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Nowadays, shipping safety accidents occur frequently. Crew education and training can reduce 

shipping accidents to a certain extent. However, currently, there is no established method to investigate 

the specific relationship between crew education and training and shipping safety. To solve the 

problem, the study utilizes a genetic algorithm (GA) with strong global search capability and 

scalability to improve the low learning efficiency, slow convergence speed, and local optimal problems 

in the back propagation (BP) neural network, resulting in the genetic algorithm-back propagation 

(GA-BP) algorithm. The relevant indicators in crew education and training are input into the 

algorithm to predict the safety of shipping. The performance comparison experiments of GA-BP, 

particle swarm optimization-back propagation algorithm particle swarm optimization-back 

propagation (APSO-BP) algorithm and traditional BP neural network are carried out. The 

experimental outcomes showed that the hit rate of GA-BP was 90%, and its mean absolute error was 

0.00152, the mean square error was 0.00323, and maximum absolute percentage error was 5.3%, 

which were better than APSO-BP and traditional BP neural network. In addition, in the empirical 

analysis, the output outcomes of psychological quality and adaptability were 0.92 and 0.93, 

respectively. The above outcomes show that the optimized GA-BP has better predictive performance, 

and the specific effects of psychological quality and adaptability in crew education and training on the 

safety of shipping can be obtained. This method not only provides data support for the improvement of 

crew education and training methods, but also provides a new method for predicting shipping safety 

Povzetek: Opisan je vpliv sistema ocenjevanja kakovosti usposabljanja posadke, ki temelji na 

algoritmu GA-BP, na varnost v transportu. Rezultati kažejo, da GA-BP izboljša napovedno točnost z 

večjo natančnostjo in manjšimi napakami v primerjavi z drugimi metodami, kar prispeva k izboljšanju 

metod usposabljanja posadke in večji varnosti v pomorstvu.

1 Introduction 

With the frequent occurrence of ship losses and pollution 

accidents in the maritime field, the causes of accidents 

have attracted the attention of relevant organizations [1]. 

After investigation by relevant organizations, it was 

found that 80% of the accidents were caused by humans. 

Therefore, the quality of crew members has attracted 

widespread attention from the international community 

[2]. The quality of the crew depends largely on the 

education and training of the crew, so the quality of the 

education and training for crew members has a significant 

impact on shipping safety [3]. However, at present, there 

is a lack of quality evaluation models for crew education 

and training. Therefore, it is necessary to explore a model 

that can accurately evaluate the quality of crew education 

and training. With the rapid development of neural 

network, back propagation (BP) neural network is widely 

used in various fields [4]. However, the traditional BP 

network has slow convergence speed and low accuracy.  

 

The genetic algorithm (GA) can be used for BP neural 

network to solve slow convergence speed [5]. Therefore, 

the research combines BP and GA to form a GA-BP 

model, and applies the GA-BP model to shipping safety 

prediction. Through this model, the evaluation indicators 

of the quality of crew education and training are 

evaluated to predict the shipping safety, and improve the 

dilemma of lacking an evaluation system for the quality 

of crew education and training. It is expected to improve 

relevant indicators through prediction results to enhance 

shipping safety. 

2 Literature review 

In recent years, with the rapid development of BP neural 

network, its application in many fields is deepening. 

Aiming at the low container transportation efficiency, 

Zhu W et al. proposed a container inter-modal 

transportation evaluation model based on BP neural 

network. The experimental outcomes showed that the 
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evaluation effect of the model was accurate, which 

effectively improved the efficiency of container 

inter-modal transportation [6]. To solve the inaccurate 

digital currency risk prediction methods, Shao et al. 

proposed an investment risk model that combined 

information entropy and BP neural network. The model 

could change the weight to carry out weighted scoring of 

digital currency to increase the accuracy. The results 

showed that the model could accurately predict the 

development prospects of digital currency, effectively 

helping investors avoid investment risks [7]. Liu et al. 

