mutation 

processes, the individual with the highest fitness was 

selected from the population and decoded. Then, the 

optimal hyper parameters C  of 55.899 and g  of 

0.039301 were obtained. The mean square error of cross 

validation was 0.012251%. Figure 7 shows the population 

fitness curve. With the increase of genetic algebra, the 

optimum fitness and mean fitness gradually decreased 

and fluctuated within a small range, demonstrating good 

convergence. 
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Figure 7: Population fitness curve 

 

Parameter sensitivity analysis experiments were 

conducted to further understand the influence of 

regularization parameters and kernel function changes on 

model performance. The results are shown in Table 2. 

The results showed that the regularization parameters and 

kernel functions in different value ranges had significant 

effects on the model performance. In the range of 50-100 

penalty factors, the mean square error of the model was 

the smallest (0.011678%). The prediction accuracy was 

the highest (95.12%). The mean square error of the model 

was 0.011945% and the prediction accuracy was 95.05% 

in the range of 50-100 kernel function. In the lower range 

of parameter values, although the calculation time was 

reduced, the prediction accuracy of the model was 

decreased. Appropriate adjustment of penalty factor and 

kernel function parameters could improve the accuracy of 

model prediction and optimize the training and test time. 
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Table 2: Experimental results of sensitivity analysis of parameters 

Parameter 
Value 

range 

Optimal 

parameter 

Mean square 

error (%) 

Training 

time (s) 
Test time (s) 

Prediction 

accuracy (%) 

Penalty 

factor 
0-100 55.899 0.012251 45 5 93.56 

Kernel 

function 
0-100 0.039301 0.012251 43 4.8 93.65 

Penalty 

factor 
0-50 25.75 0.015345 30 4 90.43 

Kernel 

function 
0-50 0.02045 0.015786 29 3.9 90.32 

Penalty 

factor 
50-100 75.67 0.011678 55 5.5 95.12 

Kernel 

function 
50-100 0.05534 0.011945 53 5.3 95.05 

 

Lasso-GA-SVR was compared and validated with 

PCA-GA-SVR and GA-SVR to validate the proposed 

Lasso-GA-SVR’s computational effectiveness. Figure 8 

presents the comparison results of the obtained 

combination model’s prediction performance. Figure 8 (a) 

shows the predictive fitting performance of three models. 

From the zoomed in image, Lasso-GA-SVR had a better 

fit between the predicted and actual values compared to 

PCA-GA-SVR and GA-SVR. Therefore, Lasso-GA-SVR 

had a smaller error and better predictive performance in 

the tourism industry CE calculation in 2023. In Figure 8 

(b), the relative error of Lasso-GA-SVR, PCA-GA-SVR, 

and GA-SVR was 2.005%, 3.701%, and 7.011%, 

respectively. The absolute error was 6.937%, 12.786%, 

and 24.256%, respectively. Lasso-GA-SVR performed 

the best due to its lower absolute and relative errors 

compared to the other two models. Therefore, the 

combination of Lasso feature variable selection and GA 

significantly improved the prediction accuracy of SVR. 
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Figure 8 Comparison results of the predictive performance of the combination model 

 

Other datasets were selected for testing to further 

verify the robustness of the Lasso-GA-SVR model. 

Several datasets were used to test the experiment, 

including energy consumption, traffic flow, and industrial 

production data. The same parameter settings were used 

for model training and testing. The performance of 

different models was compared by statistical significance 

test. The experimental results are shown in Table 3. 

