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Video, as an important carrier of big data storage, can help people to achieve behavioral analysis as 

well as localization. This study presents a basic network constructed and optimized based on the 

two-stream fusion algorithm, and introduces an attention mechanism to enhance its performance. First, 

the short-range action timing feature is extracted by optical flow feature, and the spatial feature is 

extracted by RGB frame, and the two features are combined by double-flow method to improve the 

ability of capturing spatio-temporal features. Multi-head self-attention module and spatial attention 

mechanism are introduced to improve the capturing effect of temporal and spatial features. 

Experiments were carried out on HMDB51 and Charades-STA datasets. The results showed that the 

recognition accuracy of MHSSA module in time series feature extraction is superior to the traditional 

Softmax mechanism, with an average recognition accuracy of more than 85%. In the HMDB51 dataset, 

the accuracy of basketball action recognition was 95.4%, and the recognition speed was 20 frames per 

second. Compared with the GTN and DGCN models, the model proposed in study had the best overall 

performance in the Charades-STA and ActivityNet-Captions datasets, which were 7.86% and 6.92% 

higher, respectively. In addition, the recognition speed of this method was 25% faster than other 

models, and the average recognition time was reduced by 47.27%. Consequently, the proposed 

optimized spatio-temporal neural network based on a two-stream architecture is capable of 

performing basketball sports action recognition with greater speed and accuracy 

Povzetek: Raziskava predstavlja optimizirano prostorsko-časovno nevronsko mrežo z dvojnim tokom in 

mehanizmom pozornosti, kar izboljšuje prepoznavo košarkarskih akcij s hitrostjo 20 sličic na sekundo.

1 Introduction 

Movement analysis in basketball can assist coaches and 

athletes in tactical development and technical training, etc. 

By accurately identifying and analyzing the movements 

of players on the court, the efficiency and quality of game 

analysis can be further improved to help teams optimize 

their strategies and enhance their sports performance. 

However, basketball sports video data often have more 

complex backgrounds, shorter movement times, and 

occlusion between players, which poses a higher 

challenge for basketball sports action recognition [1, 2]. 

Deep learning (DL) is a considerably more developed 

technology that is utilized extensively in the field of 

video image processing. Neural networks, namely 

convolutional neural networks (CNNs) and recurrent 

neural networks (RNNs), among others, have proven to 

be highly effective in processing data from video 

sequences. Nevertheless, traditional DL models still face 

limitations in basketball motion analysis, such as RNN's 

susceptibility to gradient vanishing and explosion, 

leading to long-term dependency problems. Moreover, 

although CNNs are outstanding in image recognition, 

they do not perform well enough in processing time series 

information [3-5]. Consequently, the field of research has 

turned its attention to efficient spatio-temporal 

information fusion to raise the precision and stability of 

action recognition. Attention mechanism (AM) has 

emerged as a critical technology in recent years to 

address the aforementioned issues. By eliminating the 

interference of unnecessary information, AM helps the 

model to identify significant features and concentrate on 

the crucial portions of the input data [6]. Therefore, the 

study proposes a novel multi-head Sigmoid self-attention 

(MHSSA) temporal capture module for spatio-temporal 

feature extraction. Aiming at the temporal correlation of 

actions in video sequences, it provides a more effective 

way to recognize actions, and can focus on multiple time 

points simultaneously, thus capturing the temporal 

features of actions more comprehensively. In addition, a 

spatial attention network is designed to capture 

correlation patterns between spatial targets. This network 

combines a residual structure and a Sigmoid activation 

function for generating multi-class attention values. The 

study is broken down into four sections: The first 

examines the state of action recognition research at the 

moment. The second creates the study's proposed 

two-stream fusion optimization network. The third 

examines the model's experimental analysis; and the 

fourth compiles the experimental data. 
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This year, one of the main study themes is the 

development and maturation of the field of video action 

recognition. A kernel attention adaptable graph 

Transformer network (GTN) was proposed by Liu et al. 

To capture the higher order spatio-temporal dependencies 

of joints in skeletal data, they used temporal kernel 

attention and MHSSA. Additionally, the adaptive 

approach and dual-flow framework were shown for 

optimization. On the NTU-RGBD 60 dataset, the results 

showed that their model was 1.9% more accurate than the 

baseline 2s-AGCN [7]. Chen et al. suggested a 

two-stream graph convolution network architecture. This 

architecture, which combines spectral and vertex-domain 

graph convolution based on graph Fourier transform, can 

better detect complex activity and extract spatio-temporal 

information from skeletal data. In tests on large datasets 

such as NTU-RGBD and Kinetics-Skeleton, their models 

performed better [8]. Liu et al. proposed a two-stream 

cross-modal fusion Transformer action recognition model. 

The model improved the feature representation and 

interaction of the three primary colors and depth 

modalities through self-attention and cross-attention 

modules. In addition, a bottleneck excitation feedforward 

block was introduced to enhance the model capability and 

reduce the computational overhead. Experimental results 

indicated the effectiveness and generalizability of their 

action recognition model [9]. Zhong et al. designed a 

novel multimodal human behavior recognition network 

by combining a transformer-based skeleton self-attentive 

subnetwork and a CNN-based deep self-attentive 

subnetwork. By integrating motion synergy features, this 

approach achieved a recognition rate of up to 90% or 

more on NTU RGB+D and UTD-MHAD datasets, 

outperforming most existing methods [10]. 