designed a BP neural network model for thermal error 

calculation of five-axis machining centers. The 

relationship between radial error and axial error during 

five-axis machining was calculated. The prediction 

accuracy of the error was high, which was more effective 

in practical applications [8]. Aiming at the insufficient 

urban evaluation model, Xi et al. proposed a new model 

by combining BP neural network and analytic hierarchy 

process. The separation index of urban solid waste was 

established, which was applied to the classification and 

evaluation of urban domestic waste. The evaluation 

outcomes showed that the model could effectively predict 

the urban garbage classification ability in the actual 

environment, providing a new way for urban evaluation 

to improve related capabilities [9]. Zhou et al. proposed a 

BP neural network based on monotonic constraints to 

solve the difficulty in controlling the phosphorus content 

at the end of the dephosphorization converter. The model 

was empirically analyzed. Phosphorus content in algae 

provided a control aid [10]. 

In addition, there are more methods applied in the 

field of shipping safety. In order to improve the shipping 

safety, Zhou et al. proposed a USV decision support 

model to improve the accuracy of collision avoidance 

decisions. The empirical test of the model showed that 

the model judgment in the collision stage was accurate, 

and the ship could take direct and effective collision 

avoidance measures, which effectively improved the 

safety of shipping [11]. Nosov et al. proposed a model 

based on navigation decision tree principle to address the 

insufficient safety of maritime navigation. A new type of 

ship control system was developed based on the 

prediction results of the model. The test results showed 

that it reduced the probability of critical situations by 

18-54%, effectively reducing emergency risks [12]. To 

solve the new challenges related to navigation safety 

caused by the low maneuverability of ships and the 

increasingly dense maritime traffic, Shilov proposed an 

operation method aimed at designing a navigation safety 

recommendation system. The recommendation system 

operation method updated the feedback of the system 

knowledge base. By comparing the knowledge before and 

after, the security of navigation was effectively improved 

[13]. Hasanspahi et al. proposed a risk assessment matrix 

based on the grounding risk assessment combined with 

factors such as ship speed, hull quality, and loading 

conditions in order to solve the problem that oil tankers 

were easily grounded in narrow waterways and other 

specific navigation areas. The matrix could effectively 

evaluate the navigation safety of oil tankers in narrow 

waterways, which had important practical significance 

[14]. The results and limitations of the above research 

content are shown in Table 1. 

 

 

Table 1: Results and limitations of the research content 

Reference Methodology Model Application Key findings Limitation 

Zhu et al. [6] 
BP neural 

network 

Transport 

accurate 

evaluation 

model 

Container 

transport 

Improve the 

efficiency of 

container 

inter-modal 

transportation 

Limited to 

container 

shipping only 

Shao et al. [7] 

Joint information 

entropy and BP 

neural network 

Investment risk 

model 

Digital currency 

risk prediction 

Accurately predict 

the development 

prospects of digital 

currency 

There is 

greater 

uncertainty 

Liu et al. [8] 
BP neural 

network 

BP neural 

network model 

for thermal 

error 

calculation 

Five-axis 

machining 

center thermal 

error calculation 

Improve the 

accuracy of error 

prediction 

Weak 

anti-interferen

ce 

Xi et al. [9] 

BP neural 

network and 

hierarchical 

analysis 

Evaluation 

model of 

household 

waste 

classification 

Urban garbage 

classification 

evaluation 

Accurately predict 

the garbage 

classification ability 

of cities in the 

actual environment 

Large 

calculation 

time 

complexity 

Zhou et al. 

[10] 

Monotonically 

constrained, BP 

neural network 

Phosphorus 

content control 

model 

Control of 

phosphorus 

content in 

Accurate control of 

the phosphorus 

content 

Only for 

phosphorus 

content 
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dephosphorizati

on converter 

control 

Zhou et al. 