Lasso-GA-SVR showed higher prediction accuracy and 

lower mean square error on different datasets. In the 

energy consumption dataset, the mean square error of 

Lasso-GA-SVR was 0.012251%, and the prediction 

accuracy was 93.56%, which was significantly better than 

PCA-GA-SVR and GA-SVR models. Experimental 

results on traffic flow and industrial production dataset 

also showed that the prediction performance of 

Lasso-GA-SVR model was superior to other models, 

especially on industrial production dataset, 

Lasso-GA-SVR model had the lowest mean square error 

(0.010978%) and the highest prediction accuracy was 

95.45%. Through the statistical significance test of t test, 

the P-values were all less than 0.05, indicating that the 

prediction performance of Lasso-GA-SVR model was 

significantly better than other models on different 
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datasets. Therefore, the model combined with Lasso 

feature variable selection and GA optimization had high 

robustness and showed stability. The model maintained 

high precision prediction results under different datasets. 

 

 
Table 3: Robustness test results 

Dataset Model  
Mean square 

error (%) 

Training 

time (s) 

Test time 

(s) 

Prediction 

accuracy (%) 

t test 

/P-value 

Energy 

consumption 

Lasso-GA-SVR 0.012251 45 5.1 93.56 / 

PCA-GA-SVR 0.013456 47 5.2 92.43 0.03 

GA-SVR 0.015678 50 5.5 90.12 0.04 

Traffic flow 

Lasso-GA-SVR 0.011345 43 4.8 94.23 / 

PCA-GA-SVR 0.012567 45 5.3 93.12 0.02 

GA-SVR 0.014789 48 5.3 91.45 0.03 

Industrial 

production 

Dataset 

Energy 

consumption 

Lasso-GA-SVR 0.010978 42 4.5 95.45 / 

PCA-GA-SVR 0.012345 44 4.8 94.32 0.01 

GA-SVR 0.013789 46 5.7 92.78 0.02 

 

Figure 9 shows the CE and energy consumption of 

various transportation modes in the tourism industry in 

the province, calculated using Lasso-GA-SVR. In Figure 

9 (a), the average CE of trains, cars, and airplanes was 

521300, 1132300, and 5417400 million tons. In Figure 9 

(b), the average energy consumption of trains, cars, and 

airplanes was 15.23, 19.85, and 79.88 PJ. As a result, the 

CE and energy consumption of airplanes were 

significantly higher than other transportation, becoming 

the main source of CE. With the improving living 

standards, airplanes have become the most convenient 

means of transportation for tourism. In contrast, although 

trains consume more energy than cars, their CE is lower 

than cars. Cars have become people's travel choices due 

to their flexibility, with CE ranking second. In addition, 

the CE and energy consumption of aircraft in 2020 

decreased by 10% compared to the previous year, while 

from 2021 to 2023, it showed an annual growth rate of 

7%. These data indicated that tourism transportation 

affected the environment significantly and pointed out 

potential key areas for future emission reduction 

measures. 
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Figure 9 The carbon emissions and energy consumption of various transportation modes in the tourism industry of the 

province 

 

Figure 10 shows the CE and energy consumption of 

different tourism activities in the province calculated 

using Lasso-GA-SVR. In Figure 10 (a), the average CE 

for leisure vacation activities, sightseeing, business trips, 

and visiting relatives and friends was 171100, 126700, 

72300, and 61200 tons. In Figure 10 (b), the average 

energy consumption for these indicators was 2.82, 2.35, 

1.23, and 1.12 PJ. According to the above data, the 
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tourism CE and energy consumption generated by leisure 

vacation activities were both the highest and showed an 

increasing trend year by year. High income groups 

usually meant higher demands for tourism services 

quality, which prompted tourist destinations to improve 

service facility standards, thereby increasing energy use 

and CE. Meanwhile, the economic development of the 

province was slow. The motivation for most outbound 

tourism was to visit family and friends. 
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Figure 10 Different tourism activities' carbon emissions and energy consumption 

 

According to the data calculated using 

Lasso-GA-SVR, Figure 11 shows the trend of total 

tourism CE and energy consumption in the province from 

2019 to 2023. Although the tourism CE and energy 

consumption in the province decreased significantly in 

2020, both indicators increased year by year since 2020. 