Li et al. proposed a triple-attention module for 

enhancing the ability of graph convolutional networks to 

perceive local motion changes in recognizing actions. 

The tri-attention module was operated on three domains 

and aggregated global information as a way to capture 

significant changes in action sequences. Experiments 

conducted on the NTU RGB-D and Kinetics-Skeleton 

datasets proved that the tri-attention module worked well 

to enhance the network model's performance [11]. Lu et 

al. proposed a video action recognition network that 

combines spatial features, temporal features, and 

spatio-temporal dynamics to improve recognition. 

AlexNet and LSTM were used as the core components, 

and the data was processed by special spatio-temporal 

dynamic perception sub-modules. Tests on UCF 101 and 

HMDB 51 datasets showed that the recognition accuracy 

of their design model reached 93.53% and 69.36%, 

respectively [12]. Pau Climent-P é rez et al. used a 

spatio-temporal attention network, combined with 

standardized skeletal pose data and RGB data, to 

significantly improve the recognition of daily activities 

on the Smarthomes dataset. The method outperformed the 

existing state-of-the-art by 9.5% and achieved 

view-invariant action recognition [13]. Gutoski ELHS et 

al. proposed an open-set human action recognition for 

action type recognition beyond the training set and 

developed a novel DL model based on a triple-inflated 

3D convolutional network model focusing on feature 

extraction to distinguish between known and unknown 

actions. Tests on the UCF-101 dataset showed that TI 3D 

outperforms other non-metric learning models for action 

recognition [14]. The classification and statistical results 

of relevant literature research are obtained through 

collation, as shown in Table 1. 

 

Table 1: Literature research results 

Year Author Method Achievement 

2021 Li et al. [11] 

Tri-attention enhanced 

graph convolutional 

network 

Improved skeleton  

based action 

recognition 

2021 
Climent-Perez et al. 

[13] 

Spatio-temporal 

attention with skeletal 

and video data 

Improved daily activity 

recognition 

2021 Gutoski et al. [14]  

Deep metric learning 

for open-set action 

recognition 

Improved recognition 

of known and 

unknown actions 

2022 Liu et al. [7] 

Graph transformer 

network with temporal 

kernel attention 

 

Improved skeleton- 

based action 

recognition 

 

2022 Chen et al. [8] 
Dual-domain graph 

convolutional networks 

Enhanced action 

recognition from 

skeleton data 

2022 Liu et al [9] 
Dual-stream cross modality fusion 

transformer 

Improved RGB-D 

action recognition 

2023 Zhong et al. [10] 

Multimodal 

cooperative self  

attention network 

High recognition rates 

for human actions 
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2023 Lu et al. [12] 

Siamese motion-aware 

spatio-temporal network 

 

Improved video action 

recognition 

Enhancing key features and extracting 

spatio-temporal features are crucial for video action 

detection. The aforementioned studies have usually 

investigated only a part of them and neglected the 

combination of the two. Therefore, the study improves 

the spatio-temporal network by MHSSA attention module 

and residual network (ResNet) to enhance the exercises 

between frame images. In addition, the two network 

models are also fused by optimizing the two-stream 

architecture, aiming to further enhance the recognition 

analysis of key features. 

 

2 Application of deep learning 

network incorporating attention 

mechanism in two-stream 

architecture for action recognition 
For the design of action recognition model for basketball 

players, the study first proposes a two-stream fusion 

algorithm and improves it. Subsequently, the temporal 

domain neural network and spatial domain neural 

network are optimized by AM and DL optimization, 

respectively. Lastly, the model's accuracy in recognizing 

basketball players from film action is improved. 

 

 

 

 

 

2.1 Network architecture construction based 

on two-stream fusion algorithm 
Basketball is a hand-centered physical confrontational 

sport, and there are more violations to be judged during 

the game. For example, a player intentionally kicking the 

ball with his foot or intercepting the ball with any part of 

his foot should be judged as a violation, as well as 

interfering with the rhythm of the shooter by lightly 

hitting his wrist and other positions at the moment when 

the opponent shoots the ball is considered a violation. 

Secondly, basketball players also need to standardize 

their movements when they train. Violation action 

recognition and training actions are usually subtler 

observations, which may be difficult to accurately realize 

only through the traditional human eye discrimination. 

Action recognition technology has advanced and is now 

widely employed in a variety of industries, including 

sports and education. Basketball players' movement 

posture can be standardized, evaluation discrimination 

can be automated, and basketball players' training effects 

can finally be improved by combining action recognition 

and basketball [15]. The study uses more mature DL 

techniques for the design of recognition algorithms. 

Among them, the two-stream fusion algorithm has less 

number of parameters and relatively shorter tuning and 

training time compared to the 3D convolutional model, so 

the study chooses the two-stream architecture for network 

construction. Figure 1 shows the flow of the two-stream 

fusion algorithm. 

 

Input video data

Dual-flow network structure

Time domain network

Optical flow feature 

extraction time sequence 

feature

Spatial domain network

RGB frames extract spatial 

features

Multi-head self-attention 

module

Spatial attention 

mechanism

Feature compression and 

redundancy processing

BN-Inception Backbone 

network

Residual network 

(ResNet)
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training

Time-space 

network integration

Voting fusion 

strategy

Result output

 

Figure 1: The flow of the two-stream fusion algorithm 
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The two-stream algorithm includes two modules in 

the temporal and spatial domains, the optical stream 

features are used for the extraction of short-range action 

timing features, while the RGB frames are used for the 

extraction of spatial features. When the variation of 

continuous image frames exceeds 24 frames per second, 

the presentation effect of video will be reached. This 

necessitates the use of a digital adjustment of the analog 

image, as the general algorithm is unable to process the 

video metadata, which contains a large amount of 

information. While the basic unit pixels of the simulated 

image, all contain different gray values and color values, 

in order to quantify them, the study chooses the RGB 

quantization method that contains three color channels, 

red, green and blue, which can be superimposed on the 

different channels to obtain all the human-perceivable 

colors, whose descriptions of spatial features are shown 

in equation (1) [16, 17]. 

