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This study proposes an improved pixel by pixel stabilization network to achieve high-quality video 

stabilization. Fourier spectrum constraints and local motion constraints are added to the output 

structure of the image stabilization network. Meanwhile, affine matrix parameters are optimized. Then, 

the transformation parameters output by the network are more similar, thereby reducing the difficulty 

of learning the overall jitter pattern of the image. In addition, this study replaces the encoder 

convolutional layer with a residual module and combines feature fusion to process feature information 

extracted from different network layers. This can achieve optimization and lightweight processing of 

pixel-by-pixel stable network models. The results showed that the stability evaluation index of the 

improved pixel by pixel stable network model increased by about 3.7% compared to the previous pixel 

by pixel stable network model. The parameter counts of the pixel-by-pixel stable network model 

encoder fused with residual module was reduced by 12.1%. compared to the pixel-by-pixel stable 

network model encoder. The model size was reduced by 11.7%, the floating-point operation was 

reduced by 13.2%, and the running frame rate was increased by 5.6%. The lightweight pixel by pixel 

stable network model achieved a frame rate of 131.2 at high-performance operation, far higher than 

the 83.1 of the pixel-by-pixel stable network model. The outcomes showcase that the network model is 

an effective optimization method for video stabilization technology and can be applied to many 

real-time video processing scenarios. This helps to improve the technical level and application 

effectiveness in this field. 

Povzetek: Razvito je izboljšano omrežje za stabilizacijo videa na ravni slikovnih točk, ki vključuje 

Fourierjeve spektralne omejitve in lokalne omejitve gibanja. Rezultati kažejo, da izboljšan model 

dosega 3,7 % boljšo stabilnost in zmanjšano velikost modela za 11,7 %, kar predstavlja pomemben 

doprinos k optimizaciji video stabilizacijske tehnologije.

1 Introduction 

With the rapid development of digital media technology, 

video has become one of the important ways for people to 

record and share their lives [1]. However, many people 

inevitably encounter shaking problems when shooting 

videos due to the popularity and convenience of various 

camera devices. This leads to a decrease in video quality 

and poor viewing experience [2]. Therefore, video 

stabilization technology has become an important means 

to solve this problem. In the past few decades, many 

video stabilization methods were presented and achieved 

certain results [3]. Early methods were mainly based on 

traditional image processing techniques, such as motion 

estimation-based methods and image block 

matching-based methods. However, these methods are 

often limited by high computational complexity and poor 

robustness, which perform poorly in practical 

applications [4]. Recently, as the boost of deep learning 

technology, video stabilization methods based on 

Convolutional Neural Network (CNN) have made 

significant breakthroughs [5]. Among them, the 

Pixel-Wise Stable Network (PWSNet) model has good 

stability and real-time performance. However, in practical 

applications, the PWSNet model still has some problems. 

In addition, the stability and robustness of network 

models in handling videos under different scenes and 

lighting conditions also need to be further optimized. 

Therefore, the study aims to optimize and improve the 

PWSNet model to provide an efficient and accurate video 

stabilization method, providing users with a better 

viewing experience. The study consists of four parts. The 

first is a summary of the relevant research. The second is 

the optimization and improvement methods of video 

stabilization technology, which are verified in the third 

part. The fourth is a summary of the entire study. 
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2 Related works 

Video stabilization technology is used to suppress jitter 

and vibration in videos. The Son team proposed an 

effective recursive video deblurring network. It improved 

the motion estimation accuracy between blurred frames 

through effectively aggregating information from 

multiple video frames. They solved motion estimation 

errors by using pixel volumes containing candidate 

sharpened pixels. The experiment showcased that 

compared with traditional deep learning methods, this 

method improved efficiency by 13% [6]. The Chen team 

proposed an end-to-end training method that integrated 

deep learning and state space models for estimating and 

predicting the state space model of physical systems. The 

results showed that this method could leverage the 

relative advantages of deep neural networks and 

demonstrate effectiveness in estimation and prediction of 

many physically challenging tasks [7]. Zhou et al. 

proposed a unified motion correction and denoising 

resistance network for generating motion compensated 

low noise images from low-dose gated PET data. The 

experiment showcased that the network could directly 

generate accurate motion estimates from low-dose gated 

images and produce high-quality motion compensated 

low noise reconstruction [8]. Wang's team proposed a 

real-time dynamic vision system to achieve accurate pose 

estimation of cameras in indoor dynamic environments. 