[11] 
USV 

Decision 

support model 

Shipping safety, 

collision 

avoidance 

Improve the 

shipping safety 

Information is 

difficult to 

obtain 

Nosov et al. 

[12] 

Navigation of the 

decision tree 

principle 

New ship 

control system 

Maritime 

navigation 

safety 

Effectively reduce 

the risk of 

emergency 

situations 

It's difficult to 

operate 

Shilov [13] 
Navigation 

security 

Safety 

recommended 

system 

operation 

method 

Navigation 

safety in dense 

maritime traffic 

Improve navigation 

safety 

Information 

overload 

Hasanspahi et 

al. [14] 

Stranded risk 

assessment 

Risk 

assessment 

matrix 

Navigation 

safety of oil 

tankers in 

narrow 

waterways 

Effectively assess 

navigation safety in 

narrow waterways 

Subjectivity 

and 

uncertainty 

 

The above research shows that BP neural network 

has been widely used in many fields. Methods applied to 

the field of shipping safety are also emerging one after 

another. However, the research on applying BP neural 

network algorithm to the field of shipping safety is still 

relatively lacking. Therefore, this study applies BP neural 

network to predict shipping safety risks, and improves the 

BP neural network through GA. Through a 

comprehensive evaluation, it is expected to help identify 

deficiencies in crew training and make improvements to 

improve shipping safety. 

 

3 Evaluation system of crew 

education and training quality 

based on BP neural network 

 

3.1 BP neural network and its improved 

algorithm 
With the in-depth understanding of neural network theory, 

more neural networks are applied in real life. Currently, 

BP neural network is one of the most successful and 

common neural networks [15]. Its structure is similar to a 

multi-layer perceptron, and its principle is to forward the 

input signal, and then adjust the weights by back 

propagating the error signal, thereby reducing the model 

error [16]. The main function of BP neural network is to 

classify samples and predict outcomes, etc. The 

traditional structure diagram of the BP neural network is 

shown in Figure 1 [17]. 
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Figure 1: Structure diagram of traditional BP neural network 

 

As shown in Figure 1, the structure is the traditional 

BP neural network. ( 1,2, , )nx n k=  is the input value, 

and ( 1,2, , )ny n k=  is the output value. 1kN −  denotes 

the number of nodes of the neurons. In the forward 

propagation of the neural network, each neuron will 

summarize the weighted information, and its expression 

is shown in equation (1). 

 

 
1

( 1) ( 1)
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kN
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j
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In equation (1), klnet  represents the k  aggregated 

weighted information of the ( 1)k jO − -th neuron in the 
j -th layer . l  represents the 1k −  output value of the 

1k − -th neuron in the k -th layer j . ( 1)k jlW −  is the 

connection weight from the j -th neuron in the j -th 

layer to the k -th neuron in the j -th layer. In the 

forward propagation, in addition to summarizing the 

weighted information, each neuron will also pass the 

summed information through the activation function and 

output, and its expression is shown in equation (2). 

 

 
1

( )
1 exp[ ( )]

kl s kl

kl kl
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In equation (2) kl  represents the k  threshold of 

the first neuron in the l -th layer. In the BP neural 

network, the mean square error is selected as the index to 

judge its performance. The algorithm back propagates the 

difference between the output outcome ly  and the 

expected output ld  to correct the weights of neurons in 

each layer. The expression of the objective function is 

shown in equation (3). 

 

 
21

( )
2

l l

l

E d y= −  (3) 

 

In equation (3) l ld y−  represents the difference 

between the output outcome and the expected output, that 

is, the back propagated error signal. The BP network uses 

the gradient descent method to correct the neuron weights, 

and its expression is shown in equation (4). 

 

 klj

klj

E
W

w



 = −


 (4) 

 

In equation (4),   represents the learning step size. 

kljW  indicates the weight correction between the j  

neuron and the k  neuron in the l  layer. The 

relationship kljW  between it and the neuron output is 

calculated using partial derivatives, and its specific 

expression is shown in equation (5). 