 
3 h w

RGBimg    (1) 

In equation (1), /h w  is the height and width of the 

image, respectively. Compared with the spatial features 

of video images, they are more strongly connected in 

temporal features. If the extraction of temporal features is 

performed only by RGB data, it is very easy to have 

problems such as excessive computational burden and 

overfitting. Therefore, it is investigated to use the optical 

flow features to compute the variation of pixel point 

intensities with respect to time frames and to obtain the 

moving orientation and velocity magnitude of the 

recognized object. Equation (2) illustrated the optical 

( )1, ,I x y t  of a pixel in a certain frame. 

 ( ) ( )1 1, , , ,I x y t I x x y y t= +  +   (2) 

In equation (2), ( ),x y  denotes the pixel position at 

the 1t  moment and ( ),x y   denotes the pixel 

movement at the next moment. When the amount of 

movement is small, its optical flow characteristics can be 

obtained by Taylor series as shown in equation (3) [18, 

19]. 

 0x x y y tI V I V I+ + =  (3) 

In equation (3), /x yV V  denotes the optical flow 

velocity in different orientations, and / /x y tI I I  denotes 

the bias of the optical brightness function in the / /x y t  

direction. However, too large a gap in pixel movement in 

an image frame tends to lead to training oscillations, so 

the study first truncates the extreme optical flow and 

unifies the optical flow values by Min-Max normalization 

as shown in equation (4). 

 
min

max min

255new

o o
o

o o

−
= 

−
 (4) 

In equation (4), max min/o o  is the very large and 

very small values of the optical flow, and / newo o  is the 

optical flow value before and after normalization, 

respectively. The traditional two-stream architecture is to 

directly split and save and sample the images of each 

frame, which produces large redundant data, aggravates 

the storage space requirement, and ultimately leads to a 

reduction in the real-time performance of the model. 

Therefore, the study firstly compresses and saves the 

redundant information, and the data includes the key 

frame I with simple compression, the prediction frame P 

containing the temporal relationship, and the bidirectional 

prediction frame B with bidirectional temporal search 

[20-23]. The traditional and improved architectures are 

shown in Figure 2. 
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Figure 2: Two-stream architecture optimization 

 

Random sampling training reduces the 

computational burden on the model and enhances the 

efficiency of modeling temporal information. The study 

uses this grouped form of sparse sampling for 

spatial-domain network training, which first requires an 

equal segmentation of the image frames for independent 

sampling of each group before inputting the splicing 

results into the value-space network. The sampling of the 

time-domain network is performed simultaneously in 

both directions, so the network input values are 

continuous stacked optical flow groups. The inputs to the 

two neural spaces are shown in equation (5). 
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 (5) 

In equation (5), T  denotes the number of video cut 

groups and N  denotes the number of video image 

frames. The video is denoted as 

 1 2, ,..., NV img img img=  and 0 /t k  denotes the 

sampling starting point and the number of stacking 

groups. 
0 0

/u v

t tO O  denotes the optical flow characteristics 

of the starting point 0t  image in the horizontal and 

vertical directions, respectively. When the traditional 

frame directly segments the image, the overfitting 

problem due to the similarity of each frame occurs, while 

the above sampling can effectively solve this 

phenomenon, as shown in Figure 3. 

 

Dense sampling

Model 

(a) Traditional sampling process

Dense sampling

Model 

(b) Random sampling optimization

Number of frames =N

Number of frames N

Fractionation 

Group 

Number of groups =T

 

Figure 3: Sampling method optimization 

 

The neural network of two-stream architecture 

consists of a backbone network for global action feature 

extraction, and a recognition layer for judgment. The 

common batch normalization-inception (BN-Inception) 

backbone network is selected for the study, which serves 

as an updated version of the inception network with a 

regularization layer that better achieves data stabilization 

and improves the original convolutional kernel, as shown 

in Figure 4. 

 

Convolution  

kernel

BN layer

Active layer

Convolution  

kernel

BN layer

Active layer

3*3

Convolution  

kernel

Active layer

5*5

Improvement 

5*5

3*3
 

Figure 4: Backbone network structure of BN-Inception 

 

The traditional Inception network with 5*5 

convolutional kernels is replaced with 3*3 convolutional 

kernels. The increase in model depth also provides a 

better environment for detailed feature extraction. 

Moreover, the sensory field of the model remains stable 

in the stacked convolutional layers. The input value 

attributes of the time-space domain neural network are 

different. For example, if the number of input channels of 

the time-domain network is 2k, the initial convolutional 

kernel substitution should be expressed as 2k→64 and the 
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parameters should be initialized to the original parameter 

averages as shown in equation (6) [24]. 
3

1

1

3

Temporal Spatial

i i

j

ConvPara ConvPara
=

=   (6) 

In equation (6), /Temporal Spatial

i iConvPara ConvPara  

is the initial convolutional parameter of the 

spatio-temporal domain neural network, respectively. 