The system utilized geometric motion removal modules 

and template-based motion removal modules to process 

dynamic feature points. They found complete dynamic 

regions with the help of depth image clustering. The 

outcomes showcased that the effectiveness of the system 

could reach 80% [9]. The Asad team proposed a spatial 

and temporal feature learning method based on video 

equidistant sequence frames. This method combined the 

multi-level features of two consecutive frames extracted 

from the top and bottom layers of CNN to consider 

motion information. The experiment showcased that the 

accuracy could reach 85% [10]. 

Recently, deep learning technology has made 

significant progress in video stabilization. Deep learning 

models could automatically learn feature representations 

of images and videos by learning a large amount of video 

data and could better capture complex motion patterns. 

Shahbazi et al. utilized a recursive neural network-based 

Long Short-Term Memory (LSTM) architecture for 

incorporating motion features into a single object tracker. 

A new motion model was trained to predict the position 

of the target in each frame. The results indicated that the 

motion model had low computational cost and was in line 

with the basic tracking performance [11]. The Iraei group 

proposed a new deep learning algorithm that estimated 

the fuzzy kernels through CNN. Then, objects were 

tracked through particle filters and the probability 

distribution of motion information obtained through 

kernel estimation. The experiment showcased that 

compared with existing technologies, this method could 

improve tracking accuracy by 10% [12]. The Liu team 

proposed a fault detection method based on 

high-dimensional features of video image depth. This 

method selected deep and highly sensitive features with a 

large amount of fault information as the features to be 

detected. Euclidean distance was used for fault detection 

and moving average window function for reducing 

sudden noise interference. The experiment showcased 

that the detection efficiency of this method could reach 

90% [13]. Chen and his team members proposed a 

video-based action recognition network that used channel 

attention mechanism in residual units to learn the action 

features of each view. The results showed that the 

accuracy of this method could reach 91% [14]. Liu et al. 

proposed a dynamic spatiotemporal network to integrate 

spatiotemporal information. Under the guidance of coarse 

saliency maps, features and decoders were modified 

through spatial attention to obtain the final saliency map. 

The experiment showcased that the accuracy of this 

method in extracting motion features could reach 90% 

[15]. The summary table of related works is shown in 

Table 1. 

 

 
 

Table 1: Summary of related works 

 

Field Researchers Research content Research resultxity Index 

Video 

stabilization 

technology 

Son et al [6] 

An effective recursive 

video deblurring 

network 

Enhance motion 

estimation accuracy. 

Computational 

efficiency is 

improved by 13% 

Chen et al [7] 
An end-to-end training 

method 

Display the 

effectiveness of 

estimation and 

prediction 

The prediction 

efficiency reaches 

85% 

Zhou et al [8] 

A unified motion 

correction and 

denoising resistance 

network 

Produce high-quality 

motion compensated 

low noise 

reconstruction 

The accuracy rate 

can reach 90% 
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Wang et al [9] 
A real-time dynamic 

vision system 

Find complete dynamic 

regions 

The efficiency 

reaches 80% 

Asad et al 

[10] 

A spatial and temporal 

feature learning method 

Combine the 

multi-level features 

Accuracy can reach 

85% 

Deep 

learning 

Shahbazi et al 

[11] 

A recursive neural 

network-based LSTM 

Be in line with the 

basic tracking 

performance 

Computing cost is 

reduced by 10% 

Iraei et al [12] 

A target tracking 

algorithm based on 

CNN and PF 

Track objects through 

PF 

The tracking 

accuracy is 

improved by 10% 

Liu et al [13] 
A fault detection 

method 

Reduce sudden noise 

interference 

The detection 

efficiency can 

reach 90% 

Chen et al 

[14] 

A video-based action 

recognition network 

Learn each view action 

feature 

Precision is up to 

91% 

Liu et al [15] 
A dynamic 

spatiotemporal network 

The final significant 

plot is obtained 

The accuracy rate 

can reach 90% 

 

In summary, video stabilization technology based on 

deep learning has made significant progress. However, 

there are still challenges in dealing with complex scenes 

and multivariate problems. In addition, most existing 

methods need a large amount of pre training data and 

computational resources. For some real-world application 

scenarios, real-time performance and efficiency remain 

key challenges. Therefore, this study proposes an 

optimization method for video stabilization technology 

that integrates the Tiny-Res-PWNet model. This is to 

achieve higher quality, more stable, and more efficient 

image stabilization technology, and to perform better in 

different application scenarios. 