( 1) ( 1)

( 1)

k j k j

klj kj

klj k j klj klj

net netE E
W

w net w w
  

+ +

+

  
 = − = − =

   
 (5) 

In equation (5) kj  is the weight correction value 

between the 1k +  and j  neurons. 
( 1)

kj

k j

E

net


+


= −


. 

The first part of equation (5) is solved, and the solution 

process is shown in equation (6). 
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In equation (6) kN  represents the number of nodes 

of the k  neurons in the first layer. In the right side of 

equation (6), klO  represents the output value of the k  

neuron in the l  layer. Equation (7) can be obtained from 

equation (5) and (6). 

 

 klj kj kl

klj

E
W O

w
 


 = − = −


 (7) 

 

In equation (7), kj  is shown in equation (8). 
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In equation (8)
( 1)

( 1)

( 1)

'( )
k j

k j

k j

O
f net
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+

+

+


=


. The 

expression for derivation is shown in equation (9). 
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The calculation process shown in equation (10) can 

be obtained by equation (9). 
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When ( 1)k lO +  is a hidden layer node, the expression 

of 
( 1)k j

E

net +




 and kj  is shown in equation (11). 
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(11) 

When ( 1)k lO +  is an output layer node, the 

expression of 
( 1)k j

E

O +




 and kj  is shown in equation 

(12). 
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(12) 

Through the calculation, the weight adjustment 

equation of the algorithm can be obtained, as shown in 

equation (13). 

 

2

( 1) ( 1) ( 1) ( 1)

1

( ) (1 ) i+1 layer is the output layer

(1 ) ( )  i+1 layer is a hidden layer
k

j j j j kl

N
klj

k j k j k h k jh kl

h

d y y y O

W
O O w O



 
+

+ + + +

=

− −


 = 
−


 (13) 

 

Similarly, the threshold adjustment equation of the 

BP neural network can be obtained, as shown in equation 

(14). 
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Although the current BP neural network has 

extensive applications, it still has many shortcomings, 

such as long training time and easy to fall into local 

minima [18]. Therefore, the research uses GA to optimize 

the BP neural network. The GA can optimize the weights 

and thresholds of the BP network by using its strong 

search ability to increase its convergence speed and 

optimize its performance [19]. The optimization process 

of the GA is actually to iterate the individuals in the 

algorithm, judge the fitness of the individuals after 

iteration, and select the individual with the best fitness for 

output [20]. The specific process of the GA after 

optimization is shown in Figure 2. 
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Figure 2: The specific process diagram of the genetic algorithm 

 

In Figure 2, the first step is to initialize the 

population, generate different individuals, and then use 

the fitness function to judge the fitness of the individual 

to determine its adaptability to the environment. 

Individuals with better environmental fitness are selected 

to enter the next generation for iteration, so that the 

algorithm can gradually obtain the optimal solution in the 

iterative process. Individuals are selected from the 

population to perform crossover and mutation operations 

according to the corresponding probability to generate 

new individuals and enter the next generation. Finally, 

whether the output outcomes meet the requirements is 

determined. If they meet the requirements, the algorithm 

ends and the optimal individual is output. Otherwise, the 

process is returned to continue execution. The 

preprocessing method of the GA-BP is generally to 

normalize the data, and map the data to the [0,1] interval, 

thus increasing the convergence speed of the algorithm. 

The normalization is calculated, as described in equation 

(15). 

 ( min) / (max min)y x= − −  (15) 

 

In equation (15) x  indicates the input value. min  

indicates the minimum value in the input value. max  

indicates the maximum value in the input value. Equation 

(15) converts the data into intervals [0,1] to reduce the 

training time of the algorithm and improve its 

computational efficiency. The shipping safety is very 

important, which is of great practical significance to 

accurately predict its safety. The GA-BP algorithm 

obtained by optimizing the BP neural network through 

the GA has better prediction performance. Therefore, 

using the GA-BP to predict the shipping safety can 

improve the prediction accuracy. The specific prediction 

flowchart is shown in Figure 3. 
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Figure 3: Flowchart of GA-BP prediction algorithm 

 

As shown in Figure 3, the specific steps of the 

GA-BP prediction algorithm are as follows. Firstly, the 

structure of the neural network is determined in 

combination with the sample set in practical applications. 