Subsequent BN layers are able to strengthen the 

generalization performance of the network, and Partial 

BN module is introduced to lock the regularization layers 

other than the first BN layer, which are normalized by the 

pre-training parameters. Finally, the fusion of the 

time-space domain network is carried out by utilizing the 

voting fusion strategy, as shown in equation (7). 

 
2

1

*i i

i

P Weight P
=

=  (7) 

In equation (7), iP  denotes the valuation of video 

image frame i  by the space-time-domain network. 

iWeight  denotes the weight of video image frame i . 

 

2.2 Time-space domain action recognition 

algorithm based on attention mechanism and 

deep learning network 
The optical flow features in the infrastructure only enable 

the extraction of temporal relationships over short periods 

of time, whereas the movements of basketball players 

tend to be of longer duration. Moreover, the weights of 

the images in each frame are not consistent, so it is also 

not possible to sample the mean or extreme value for the 

extraction of time-domain features. RNNs have been 

widely used in the field of action and timing prediction as 

models with high dynamic temporal description [25, 26]. 

However, the excessive similarity between image frames 

can limit the optimization process of the network, and the 

computational dependency between its timing modules 

can slow down the convergence of the model. Therefore, 

the study selects AM in DL for the design of the timing 

capture module. The performance of the model for the 

detailed features will be weakened by the traditional 

encoder-decoder's interpretation of the data as 

independent features. With the introduction of AM, the 

model is able to implement different attention to data 

with different weights, as shown in Figure 5. 
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Figure 5: Introduction structure of attention mechanism 

 

As illustrated in Figure 5, the extraction of optical 

flow features in the infrastructure is limited to a brief 

period. To enhance the time-domain neural network, an 

AM is incorporated. Through linear combination of 

diverse weights, the AM translates the dimensionality of 

source data to the translation end, optimizes the accuracy 

of feature extraction through continuous training 

iterations, and enhances the recognition effect of the 

model in time series data. The source data is mapped on 

the translation side by a linear combination of different 

weights and dimensionality reduction, as shown in 

equation (8). 

arg *j ji i

i

T et Embedding a Source
 

=  
 
  (8) 

In equation (8), / argi jSource T et  denotes the 

source code end and the translation end respectively, and 

Embedding  is the dimension reduction layer. jia  is the 

corresponding weights of the translation end and the 

source code end, which are obtained after continuous 

training iterations. AM is essentially a query module for 

the data, i.e., the data values of the translation end and the 

source code end are similarity computed in order to 

obtain the corresponding weights, which are then 

transformed into the probabilistic model ia  in Softmax 

as shown in equation (9) [27]. 

 

exp
max( )

exp

i

j

e

i i n
e

j

a Soft e= =


 (9) 

In equation (9), ie  is the similarity between the key 

vector at the source side and the query vector at the 

translation side, and exp / exp ji
ee  is the corresponding 

primary key value and query vector value, respectively. 

Finally, the summation is performed according to the 

weights. The aforementioned AM is unfolded by the 

Softmax activation function, which has a detrimental 
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effect on the competition among features. It exerts a 

significant limiting influence on data other than 

extremely large values and is unable to adapt to the 

recognition of video actions with a tight temporal 

connection [28]. Therefore, the study introduces the 

MHSSA module as shown in Figure 6. 
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Figure 6: Multi-head Sigmoid self-attention module design 

 

In Figure 6, the Softmax activation function in the 

traditional AM is replaced with the Sigmoid function. 

Unlike the original function for direct comparison of 

temporal features, the Sigmoid function is able to realize 

the activation of individual neurons through multiple 

gating functions. In the Sigmoid function curve, the input 

mapping interval is [0,1], and the overall change is 

relatively smooth. When the function value is infinitely 

close to 0, the data obtained is substantially reduced, 

which may be due to the screening of the background 

frames in the image to achieve effective control of the 

data flow. Secondly, the self-AM in the MHSSA module 

also improves the feature enhancement effect, extracts the 

temporal relationship between the upper and lower 

frames, and completes the construction of the action 

time-domain network. Moreover, the multi-group module 

assists the self-attention module, which perfects the 

extraction of temporal feature interrelationships, and then 

finally activates the neurons through the Sigmoid 

function. As shown in equation (10) [29]. 

( ), ,
T

i i

i i i i

k

Q K
Attention K Q V Sigmoid V

d

 
=  

 
 

 (10) 

In equation (10), / /i i iK Q V  denotes the key vector, 

query vector, and value vector, kd  denotes the key 

feature dimension, and 
T

iK  denotes the key matrix, 

respectively. The MHSSA module employs the Sigmoid 

function in lieu of the Softmax function for the 

calculation of attention weights, thereby enhancing the 

capture of timing features. Equation (11) depicts the 

specific formula. 

( ), ,
T

k

QK
MHSSA Q K V Sigmoid V

d

 
=  

 
 (11) 

The Sigmoid function is able to smoothly map input 

values to between 0 and 1, thus effectively regulating the 

data flow and avoiding excessive restrictions on 

non-critical features. The multi-head AM divides the 

input data into multiple sub-spaces, applies the AM to 

each sub-space independently, and finally concatenates 

the output of each sub-space, as shown in equation (12). 