 

3 Design of optimization method for 

video stabilization technology 

integrating Tiny-Res-PWNet 

model 
This chapter proposes the design of optimization methods 

for video stabilization technology, including 

improvements and optimization methods for the PWSNet 

model. Faster network model running speed and better 

image stabilization effect are achieved with less resource 

consumption. This can be achieved by replacing the 

encoder convolutional layer with the residual module, 

extracting feature information from different network 

layers through feature fusion, Batch Normalization (BN) 

layer, bottleneck residual module, etc. Meanwhile, the 

PWSNet model is lightweight processed to obtain a 

smaller Tiny-Res-PWNet image stabilization network 

model. 

 

 

 

 

3.1 Design of optimization method for video 

stabilization effect 
With the continuous development of mobile devices and 

camera technology, users have an increasing demand for 

video stabilization effects [16]. To this end, research is 

being conducted to improve the output structure of the 

image stabilization network and add Fourier spectrum 

constraints and local motion constraints. Meanwhile, the 

affine matrix parameters are optimized to make the 

transformation parameters output by the network more 

similar, thereby reducing the difficulty of learning the 

overall jitter pattern of the image. PWSNet is a deep 

learning network used for image processing and computer 

vision tasks. The purpose is for enhancing the 

performance of image processing tasks by learning pixel 

level stability [17]. Pixel warping field is the motion 

model of PWSNet, used to directly map the relationships 

between all pixels between stable and unstable frames 

[18]. In the pixel warping, the relationship between the 

warping matrix and the corresponding pixels is shown in 

equation (1). 

 
0

0

( , )

( , )

x

y

T i j x

T i j y

=


=
 (1) 

In equation (1), the two warping matrices are xT  

and yT , with pixel coordinates 0 0( , )x y  and pixel points 

( , )i j . The warp matrix records the horizontal and 

vertical coordinates of the source pixel. The pixel values 

in stable frame Î  come from unstable frame I . The 

pixel warping field is shown in Figure 1. 
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Figure 1: Pixel warping field 

 

 

The single-stage structure of PWSNet is similar to 

the encoder decoder framework of U-net architecture [19]. 

The encoder consists of multiple convolutional layers, 

gradually downsampling to generate smaller feature maps 

and increasing the quantity of channels to enhance 

learning ability. The decoder structure is similar to the 

encoder, generating larger feature maps through 

convolutional layer upsampling and reducing the number 

of channels. The convolutional layers of the decoder and 

encoder are connected to each other through skip 

connections. At each stage in the figure, PWSNet 

generates two equally sized pixel warping fields to record 

the relationship between the source pixel and the target 

pixel and to achieve image stability. During the 

generation of pixel warping field by PWSNet, the 

horizontal and vertical movement positions of pixels are 

shown in equation (2). 
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 (2) 

In equation (2), the pixel's horizontal and vertical 

movement positions are 0

xT  and 0

yT , respectively, the 

affine transformation matrix is tH , and the constant 

matrix is A . The overall architecture of PWSNet 

training is based on a dual branch neural network with 

shared identical parameters. This architecture can ensure 

the temporal and spatial consistency of continuous stable 

frames. In the network testing phase, there is no need to 

constrain the network. Only one branch is used to 

generate stable videos, reducing the consumption of 

computing resources. The overall framework of PWSNet 

training is shown in Figure 2. 

 

Cascade encoder-

decoder networks

Unstable frame 

sequences Warping maps

Generated stable 

frames

Share weights

 

Figure 2: Overall framework for PWSNet training 

 

In the frequency domain, using Fourier spectral 

constraints can be used as a method to enhance the spatial 

smoothness of the warping field. The frequency domain 

loss function is calculated as shown in equation (3). 

2 2

ˆ ˆ( ) ( )frequency x yL G F W G F W=  +   (3) 

In equation (3), the frequency domain loss is 

frequencyL , the weighted filtering function is Ĝ , and the 

two-dimensional Fourier transform is F . The pixel 

warping matrices in the x  and y  directions are xW  

and yW , respectively. The frequency spectrum after 

Fourier transform of the warping matrix is ( )F W . The 
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weighted filtering function is calculated as shown in 

equation (4). 

 
max( )ˆ

max( )

G G
G

G

−
=  (4) 

In equation (4), the two-dimensional Gaussian 

distribution function that satisfies mean 0 and variance 10 

is G . The global affine transformation calculation is 

shown in equation (5). 