Especially in 2021, the year-on-year growth rate of CE 

reached 5%, indicating the fastest growth year. The 

change in total energy consumption was roughly 

consistent with CE and also showed an upward trend. 

These data confirmed that over time, the energy 

dependence and CE pressure on the tourism industry in 

the province continued to increase. 
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Figure 11: The carbon emissions and energy consumption of the tourism industry in the province 

 

3.2 Empirical analysis of urban tourism 

ecological efficiency measurement model 

based on tourism carbon emissions and 

DEA-Malmquist 
This study used prefecture level cities in the province as 

decision-making units to validate the proposed tourism 

industry EE measurement model. On the foundation of 

the prefecture level (city level) scale, the tourism industry 

EE of the province's prefecture level cities was calculated 

and compared. The static efficiency of each prefecture 

level city from 2019 to 2023 was evaluated. A 
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longitudinal analysis was conducted on the dynamic 

changes of tourism EE in various prefecture level cities in 

the province from 2019 to 2023. The overall tourism EE 

status and individual development situation in the 

province were evaluated. 

Figure 12 shows the annual Malmquist index trend 

of tourism EE in the province and its prefecture level 

cities. In Figure 12 (a), the overall tourism EE of the 

province showed a fluctuating trend from 2019 to 2023. 

The technical efficiency dropped from its maximum point 

of 0.774 in 2019 to its minimum point of 0.706 in 2020 

and gradually rebounded to 0.759 in 2023. Pure technical 

efficiency and scale efficiency also showed similar 

fluctuations, experiencing a decline and slow recovery 

after reaching their peak in 2019. This indicated that after 

a period of adjustment, the tourism EE in the province 

gradually recovered and showed a positive development. 

In Figure 12 (b), from 2019 to 2023, in the tourism EE 

assessment of 12 prefecture level cities C, D, and H in the 

province all achieved ideal values of 1 in terms of 

technology, pure technology, and scale efficiency. This 

indicated that these cities were at the industry's forefront 

for tourism ecological management and scale. In contrast, 

cities A, B, and J had higher technological and scale 

efficiency, but room for improvement still existed. 

Especially, the scale efficiency of city G was 0.513, 

which was much lower than other cities, indicating its 

obvious disadvantage in the scale of tourism ecology. 
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Figure 12: The annual trend of Malmquist index changes in tourism ecological efficiency of the province and its 

prefecture level cities 

 

Figure 13 shows the average trend of static tourism 

EE in the province and its prefecture level cities. In 

Figure 13 (a), from 2019 to 2023, the total factor 

productivity of the province showed a V-shaped 

fluctuation. It dropped from its maximum point of 1.281 

to its minimum point of 1.135, and then rebounded to 

1.181, achieving an average growth rate of 20.98% over 

the past five years. TEC's average annual growth rate was 

0.3%, far lower than TPC's average annual growth rate of 

21.3%. Technological progress was a main driving force 

behind improving tourism EE in this province. In Figure 

13 (b), from 2019 to 2023, 12 prefecture level cities' total 

factor productivity showed an increasing trend, with an 

average growth rate of 20.97%. City H had the largest 

growth rate, at 32.35%. TPC showed that some cities 

such as F, G, J, and K experienced negative growth, 

while cities A and B achieved positive growth. TPC 

achieved double-digit growth in all cities, with an average 

growth rate of 21.28%. The above data indicated that 

although some cities experienced a decline in 

technological efficiency, technological progress was still 

the main factor when improving tourism EE. 
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Figure 13: The average trend of static tourism ecological efficiency in the province and its prefecture level cities 

 

Figure 14 shows the kernel density calculation 

results of the tourism industry’s CE efficiency in this 

province. This study selected 2000, 2005, 2010, 2015, 

and 2023 as the study time periods. Firstly, from the 

perspective of the evolution trend of CE efficiency, the 

nuclear density curve shifted to the right, showing a 

characteristic of increasing CE efficiency year by year. 