Then the parameters of the BP are initialized by using the 

optimal individual code output by GA. The next step is to 
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calculate the output of each level of the neural network 

through the input samples, and compare the actual output 

outcomes with the expected output outcomes to obtain 

the error. The error is converted into an error signal and 

back propagated, with each neuron weighted and updated. 

Finally, it is judged whether the data input is completed. 

After the input is completed, whether the algorithm ends 

is judged. If the end condition is met, the algorithm ends. 

Otherwise, the output of each level is calculated from the 

input sample and the algorithm is restarted until the end 

condition is reached. The GA-BP can solve the problem 

that the training falls into the local minimum due to the 

large difference in initial values of the BP, greatly 

strengthening the performance of the BP, and better 

predicting the shipping safety. 

 

 

 

 

3.2 Construction of quality evaluation 
System for crew education and training 
In the crew education and training, there are many factors 

that affect the shipping safety more or less. To predict the 

shipping safety, it is necessary to build an evaluation 

index system for the education and training system of 

seafarers, that is, to analyze the training system and find a 

suitable index system to comprehensively evaluate it. On 

the basis of analyzing the factors that affect the overall 

security of the system, a scientific and reasonable 

evaluation system is established. For the composition of 

the system, it can be represented by equation (16). 

 

 ( , )S E R=  (16) 

 
Equation (16) S  represents the system. E  

represents the element set of the system. R  represents 

the relationship between the elements in the system. 

Evaluating the system from different perspectives will 

generate different evaluation indicators. In the research 

on the impact of the crew education and training system 

on shipping safety, the evaluation indicators for the 

impact of the crew education and training system on 

shipping safety are shown in Table 2. 

 

 

 

 

 

 

 

 
Table 2: Evaluation indicators for the impact of crew education and training systems on shipping safety 

Evaluation system Primary index Indicator code 
Indicator 

code 

Shipping safety evaluation 

system 

Crew factor 

Family environment background Z1 

education level Z2 

Psychological quality Z3 

Physical quality Z4 

Adaptability Z5 

Education and training 

institutions 

Meet the requirements of the competent 

authority 
Z6 

Teacher level Z7 

Condition of facilities and equipment Z8 

Training scale Z9 

Training cycle Z10 

Operation of quality system Z11 

market demand Z12 

Information integration processing Z13 

Crew entry standard settings Z14 

Shipping company 

Feedback of new ship technology Z15 

Demand for production safety Z16 

Crew management level Z17 

Competent authority 
Evaluation of crew training effect Z18 

Daily supervision service Z19 

 

From Table 2, the research selects evaluation 

indicators from four major directions: crew factors, 

education and training institutions, shipping companies, 

and competent authorities. Among the above evaluation 
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indicators, because the background factors of the crew 

have already occurred, it is difficult to change and plays 

an important part in crew training, so the study selects 

them as the evaluation indicators. The crew factors are 

further subdivided into five specific evaluation indicators: 

crew family environment, cultural level, psychological 

quality, physical quality, and adaptability. In addition to 

crew factors, another major category of evaluation 

indicators that has a significant impact on the training 

quality of the training system is education and training 

institutions. For education and training institutions, they 

are the main body of crew training, which play an 

important role in the crew training. The indicators of 

education and training institutions are mainly divided into 

nine aspects, namely meeting the objective requirements 

of the competent authority, the number of teachers for 

education and training, the condition of training 

equipment and facilities, training scale, training cycle, the  

 

operation of the training quality system, market demand, 

information integration and processing, and crew entry 

standard. The other two categories of evaluation 

indicators are shipping companies and competent 

authorities. Shipping company indicators are further 

subdivided into information feedback on new ship 

technologies, demand for production and safety, and 

internal management. These three evaluation indicators 

are mainly conducted on land. The indicators of the 

competent authority are divided into crew training effects 

and daily supervision services. These two evaluation 

indicators have the function of testing the outcomes and 

process of crew training. The effectiveness of crew 

training can be comprehensively evaluated through 19 

evaluation indicators. The training effect of crew 

members has a significant impact on shipping safety. 