 

11 12 1

21 22 2

'

'

1 0 0 1 1

X m m b X

Y m m b Y

     
     

=
     
          

 (5) 

In equation (5), the coordinates of the grid vertices 

before the affine transformation are  ,X Y . The 

coordinate of the network vertices after the affine 

transformation is  ', 'X Y . The global affine 

transformation parameters are 11m , 12m , 21m , 22m , 1b , 

and 2b . The global vector is defined as equation (6). 

 

 
'

'
d

X X
M

Y Y

   
= −   
   

 (6) 

 

In equation (6), the global vector is dM . The 

intensity of local motion is measured by the L2 norm of 

the sparse motion field. The calculation of local motion 

loss is shown in equation (7). 

 ,1 2

N

motion n g dn
L M M

=
= −  (7) 

In equation (7), the local motion loss is motionL . The 

quantityr of grid vertices in a frame is N . The number 

of grid vertices serves as n . The vector of the n -th grid 

vertex is ,n gM . The affine transformation matrix is 

shown in equation (8). 
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t
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=  
 

 (8) 

 

In equation (8), 0 5m m−  represent the scaling and 

rotation relationships before and after the transformation. 

To overcome systematic errors in affine transformations, 

an improved method is proposed. This method only 

retains the scaling, rotation, and translation 

transformations to reduce the coupling between the four 

parameters representing rotation and scaling. The 

improved network encoder generation structure is shown 

in Figure 3. 

 

Upgradation

Conventional 

matrix

Conventional 
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Affine matrix Affine matrix

Encoder feature 

map
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Output 

parameters

Output 

parameters

 

Figure 3: Improved network encoder generation structure 

 

The improved network encoder generation structure 

first obtains transformation parameters through a 1*1 

convolution operation on the input feature map. Then, the 

transformation parameters are filled into the affine 

transformation matrix to generate a feature map with a 

shape of 1*1*512. This feature map facilitates the 

subsequent calculation of generated parameters. The 

entire process is equivalent to learning a weight of 

1*1*512, similar to the operation method of fully 

connected layers. The improved affine transformation 

calculation is shown in equation (9). 

 

cos sin

sin cos
t

S S x
H

S S y

 

 

−  
=  

 
 (9) 

In equation (9), the scaling factor is S , the rotation 

angle is  , and the displacements in the x  and y  

directions are x  and y . 

 

3.2 Design of Tiny-Res-PWNet model 
A lightweight image stabilization network 

Tiny-Res-PWNet is proposed to solve the problems of 

complex network structure, high computational 

complexity, and low output frame rate in PWSNet. 

Tiny-Res-PWNet replaces the encoder convolutional 

layer with a residual module to improve the training 

convergence and fitting ability of the network. By using 

feature fusion to extract feature information from 

different network layers, neural networks can achieve 
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faster model running speed and better image stability 

with less resource consumption [20]. In Tiny-Res-PWNet, 

the residual module is used to replace the encoder 

convolutional layer. The residual module introduces 

short-circuit connections, allowing the network to directly 

learn the residual mapping between input and output 

features. The residual module helps to improve the 

training convergence speed of the network and makes it 

easier for the network to fit complex nonlinear 

relationships. Tiny-Res-PWNet extracts feature 

information from different network layers through feature 

fusion, combining feature maps from different levels to 

obtain richer and more comprehensive feature 

representations. In Tiny-Res-PWNet, feature fusion can 

be achieved through skip connections. Jumping 

connections fuse the feature maps of the encoder with 

those of the decoder, allowing the network to utilize more 

information for prediction. In addition, the PWSNet 

model is lightweight processed to obtain a faster running 

speed, higher output frame rate, and smaller model 

structure of the Tiny-Res-PWNet image stabilization 

network model. The output feature map of the residual 

network is showcased in equation (10). 

( ) ( )l lH x x F x= +  (10) 
In equation (10), the input feature map and output 

feature map of layer F are G and E, respectively. The 

disadvantage of traditional residual networks is that as the 

network depth increases. The computational load 

increases and the effectiveness gradually weakens [21]. 