 

1 2( ) (, , , , , ) ohMultiHead Q K V Concat head head head W=  (12) 

 

In equation (12), ihead  represents the attention 

head, and the calculation process is shown in equation 

(13). Finally, the output of multiple attention heads is 

combined through concatenation operation, and then 

multiplied by an output weight matrix oW  to get the 

final result. After the output of the multi-head AM is 

spliced and fused, the final eigenvalue is obtained as 

shown in equation (13). 

 

1 2( ), , , ohO Concat head head headutput W=  (13) 

 

In this way, the results of multiple attention heads 

can be synthesized to improve the feature extraction 

ability of the model. After obtaining each temporal 

feature, it is necessary to utilize splicing fusion to obtain 

the final feature value attnFeat , as shown in equation 

(14). 
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( )1 2, ,...,
head

O

attn nFeat W Concat Attn Attn Attn=  (14) 

In equation (14), OW  denotes the projection matrix 

and Headn  denotes the total number of Heads. The 

introduction of AM can enhance the extraction of 

temporal features by the action recognition system. The 

study proceeds with the construction of a spatial domain 

network to further enhance the accuracy of basketball 

motion recognition (BMR). The spatial network aims to 

unify the recognition of connected targets. For example, 

during horseback riding, the necessary elements present 

are the person and the horse, while during basketball 

movement, the necessary elements are the person and the 

basketball. In the whole image frame, different 

recognition targets correspond to different weights and 

naturally have different contribution values in action 

recognition. The traditional DL framework uses global 

average pooling to directly compress the spatial domain 

features, ignoring the relationship between the spatial 

domain image frames, so the study optimizes the pooling 

layer to enhance the extraction of spatial domain features 

by the model [30]. Global feature extraction takes place 

in the pooling layer. Two popular pooling techniques are 

mean pooling and maximum pooling. The former 

demands that the location of very big values be stored at 

runtime and used to backpropagate the gradient. The 

latter requires only the solution of the mean value of the 

gradient before backpropagation can be passed again. The 

global pooling layer has the same dimensions as the final 

layer of the feature layer. Of course, the fusion of the two 

pooling methods can also enhance the flexibility of the 

spatial feature module and strengthen the target 

recognition accuracy of dynamic video, which is 

especially suitable for multi-target recognition tasks, and 

the specific module design is shown in Figure 7. 

 

(ωT x)
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global pooling

X

σ (ωT x)

1-σ (ωT x)

Maximum pooling Average pooling

Hidden layer feature Gating function value

 

Figure 7 Fusion of average pooling and maximum pooling 

 

Figure 7 illustrates the application of global average 

pooling and maximum pooling fusion in spatial feature 

extraction. Global pooling compresses spatial features, 

yet traditional methods fail to consider the relationship 

between image frames, resulting in sub-optimal feature 

extraction. The combination of maximum pooling and 

mean pooling enhances the flexibility of spatial feature 

modules, particularly in multi-object recognition tasks. 

This method significantly improves the recognition 

accuracy of the model. Action recognition researchers 

have extensively researched optimization techniques for 

the pooling layer, such as low-rank approximation based 

on second-order pooling, etc., which effectively increases 

the computational efficiency of the model while 

simultaneously enhancing the capture effect of 

spatial-domain features through the use of gesture 

information, as demonstrated in equation (15). 

 ( ) ( )( )T Tf X a X Xb=  (15) 

In equation (15), ( )f X  denotes the pooling 

function, n cX  , 1, fa b  . Others are augmented 

by DL network-assisted spatial-domain attention and 

applied to the feature extraction of the latter frame of the 

image. The video data is cut off frame by frame over the 

time series, and the connections between different targets 

in each image frame are very strong. For example, in the 

action recognition video of a basketball player, there are 

often more interactions between the basketball player and 

the basketball, which means that the two targets are more 

related. However, image frames not only contain target 

data, but also usually contain a lot of unnecessary 

background data. Therefore, the common global pooling 

approach cannot achieve intelligent partition feature 

extraction and cannot complete the segmentation of 

different target data. In more research results have shown 

that the introduction of neural network module can have 

an enhanced positive effect on the spatial feature AM. As 

a result, as seen in Figure 8, the study applies it to the 

spatial domain module. 
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Figure 8: Space and network integrated into attention mechanisms 

 

The spatial information of each frame has a 

correlation between them, composing their corresponding 

independent score data, and obtaining the more important 

spatial region data. The backbone network of the model is 

BN-Inception, which directly performs correlation 

modeling when the feature dimension reaches 49*1024. 

Its need for a large number of pairs will limit the 

convergence iteration speed of the model and reduce its 

operational efficiency. Therefore, the study introduces a 

multi-layer perceptron strategy for improvement. The 

common activation function itself is competitive and 

therefore highly susceptible to problems such as 

inhibition. To solve this problem, the study introduces 

ResNet to optimize the Sigmoid function. As the number 

of neural network layers increases, the gradient 

disappearance or gradient explosion phenomenon is 

likely to occur. This can be mitigated by introducing the 

phenomenon into the regularization layer for optimization. 

However, this approach is not applicable in cases where 

there are too many layers. At this time, the training set 

loss will gradually reduce, and tend to saturation, if the 

number of layers continue to increase, the loss value will 

increase. As a result, in the event of a network 

degradation, the shallow network learns more quickly 

than the deep network, which depends on the residual 

link to transfer low-level characteristics to higher levels. 

In deep neural networks, residual connections are 

frequently used to address the issue of gradient 

disappearance. They can also enhance the network's 

training efficiency and model performance, as 

demonstrated by equation (16). 