Therefore, based on the 19 evaluation indexes, this study 

establishes a quality evaluation system model for crew 

safety education and training based on GA-BP. The 

transportation safety model based on GA-BP algorithm is 

shown in Figure 4. 
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Figure 4: Schematic diagram of GA-BP algorithm for predicting shipping safety 

 

As shown in Figure 4, GA is used to find the optimal 

individual sample in the sample set. Then the sample 

code is used to initialize the parameters of the BP neural 

network. The 19 evaluation indicators of the crew 

education and training system are input into the BP after 

parameter initialization. The positive and negative 

propagation of the BP neural network is used to adjust the 

weights and thresholds of each neuron until the algorithm 

is finally completed. By inputting 19 evaluation 

indicators from the crew education and training system to 

predict shipping safety, the impact of crew education and 

training quality on shipping safety can be determined. 

Because the 19 evaluation indicators of the crew 

education and training system can also evaluate the 

quality of crew education and training, the relationship 

between the quality of crew education and training and 

shipping safety can be analyzed. 

 

 

 

 

 

 

4 Algorithm performance 

comparison and model empirical 

analysis 
The parameters in the experiment are set as follows. The 

population size of the GA is set to 100. The number of 

iterations is set to 500. The crossover probability is set to 

0.5 and the variation probability is 0.005. The learning 

rate in the BP neural network is set to 0.005, and the 
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momentum coefficient is set to 0.7. The number of 

particles in the APSO algorithm is set to 10, and the 

number of iterations is set to 500. The potential depth is 

10, and the learning factor is 1 2 2C C= = . The spectrum 

width is 0.99. The data set in the experiment originated 

from the data set in the traveling salesman problem (TSP). 

In the performance analysis of the GA-BP, the research 

mainly analyzes the error curve, the prediction outcome 

and the comparison of the expected output. The research 

compares the performance of the GA-BP, tradition BP 

and the APSO-BP, and uses the same function to train the 

three algorithms. The number of iterations and the mean 

square error (MSE) are shown in Figure 5. 
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Figure 5: Iteration times and error curve 

 

Figure 5 (a) and Figure 5 (b) display the number of 

iterations and MSE of the two functions used by the BP, 

GA-BP, and APSO-BP algorithms. In Figure 5(a), among 

the three algorithms, GA-BP had the fastest convergence 

speed and reached a stable state when the number of 

iterations was 130. At this time, the MSE of the GA-BP 

algorithm was the lowest, which was 0.00323. The BP 

neural network had the lowest convergence speed and 

reached a stable state when the number of iterations was 

300. At this time, the MSE of the BP neural network was 

the highest, which was 0.00973. In Figure 5(b), the 

training times of the three algorithms were roughly 

consistent with the error curve. Among the three 

algorithms, the GA-BP algorithm had the fastest 

convergence speed and the lowest MSE after stabilization. 