The bottleneck residual module can perform convolution 

operations on relatively low dimensions by reducing the 

number of channels and using a 1*1 convolution kernel, 

thereby improving computational efficiency and 

effectiveness. The bottleneck residual module consists of 

a 1*1 convolutional layer, a 3*3 convolutional layer, and 

a 1*1 convolutional layer, used to extract features and 

solve the gradient vanishing problem in deep networks. 

To optimize the training structure, this study introduces 

BN layers to normalize the data distribution. This causes 

the input value of the activation function to fall in areas 

with larger gradients, thereby avoiding gradient vanishing 

and reducing training time. The BN layer is usually used 

after the convolutional layer. In addition, this study has 

made improvements to the encoder structure to enhance 

the network feature extraction capability and improve 

operational efficiency. It replaces the ordinary 3*3 

convolutional layer with a bottleneck structure 

combination layer, and connects the input and output 

together through skip connections to form a bottleneck 

residual structure. The optimized single-layer structure of 

the encoder is shown in Figure 4. 

 

Input 

features

Output 

features1*1 Conv 3*3 Conv 1*1 Conv ReLU

 

Figure 4: Optimized single-layer structure of encoder 

 

To learn multi-scale and multi-dimensional features 

in images, the bottleneck residual block of the encoder 

structure reduces the output feature size by half layer by 

layer. The output feature channel first increases and then 

remains unchanged. Under the condition that channel 

transformation is required, an additional 1*1 

convolutional layer is introduced for channel 

transformation. This study applies depthwise separable 

convolution to the input layer, warping field output layer, 

encoder bottleneck residual module intermediate layer, 

and decoder transpose convolution layer of the network. 

In addition, the computational load within the network is 

reduced by reducing the network hierarchy. The structure 

of the lightweight Tiny-Res-PWNet model is shown in 

Figure 5. 

 

Input structure Encoder structure Decoder structure Output structure

Transform output structure

 

Figure 5: Tiny-Res-PWNet model structure 
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Tiny-Res-PWNet uses three different activation 

functions: ReLU, Leaky ReLU, and Tanh. Most of the 

convolutional layers are activated using ReLU, the output 

layer is activated using Tanh. The convolutional layers 

connected to the output layer are activated using Leaky 

ReLU. The ReLU activation function is shown in 

equation (11). 

 
1

1

'

( ) max(0, )

1, 0
( )

0, 0

g x x

x
g x

x

=



=  

 (11) 

In equation (11), the ReLU activation function is 

1( )g x , and its derivative is 
1

' ( )g x . The Leaky ReLU 

activation function is shown in equation (12). 
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In equation (12), the Leaky ReLU activation 

function is 2 ( )g x , its derivative is 
'

2 ( )g x , and the 

constant term is a . The Tanh activation function is 

shown in equation (13). 
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In equation (13), the Tanh activation function is 

3( )g x , and its derivative is 
'

3 ( )g x . The content loss 

function is shown in equation (14). 

, 2

1, 1

ˆ( ( , ) ( , ))
W H

i j

MSE

I i j I i j
L

WH

= =
−

=
  (14) 

In equation (14), the content loss function is MSEL , 

the true stable frame is I , and the pixel width and height 

of the frame are W  and H , respectively. The feature 

loss function is shown in equation (15). 

 1 2
( )

fn

i ii

fea

f

P P
L

n


=

−
=


 (15) 

In equation (15), the feature loss function is feaL , 

the number of matched feature points is fn , and the 

coordinate of a feature point in the real stable frame is 

P . The coordinate of a feature point in an unstable frame 

is iP , and the coordinate of the feature point transformed 

by the warping field is ( )iP . 

 

 

4 Video stabilization technology 

optimization method integrating 

Tiny-Res-PWNet model 
This chapter mainly analyzed the application of 

optimization methods for video stabilization technology 

that integrated the Tiny-Res-PWNet model. By setting 

the experimental environment and adjusting the training 

parameters, the performance of different image 

stabilization networks was compared. The improved 

PWSNet model was validated in terms of video structure 

similarity, fidelity, and stability. 