 

 ( ) ( )h x f x x= +  (16) 

 

In equation (16), ( )h x  denotes the constructive 

formula and ( )f x x=  denotes the constant mapping 

relation. The model gradient is smoother in the directly 

connected line. 

 

3 Time-space domain neural 

network based on two-stream 

architecture 
Experiments are conducted on two datasets: HMDB51 

and Charades-STA. HMDB51 contains 6,766 videos, 

while Charades-STA contains 6,672 videos. HMDB51 is 

divided into 51 action categories. Pre-processing steps 

include data cleaning, noise reduction, and invalid data 

removal to ensure data quality. Data diversity is enhanced 

through random cropping, rotation, and scaling. The 

optical flow algorithm is used to extract the motion 

timing feature, capturing the direction and speed of pixels 

over time, and extracting the RGB frame of the video to 

obtain the spatial feature. Min-max normalization is used 

to compress and store key frames, prediction frames, and 

bidirectional prediction frames to reduce redundancy and 

improve real-time performance. The initial learning rate 

is 0.001, the batch size is 128, and 80 iterations are 

performed. Simulation studies are carried out to assess 

the study design model for BMR recognition in order to 

confirm its efficacy. Firstly, the key modules in the 

time-domain neural network and spatial neural network, 

as well as the overall performance are analyzed 

respectively. Finally, the overall model after fusion is 

subjected to performance comparison and analysis 

experiments in different datasets. 

 

3.1 Performance analysis and validation of 

time-domain neural network and spatial 

neural network 
The study begins with a performance validation analysis 

of the time-domain neural network as well as the spatial 

domain neural network respectively. The experimental 

environment and parameter settings are shown in Table 2. 
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Table 2: Experimental environment and parameter Settings 

Name Settings 

Operating system Ubuntu 16.04.2 LTS 

Internal memory 64GB 

CPU InterR CoreTM i7-5930K CPU 

Graphics card GeForce GTX TITAN Xp 

Deep learning framework PyTorch 

Data sampling pre-processing TSN open source 

Data set 
HMDB51 

Charades-STA 

Batch size 128 

Equal sampling values 24 

Initial learning rate 0.001 

 

The HMDB51 dataset contains a total of 6766 video 

data, with 51 action categories, including several 

confusing action categories such as handstand as well as 

back handspring, and the ratio of training to validation is 

7:3. The study first experimentally analyzes the  

 

 

attentional module in the time-domain attentional 

network, and compares it with the common Softmax 

self-AM. Moreover, among the video data, the first, 

150th, and 300th frames are chosen for examination. 

Figure 9 displays the outcomes of the experiment. 
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Figure 9: Comparison of performance of attention module in time-domain network 

 

Figure 9(c) shows the images of each frame used in 

the experiment, and the sampled data is the video of 

playing badminton action. In Figure 9(a), the Softmax 

self-AM module performs poorly, and the recognition 

performance is better only in the 150th frame image, with 

an accuracy of 99.9%, while for the rest of the frames, the 

recognition error is very large, and the recognition 

accuracy is even below 1%. This is due to the overly 

competitive mechanism of the Softmax function and the 

fact that its attention module does not take into account 

multi-frame data variations, but rather focuses on 

independent frame images, limiting the contribution of 

the remaining frames. In the study of the proposed 

MHSSA module, its temporal recognition performance is 

significantly improved, with recognition accuracies all 

above 85%, averaged over a more focused combination 
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of multi-temporal frame images. The study compares the 

time-domain MHSSA model with different number of 

multi-modules, with RNN, and its common variant forms 

long short term memory network (LSTM), and gated 

recurrent unit (GRU), and the experimental results are 

shown in Figure 3. 

 

 
Table 3: Time sequence feature extraction accuracy for each model action recognition 

Model 
Sample set sequence number 

Mean value 
A B C 

RNN 52.81% 53.74% 55.23% 53.93% 

LSTM 53.47% 53.99% 56.05% 54.50% 

GRU 53.92% 54.68% 56.88% 55.16% 

1 Head 63.45% 64.23% 65.17% 63.35% 

2 Head 64.57% 63.72% 66.98% 65.09% 

4 Head 63.01% 64.60% 66.95% 64.85% 

6 Head 63.36% 63.24% 65.71% 63.92% 

 

In Table 3, neural networks such as RNN are 

significantly worse than the time-domain neural networks 

proposed in the study, and their recognition accuracies 

are all under 60%. The LSTM model and GRU model 

perform slightly better than the RNN model due to the 

additional implicit states added by the LSTM model, 

which can better solve problems such as gradient 

explosion compared to the RNN network. The GRU 

network, although similar in structure to the LSTM 

network, has a simpler structure and utilizes its iterative 

updates. However, in motion video, the high similarity of 

each image frame makes it difficult for all three models 

mentioned above to obtain suitable learning patterns, and 

thus the overall recognition results are poor. The action 

recognition of the time-domain MHSSA model proposed 

in the study is significantly improved, with the highest 

model  

 

recognition accuracy in sample dataset C for all module 

numbers, reaching 66.20% on average. When the number 

of modules is 2, the overall model has the best 

recognition performance, which is higher than the rest of 

the MHSSA models by 1.91% on average, and higher 

than the three neural network models by 10.56% on 

average. In conclusion, it can be concluded that the 

proposed MHSSA-based temporal feature extraction 

module of the study has significantly improved the action 

recognition network. The study conducts experiments to 

analyze the performance of spatial neural networks with 

the same principle. The residual module in the model is 

first validated and Softmax and Sigmoid functions are 

chosen for comparison respectively. Figure 10 displays 

the outcomes of the experiment. 
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Figure 10: Spatial neural network module performance analysis 