The nuclear density curve's right tail in 2000 showed 

obvious clustering characteristics. The following years 

showed a multi-peak distribution. This indicated that the 

efficiency improvement between cities was relatively fast. 

However, the efficiency gap was also widening. Secondly, 

the kernel density curve of tourism EE changed 

(Malmquist index) generally drifts to the right except for 

2019, indicating a positive growth trend in tourism EE. 

Between 2005 and 2010, the curve shifted to the right and 

the peak narrowed, indicating a significant improvement 

in efficiency growth rate and a narrowing of inter 

regional disparities. The evolution trend of TEC indicated 

that the distribution of technological efficiency in various 

provinces and regions developed towards equilibrium 

since 2015. The nuclear density curve of TPC showed a 

clear right shift trend. This indicated that the 

technological progress of the tourism industry was 

significant. There are more cities with high levels of 

technological innovation. Overall, the improvement of 

the tourism industry’s CE efficiency was primarily driven 

by technological progress. The efficiency differences 

between cities were gradually narrowing. However, there 

was also a phenomenon of slow or even regression in the 

growth of CE efficiency in some cities. 
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Figure 14: The nuclear density calculation results of carbon emission efficiency in the tourism industry of the province 



50   Informatica 48 (2024) 35–54                                                                  Y. Guo et al. 

 

This study used Moran scatter plots to analyze 

tourism EE's spatial agglomeration in 2005, 2010, 2015, 

and 2023, as shown in Figure 15. In 2005, there were 7 

cities with tourism EE located in the first and third 

quadrants, accounting for 60% of the total sample, 

showing a strong spatial agglomeration effect. 

Subsequently, in 2010, cities in the first quadrant 

(high-high agglomeration) decreased by one, while cities 

in the third quadrant (low-low agglomeration) increased 

by one. By 2015, cities in the third quadrant decreased by 

2. Cities in the first quadrant remained unchanged. In 

2023. Cities in the first quadrant increased by 2. Cities in 

the third quadrant remained unchanged. Therefore, the 

high-high agglomeration trend of tourism EE in this 

province went through a process of first weakening and 

then strengthening. The low-low agglomeration showed a 

trend of first strengthening and then weakening. Overall, 

the decrease in low-low agglomeration cities indicated a 

trend towards high efficiency agglomeration in tourism 

EE in the province. 
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Figure 15: Moran scatter plot of ecological efficiency of tourism industry in the whole province 

 

4 Discussion 

The LASSO-GA-SVR model combined Lasso feature 

selection with GA-optimized SVR. The prediction 

accuracy and computational efficiency of the model were 

improved by reducing irrelevant features. Compared with 

PCA-GA-SVR and GA-SVR, Lasso-GA-SVR had lower 

mean square error and higher prediction accuracy on 

multiple datasets, indicating that the model was more 

robust and adaptive. The mean square error of 

Lasso-GA-SVR model was 0.011678%. The prediction 

accuracy was 95.12%, which was much better than the 

error and accuracy of PCA-GA-SVR and GA-SVR. In 

addition, experimental results on datasets such as energy 

consumption, traffic flow and industrial production 

further validated the superiority of Lasso-GA-SVR model. 

Lasso-GA-SVR had the lowest mean square error and the 

highest prediction accuracy. The novelty of 

LASSO-GA-SVR was that Lasso feature selection 

effectively reduced the complexity of the model and 

improved the computational efficiency. The introduction 

of genetic algorithm optimized the hyperparameter 

selection of SVR model and improved the prediction 

accuracy and robustness of the model. Compared with 

PCA-GA-SVR and GA-SVR, Lasso-GA-SVR model 

showed higher stability and applicability when dealing 

with complex datasets. The performance difference of 

Lasso-GA-SVR was due to the reduction of redundant 

information through feature selection, which improved 

the generalization ability of the model. In addition, the 

superior performance of GA in hyperparameter 
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optimization enabled the model to better adapt to 

different datasets. Different methods were used in the CE 

accounting framework proposed by J. Zha et al., and H. 