 

4.1 Application analysis of optimization 

methods for video stabilization effect 
The study used two different experimental environments, 

namely high performance and moderate performance. In 

a high-performance environment, Intel i9-12900k CPU, 

Nvidia RTX-3090 GPU, 32G graphics memory, 64G 

memory, Python 3.9 programming language, and Python 

1.7 deep learning framework were used. In a medium 

performance environment, Intel i3-10100f CPU, Nvidia 

GTX-1650S GPU, 8GB of graphics memory, and 16GB 

of memory were used. The size of the experimental 

image is uniformly 640*360, and the pixel warping field 

size is 256*256. The weight initialization adopted a 

normal distribution, and the training used an Adam 

optimizer with a batch size of 16 and an initial learning 

rate of 0.001. The experimental dataset adopts GoPro, 

which includes 3214 blurred images with a size of 

1280×720, of which 2103 are training images and 1111 

are test images. The GoPro dataset consists of one-to-one 

corresponding real blurred images and ground truth 

images, both captured by high-speed cameras. For 

verifying the performance of the improved PWSNet 

model, the study compared the Optical Flow model, 

Block Matching model, and the pre-improved PWSNet 

model. The structural similarity evaluation results of 

different image stabilization networks are shown in 

Figure 6. 
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Figure 6: Structural similarity evaluation results of different image stabilization networks 

 

In Figure 6 (a), the original video structure similarity 

is less than 0.5, and the improved PWSNet model has 

improved the video similarity evaluation index by about 

41.8%. Compared to the Optical Flow model, Block 

Matching model, and PWSNet, the similarity evaluation 

index of the improved PWSNet model has increased by 

about 7.3%, 7.9%, and 2.7%, respectively. In Figure 6 (b), 

the similarity of the original video structure is greater 

than 0.5. The improved PWSNet model has increased the 

video similarity evaluation index by approximately 

52.8%. Compared to the Optical Flow model, Block 

Matching model, and the pre-improved PWSNet model, 

the similarity evaluation index of the improved PWSNet 

model has increased by approximately 14.1%, 17.3%, and 

4.3%, respectively. The outcomes showcase that the 

improved PWSNet model possesses excellent accuracy 

and reliability in evaluating video structural similarity, 

which can better capture the structural similarity between 

videos. The fidelity and stability evaluation results of 

different image stabilization networks are shown in 

Figure 7. 
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Figure 7: Evaluation results of fidelity and stability for different image stabilization networks 

 

Figure 7 (a) shows the fidelity evaluation results, 

and the average fidelity of the improved PWSNet model 

is 0.87. Compared to the Optical Flow model, Block 

Matching model, and the pre-improved PWSNet model, 

the improved PWSNet model has improved its fidelity 

evaluation metrics by approximately 2.1%, 9.9%, and 

1.9%, respectively. Figure 7 (b) shows the stability 

evaluation results, and the average stability value of the 

improved PWSNet model is 0.78. Compared to the 

pre-improved PWSNet model, the stability evaluation 

index of the improved PWSNet model has increased by 

about 3.7%. The outcomes showed that the improved 

PWSNet model achieved essential improvements in both 

fidelity and stability. This indicates that the model can 

better maintain image quality and stability in video 

processing, providing a more reliable solution for video 

processing tasks. The stabilization results of different 

types of low-quality videos are shown in Figure 8. 
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Figure 8: Stable image processing results of low-quality videos of different types 

 

Figure 8 (a) shows the comparison of image 

stabilization results for strong light videos. The improved 

PWSNet model has evaluation indicators for structural 

similarity, fidelity, and stability of 0.82, 0.84, and 0.79, 

respectively. Compared with the Optical Flow model and 

Block Matching model, the improved PWSNet model has 

improved the evaluation indicators of structural similarity, 

fidelity, and stability by about 16.9%, 15.1%, and 16.5%. 

Figure 8 (b) showcases the comparison of image 

stabilization results for nighttime videos. The evaluation 

indicators for structural similarity, fidelity, and stability 

of the improved PWSNet model are 0.83, 0.82, and 0.77, 

respectively. Relative to the Optical Flow model, the 

improved PWSNet model possesses improved the 

evaluation indicators of structural similarity, fidelity, and 

stability by about 4.2%, 7.8%, and 13.1%. Figure 8 (c) 

showcases the comparison of image stabilization results 

for blurred videos. The evaluation indicators for 

structural similarity, fidelity, and stability of the 

improved PWSNet model are 0.78, 0.80, and 0.76, 

respectively. Compared to the Optical Flow model and 

Block Matching model, the improved PWSNet model has 

improved the structural similarity, fidelity, and stability 

evaluation indicators by approximately 25.1%, 20.9%, 

and 13.2%. Based on the analysis of the above data, the 

improved PWSNet model has shown significant 

improvement in image stabilization processing results for 

different types of low-quality videos. Whether it is strong 

light videos, nighttime videos, or blurry videos, the 

PWSNet model can better maintain the structural 

similarity of videos and improve the fidelity and stability. 