 

In Figure 10(a), the addition of the ResNet module 

to both activation functions resulted in an increase in the 

model's recognition performance. In particular, the 

network model recognition accuracy based on the 

Softmax function increased by 0.54% on average, and the 

network model recognition accuracy based on the 

Sigmoid function increased by 2.10% on average. As 

shown in the model comparison between the Softmax and 

Sigmoid functions, the Sigmoid function used in the 

study is almost always due to the Softmax function before 

and after optimization. Moreover, only in sample dataset 

B, it is lower than the Softmax model and 
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Softmax-ResNet model by 2.24% and 2.63%, 

respectively. The Sigmoid-ResNet model, on the other 

hand, always has the highest recognition accuracy and the 

performance improves as the dataset changes. In dataset 

A, the accuracy is improved by 1.71% compared to the 

Sigmoid function model, and in sample dataset B, it is 

improved by 4.0%. Figure 10(b) shows the mean value of 

the accuracy of each model, excluding the model used in 

the study, the mean value of the accuracy of the 

remaining models is below 65%. While the Sigmoid 

function model has the lowest mean value, the optimized 

Sigmoid-ResNet model reaches the maximum value of 

65.71%, which is higher than the rest of the models by 

1.9% on average. Finally, the study fused the 

time-domain neural network and spatial neural network 

through two-stream architecture, and the iteration results 

before and after model optimization are shown in Figure 

11. 
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Figure 11: Comparison of iteration results before and after model optimization 

 

In Figure 11(a), the pre-optimization action 

recognition model suffers from overfitting around the 

35th iteration and fails to achieve a more stable DL. In 

contrast, in Figure 11(b), the design model optimized by 

fusion of the two-stream architecture solves the 

overfitting phenomenon present in the initial network. In 

the 80 iterations of the result intercept, the model is 

always learning iterations and does not converge 

prematurely. In summary, it can be seen that the research 

design model enables more stable and effective learning 

optimization. 

 

3.2 Performance analysis of spatio-temporal 

neural network model action recognition 

under two-stream architecture fusion 
The study further conducted performance analysis 

experiments on the fused overall model and selected the 

Charades-STA dataset and ActivityNet-Captions dataset 

as the experimental samples. There are a total of 6672 

videos in the Charades-STA dataset, and the duration of 

each video data is about 30s. The ActivityNet-Captions 

dataset, as a larger dataset, covers a more diverse range, 

and the total duration of each video is around two 

minutes. The study divides the training set, validation set 

and test set of the experiment in a 2:1:1 manner. After 

that, the evaluation metric "R@n, IoU=m" is chosen, 

which aims to determine the proportion of samples that 

the corresponding model recognizes the first n image 

frames with no less than one successful recognition. 

Where, not less than 1 means that the intersection over 

union (IoU) between the judgment value and the true 

value is not less than m. Finally, the study introduces the 

optimized GTN proposed by Liu et al. and dual-domain 

graph convolutional networks (DGCN) proposed by S 

Chen et al. for controlled experiments. Table 4 displays 

the findings of the experiment. 
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Table 4: Performance comparison of different models in different data sets 

Index 

Data sets 

Charades-STA ActivityNet-Captions 

Model Model 

GTN DGCN Ours GTN DGCN Ours 

R@1, 

IoU=0.5 
45.40 42.61% 53.07% 42.48% 43.97% 45.46% 

R@1, 

IoU=0.7 
26.57 25.80% 31.79% 22.26% 23.81% 24.39% 

R@5, 

IoU=0.5 
88.03 79.42% 89.11% 71.84% 67.93% 78.02% 

R@5, 

IoU=0.7 
55.39 54.88% 60.24% 45.97% 50.03% 50.79% 

 

In Table 4, in Charades-STA dataset, the best 

performance of the research design model, excluding the 

R@1, IoU=0.7 case where both mean values are lower, 

reaches 67.47%, which is on average 7.86% higher 

compared to the remaining two models. Moreover, the 

same result is observed in the ActivityNet-Captions 

dataset. The mean value of the research design model  

 

reached 58.09% when the extremes are discarded, which 

is elevated by 6.92% on average compared to the 

remaining two models. Moreover, when the IoU is 0.5, 

the performance of the models are due to the case of IoU 

of 0.7. The study is further analyzed experimentally for 

BMR recognition and the results are shown in Figure 12. 
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Figure 12: Comparison of basketball action recognition performance of each model 

 

In Figure 12(a), the DGCN model has a relatively 

low accuracy despite its fast recognition speed. Moreover, 

the recognition speed of the research design model is 

medium, reaching 20 FPS, which is 25% lower than that 

of the GTN model. Although its recognition accuracy is 

slightly lower than the GTN model by 0.2%, overall, the 

research design model has the best overall performance. 