Mishra et al. 's literature metrology review on tourism CE. 

Both pointed out the importance of feature selection and 

model optimization [31-32]. In contrast, Lasso-GA-SVR 

was better at improving prediction accuracy and handling 

complex datasets. 

LASSO-GA-SVR performed well in feature 

selection and hyperparameter optimization. However, 

Lasso required more computing time and resources on 

large-scale datasets. The diversity of data in different 

geographic regions might introduce new features and 

variables, increasing the difficulty of model training and 

adaptation. These limitations can be further optimized in 

the future. 

5 Conclusion 

This study proposes a tourism CE measurement model 

based on Lasso-GA-SVR and an urban tourism EE 

measurement model based on DEA-Malmquist. This can 

more accurately measure the urban tourism industry EE 

and be conducive to the urban tourism economy and 

ecological environment’s coordinated development. 

Relevant validation was conducted to verify the proposed 

model’s effectiveness. The mean square error of cross 

validation for Lasso-GA-SVR was 0.012251%. With the 

increase of genetic algebra, the optimum and mean fitness 

exhibited good convergence. In comparative validation, 

the relative error of Lasso-GA-SVR, PCA-GA-SVR, and 

GA-SVR was 2.005%, 3.701%, and 7.011%, respectively. 

The absolute error was 6.937%, 12.786%, and 24.256%, 

respectively. Taking a certain province as an example, 

using Lasso-GA-SVR to calculate CE, the average CE of 

trains, cars, and airplanes was 521300, 1132300, and 

5417400 tons. The average energy consumption was 

15.23, 19.85, and 79.88 PJ. The average CE from leisure 

vacation activities, sightseeing, business trips, and 

visiting relatives and friends in tourism activities was 

171100, 126700, 72300, and 61200 tons. The average 

energy consumption was 2.82, 2.35, 1.23, and 1.12 PJ. 

The empirical analysis results of DEA-Malmquist 

showed that the overall tourism EE in the province 

showed a fluctuating trend. The highest technical 

efficiency point was 0.774, the lowest point was 0.706, 

and then gradually rebounded to 0.759 in 2023. Different 

cities had different tourism EE. The proposed strategy 

can effectively measure CE and the urban tourism 

industry's EE. The limitation of this research lies in the 

tourism industry's strong comprehensiveness, which has 

not taken into account various departments. Future 

research can start from here. 

The effectiveness of Lasso-GA-SVR is verified 

through experimental analysis. This model has accuracy 

and reliability in predicting and evaluating CE and energy 

consumption in the tourism industry in practical 

applications. By measuring and evaluating the EE of the 

tourism industry, this study further expands the model’s 

application fields and provides reference value for the 

tourism industry’s sustainable development. According to 

empirical analysis, the tourism industry CE and total 

energy consumption in the studied province continue to 

grow. Among various departments, tourism transportation 

has the largest proportion of CE, which has a decisive 

impact on overall CE and energy consumption. Therefore, 

this province needs to optimize its transportation structure 

and develop energy conserving and emission reducing 

technologies. Meanwhile, the tourism and catering 

industry has a significant increase in CE and energy 

consumption related to activities. People need to focus on 

developing tourism activities with low resource 

consumption and low energy demand to slow down the 

growth trend of energy consumption and CE. These 

experimental data indicate significant differences in 

tourism EE among the 12 prefecture level cities in the 

province. Each city should deeply analyze its own 

advantages and limitations, implement targeted 

improvement measures, and enhance tourism EE. For 

cities with lower scale efficiency, it is necessary to 

expand their scale, improve their intensification level, 

reduce CE, and achieve economies of scale. For cities 

with insufficient technological efficiency, attention 

should be paid to improving management and 

technological levels and promoting the comprehensive 

improvement of tourism EE. 
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