The comparison of screenshots before and after video 

stabilization is shown in Figure 9. Figure 9 (a) shows the 

original video image. Figure 9 (b) shows the video image 

after image stabilization processing. After image 

stabilization processing, the clarity of the image has been 

improved. During the image stabilization process, noise 

reduction is applied to the image to make the video more 

pure. 
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(a) Original image (b) Stable image

 

Figure 9: Video stabilization image before and after the screenshot comparison 

 

4.2 Application analysis of Tiny-Res-PWNet 

model 
The Res-PWNet model introduced residual modules for 

structural improvement on the basis of the original 

PWSNet. The impact of residual modules was compared 

and analyzed in different types of video scenes. The 

comparison of Res-PWNet image stabilization 

performance in different types of video scenes is 

showcased in Table 2. 

 

 
Table 2: Comparison of Res-PWNet image stabilization performance in different types of video scenes 

Video type Algorithm Structural similarity Fidelity Stability 

Routine 

Optical Flow 0.802 0.852 0.813 

PWSNet 0.773 0.832 0.819 

Res-PWNet 0.814 0.845 0.842 

High speed 

Optical Flow 0.792 0.782 0.806 

PWSNet 0.761 0.771 0.791 

Res-PWNet 0.806 0.811 0.824 

High density 

Optical Flow 0.752 0.782 0.705 

PWSNet 0.746 0.809 0.748 

Res-PWNet 0.761 0.817 0.726 

High light 

intensity 

Optical Flow 0.742 0.801 0.731 

PWSNet 0.732 0.801 0.725 

Res-PWNet 0.756 0.809 0.765 

 

In Table 2, Res-PWNet exhibits excellent image 

stabilization performance in different types of video 

scenes, with high structural similarity, fidelity, and 

stability. Res-PWNet has better image stabilization 

performance compared to PWSNet in different types of 

video scenes. In conventional scenarios, the structural 

similarity score of Res-PWNet is 0.814, which is higher 

than the score of PWSNet by 0.773. Meanwhile, the 

fidelity score of Res-PWNet is 0.845, which is higher 

than the score of PWSNet by 0.832. In  

 

 

both high-speed and high-density scenarios, Res-PWNet 

has higher scores for structural similarity and fidelity than 

PWSNet. In high light intensity scenes, the structural 

similarity and fidelity scores of Res-PWNet are slightly 

higher than those of PWSNet. By introducing residual 

modules, Res-PWNet can better capture motion 

information in videos and make more accurate 

predictions and compensations. The comparison of 

network module complexity after the introduction of 

residual module is shown in Figure 10. 
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Figure 10: Comparison of network module complexity after introducing residual modules 

 

Figure 10 (a) shows the complexity comparison of 

the encoder module. Compared to PWSNet encoder, 

Res-PWNet encoder reduces the number of parameters by 

53.7%, model size by 54.7%, floating-point operation by 

66.9%, and convolutional layer depth by three times. 

Figure 10 (b) showcases a comparison of the overall 

complexity of the network. Compared to PWSNet 

encoder, Res-PWNet encoder reduces parameter count by 

12.1%, model size by 11.7%, floating-point operation by 

13.2%, and running frame rate has increased from 80.1 to 

84.6, an increase of 5.6%. The outcomes show that the 

introduction of residual modules could markedly decrease 

the parameters and model size of the network and also 

reduce the floating-point computational complexity. This 

improves the performance and stability of the network. In 

addition, introducing residual modules can significantly 

decrease the overall complexity of the network and 

improve the running frame rate, thereby improving the 

real-time performance and stability of the network. Some 

videos from the aviation video dataset were used for 

testing to test the image stabilization performance of 

Tiny-Res-PWNet in airborne video stabilization 

application scenarios. The stability performance test 

results of Tiny-Res-PWNet are shown in Figure 11. 
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Figure 11: Tiny-Res-PWNet image stabilization performance test results 

 

Figure 11 (a) showcases the image stabilization 

results of conventional clear videos. Figure 11 (b) 

showcases the image stabilization results of very 

large-scale blurred videos. The traditional optical flow 

model for image stabilization has better performance, but 

its processing effect for complex scene videos is poor. 