In Figure 12(b), a shooting batter's action is selected and 

experimented separately with different number of 

samples. The experimental results show that the 
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recognition time of each model increases with the sample 

size. The GTN model has the longest recognition time 

with an average of 0.269 minutes, while the DGCN 

model initially has the shortest recognition time, but it 

gradually increases with the sample size and surpasses 

the research design model after 20 samples. The average 

recognition time of the research design model is, on 

average, 47.27% lower than the rest of the models. In 

conclusion, it can be concluded that the 

research-designed optimized spatio-temporal domain 

neural network based on two-stream architecture is able 

to achieve BMR recognition better. To further verify the 

performance of the research method, the research method 

is compared with the existing motion recognition 

techniques. Descriptive statistical analysis calculates 

mean ± standard deviation. Independent sample t test is 

used to evaluate the significance, and P<0.05 is 

considered statistically significant. The performance 

comparison results of various action recognition methods 

are shown in Table 5. 

 

 
Table 5: Performance comparison results of various action recognition methods 

Method Recall rate (%) F1 score 
Model 

complexity (%) 
Accuracy rate (%) 

Research method 98.11±0.35 95.50±0.96 54.35±0.26 98.24±0.34 

Literature [7] 91.29±0.41 89.74±0.74 58.39±0.77 87.27±0.36 

Literature [8] 86.34±0.39 87.69±0.58 60.12±0.41 89.64±0.73 

Literature [10] 87.28±0.47 92.67±0.14 67.63±0.34 87.65±0.65 

Literature [13] 89.24±0.36 91.73±0.21 70.24±0.37 84.76±0.76 

P <0.05 <0.05 <0.05 <0.05 

 

Table 5 presents the results of the motion 

recognition method under study, demonstrating superior 

performance in terms of recall rate, F1 score, and 

accuracy, exceeding 93%. In comparison to existing pose 

recognition methods, the research method exhibits a 

significantly lower model complexity, with a value of 

only 54.35%. The P values of all comparison results are 

less than 0.05, indicating that the experimental results are 

statistically significant. 

4 Discussion 

Compared with the traditional Softmax mechanism and 

the RNN/LSTM/GRU based model, the MHSSA module 

achieved a higher accuracy in time series feature 

extraction, with an average recognition accuracy of more 

than 85%. On HMDB51 dataset, the basketball action 

recognition accuracy reached 95.4%, and the 

comprehensive performance on Charads-STA and 

ActivityNet-Captions dataset was 7.86% and 6.92% 

higher than that of GTN and DGCN models, respectively. 

In addition, the recognition speed of this method was also 

significantly improved, and the average recognition time 

was reduced by 47.27%. Compared with Liu et al. 's GTN 

[7] and Chen et al.' s two-flow graph convolutional 

network [8], the innovation in this study was the 

introduction of multi-head self-attention and spatial AMs 

to enhance the ability to capture spatio-temporal features. 

By optimizing the two-stream architecture, the features of  

the time-domain and the space domain were effectively 

integrated to improve the overall performance and 

efficiency. Conventional models are inadequate for 

handling lengthy time series and intricate spatial 

characteristics. This is where the AM and architectural  

 

optimization come into play. The model combines 

advanced DL techniques and AMs to achieve more 

efficient feature extraction and fusion through multi-layer 

perceptrons and ResNet optimization. 

5 Conclusion 

In order to enhance the practice effect of basketball 

players, the study proposes an action recognition model 

based on DL network. Aiming at the temporal correlation 

of actions in video sequences, it provides a more effective 

way of action recognition, which is capable of focusing 

on multiple time points at the same time. In addition, a 

spatial attention network is introduced for capturing 

association patterns between spatial targets. Experiments 

were conducted to analyze the temporal neural network 

and spatial neural network respectively. In the former 

experiment, the results indicated that Softmax self-AM 

performs poorly in action recognition due to single 

centralization, and the recognition accuracy in other 

frames was even less than 1%. In contrast, the proposed 

MHSSA module achieved a recognition accuracy of over 

85%, which is significantly better than the Softmax 

mechanism. Furthermore, on average, the MHSSA model 

achieved a recognition accuracy 10.56% higher than that 

of the neural network model when compared to 

traditional RNN/LSTM/GRU networks. The experimental 

results of the spatial neural network indicated that the 

model with the inclusion of the residual module improved 

the accuracy by 1.71% compared to the Sigmoid letter 

model in the dataset A. The model with the inclusion of 

the residual module improved the accuracy by 1.71% 

compared to the Sigmoid letter model. The fusion of the 

spatio-temporal network through the two-stream 

architecture effectively solved the overfitting problem in 
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the original network. In the Charades-STA dataset, except 

for the case of R@1, IoU=0.7, the average performance 

of the model reached 67.47%, which is 7.86% higher than 

that of the GTN and DGCN models. In the 

ActivityNet-Captions dataset, the average performance of 

the model reached 58.09%, which is 6.92% higher than 

other models. For BMR recognition, the 

research-designed model achieved moderate recognition 

speed and only slightly lower recognition accuracy than 

the GTN model by 0.2%, with the best overall 

performance. In the experiments with different sample 

sizes, the average recognition time of the 

research-designed model was 47.27% lower than the 

average. In summary, it can be concluded that the 

research design model is able to perform BMR 

recognition more accurately and quickly. However, the 

above study is based on the two-bit network, and further 

extraction should be carried out subsequently for the 

three-dimensional spatio-temporal features. The current 

research is based on a two-dimensional action recognition 

network, which can be extended to three-dimensional 

spatio-temporal feature extraction in the future to 

improve the recognition effect of complex actions. This 

model can be applied to basketball training and game 

analysis to accurately identify and analyze players' 

movements. It can also be combined with AI technology 

to help coaches develop personalized training plans. 
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