Tiny-Res-PWNet performs better in handling complex 

scenes and has high robustness. Compared with 

Res-PWNet, Tiny-Res-PWNet can better handle various 

complex scenes while maintaining image stability 

performance. The comparison results of the running 

speed of the Tiny-Res-PWNet model are showcased in 

Table 3. 
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Table 3: Comparison results of running speed of Tiny-Res-PWNet model 

Project PWSNet Res-PWNet Tiny-Res-PWNet 

Parameter quantity 49.2 42.8 6.9 

Model size/×106 186.5 164.2 27.5 

Floating point 

operations/MB 
129.4 114.9 12.3 

High performance 

running frame rate/×109 
78.3 83.1 131.2 

Low performance 

running frame rate 
3.8 3.9 7.9 

 

In Table 3, the Tiny-Res-PWNet model is 

significantly smaller in terms of parameter count, model 

size, and floating-point operations. There is an excellent 

performance in high-performance frame rate, reaching 

131.2, far higher than the 78.3 and 83.1 of Res-PWNet 

and PWSNet models. In terms of low performance frame 

rates, Tiny-Res-PWNet also performs well, reaching 7.9, 

higher than Res-PWNet and PWSNet models at 3.8 and 

3.9. Therefore, the Tiny-Res-PWNet model has a 

fast-running speed and a small model size, making it 

suitable for use in resource limited environments. 

5 Discussion 

The study proposed a video stability optimization method 

that integrates the Tiny-Res-PWNet model. Compared to 

existing advanced methods, the proposed improved 

PWSNet model achieved significant improvements in 

video structure similarity, realism, and stability. 

Especially when dealing with different types of 

low-quality videos, such as strong light, nighttime, and 

blurry videos, the improved PWSNet model performed 

particularly well. These achievements were attributed to 

the introduction of residual modules, which enabled the 

network to better capture motion information in videos 

while maintaining model simplicity, achieving more 

accurate prediction and compensation. In addition, the 

Tiny-Res-PWNet model had lower complexity in terms 

of parameter count, model size, and floating-point 

operations, which made the model have higher 

performance and stability in practical applications. 

Compared with Res-PWNet and PWSNet models, 

Tiny-Res-PWNet had higher robustness and faster 

running speed when dealing with complex scenes. These 

advantages enabled the proposed method to achieve good 

results in aviation video stabilization application 

scenarios. Through comprehensive comparison, the 

proposed video stability optimization method 

outperformed existing methods in multiple aspects. These 

advantages mainly stem from the introduction of residual 

modules and optimization of network structures, which 

enable the model to maintain high performance while 

possessing stronger robustness and generalization ability. 

In addition, the Tiny-Res-PWNet model is particularly 

suitable for resource constrained environments by 

reducing model size and computational complexity. 

6 Conclusion 

To improve the performance and stability of video 

stabilization technology, the PWSNet model was 

optimized. A new network model, Tiny-Res-PWNet, was 

proposed. In the Tiny-Res-PWNet model, ResNet was 

first used as the basic network structure for strengthening 

the depth and expressive power of the network. Then, 

based on ResNet, the pixel level weight mechanism of 

PWSNet was introduced to improve the effectiveness of 

video stabilization processing. In addition, techniques 

such as batch normalization and residual connections 

were also used to accelerate network training and 

improve network convergence to further enhance the 

performance and stability of the Tiny-Res-PWNet model. 

The results showed that the improved PWSNet model 

improved the video similarity evaluation index by 

approximately 41.8%. Compared to the Optical Flow 

model, Block Matching model, and the pre-improved 

PWSNet model, the similarity evaluation index of the 

improved PWSNet model increased by about 7.3%, 7.9%, 

and 2.7%, respectively. The improved PWSNet model 

enhanced video stabilization performance. The 

Tiny-Res-PWNet model reduced computational 

complexity while maintaining high-performance frame 

rates. This study provides a new method for video 

stabilization technology, which can be applied in various 

practical scenarios and has great potential. The 

limitations of this study mainly lie in the limited 

hardware equipment and software tools in the 

experimental environment. The limitations may have a 

certain impact on the research results. Future research can 

consider exploring more types of network structures and 

optimization algorithms to broaden the applicability of 

research methods, improve their reliability and 

effectiveness. At the same time, in-depth research is 

conducted on the optimization and improvement of 

hardware devices and software tools combined with 

practical application scenarios to reduce their limitations 

on research results. 
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