There was still a gap between the MSE and the target 

value. Therefore, the performance of the algorithm can be 

optimized. The lower the MSE, the higher the accuracy of 

the algorithm. Therefore, from the MSE dimension, the 

performance of the GA-BP is best. This algorithm has 

higher accuracy in predicting data sets. The results show 

that the strong search ability of GA improves the weight 

and threshold of BP, improves convergence speed, and 

makes the MSE of GA-BP algorithm smaller than that of 

BP. In addition to MSE, the MAE and the maximum 

absolute percentage error (MAPE) can also be used as the 

index for assessing the performance of the algorithm. In 

the training of the three algorithms, the MAE and MAPE 

are shown in Figure 6. 
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Figure 6: MAE and MAPE curves 

 

Two sub-graphs in Figure 6 show the MAE and 

MAPE of the three algorithms during the training process, 

respectively. From Figure 6(a), the GA-BP had the fastest 

convergence speed among the three algorithms, and the 

MAE tended to be stable at 0.00152 when the iteration 

was 135. The convergence speed of the APSO-BP 

algorithm was second only to that of the GA-BP. For the 

APSO-BP, when the number of trainings was 180, the 

MAE tended to be stable, which was 0.00635. When the 

number of trainings was 250, the MAE tended to be 

stable, which was 0.00817. From Figure 6(b), the GA-BP 

algorithm had the fastest convergence speed among the 
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three algorithms. The MAPE tended to be stable at 4.8% 

when the training times were 135 times. The convergence 

speed of the APSO-BP was the second. For the GA-BP, 

when the training times were 210, the MAPE tended to be 

stable, at 5.3%. The BP neural network had the slowest 

convergence speed. When the training times were 310, 

the MAPE tended to be stable at 6.1%. The results show 

that the GA-BP algorithm can solve the local minimum 

value, thus reducing the MAE value and MAPE value of 

the BP. From the above outcomes, it can be concluded 

that among the three algorithms, the GA-BP algorithm 

has better performance than the other two algorithms, but 

its MAE and MAPE have not yet reached the target value, 

and further improvements are necessary. To further 

compare the errors of each algorithm, the three 

algorithms after training are applied to the same training 

samples. The comparison of the prediction errors is 

shown in Figure 7. 
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Figure 7: Prediction error of three algorithms 

 

Figure 7 shows the prediction errors of the three 

algorithms in the training samples. In Figure 7, GA-BP 

algorithm predicted 40 samples more accurately. It is a 

prediction hit when the prediction error was within±
0.015. Therefore, the hit rate of GA-BP algorithm was the 

highest among the three algorithms, which was 90%. The 

maximum error value of GA-BP algorithm was 0.019, 

which was lower than the maximum error value of 0.039 

for BP and 0.028 for APSO-BP. The GA-BP has the 

highest hit rate and the lowest maximum error value 

among the three algorithms. From the perspective of the 

prediction error dimension, the performance of the 

GA-BP is the best among the three algorithms. The 

results show that applying the scalability of GA can 

reduce the error value in BP neural network. To compare 

the actual performance of the three algorithms, in 

addition to applying the three algorithms to the training 

samples for prediction, they are also applied to the test 

samples for prediction. The predicted outcomes are 

compared with the expected outcomes. The predicted and 

expected outcomes are shown in Figure 8. 
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Figure 8: Predicted outcomes and expected outcomes of three algorithms 

 

Figure 8 (a) and (b) are the scatter plots of the 

prediction outcomes and expected outcomes of the three 

algorithms in training samples and testing samples. In 

Figure 8 (a), among the three algorithms, the prediction 

outcome of GA-BP algorithm was the closest to the 

expected outcome. The difference between the predicted 

outcomes and the expected outcomes of the GA-BP 

algorithm was relatively stable, which showed that the 

GA-BP algorithm had the best prediction performance in 

the training samples among the three algorithms. From 
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Figure 8 (b), the prediction effect of the GA-BP 

algorithm was the best in the testing samples, the 

APSO-BP algorithm was the second, and the BP was the 

worst. It shows that GA uses the objective function, 

thereby improving the prediction accuracy of the GA-BP. 

The GA-BP algorithm has the best prediction 

performance among the three algorithms in the testing 

sample. Summarizing the performance of the above three 

algorithms in PE, MSE, MAE, and MAPE, GA-BP 

algorithm has the best performance. Using this algorithm 

to evaluate the quality of crew training and teaching has 

higher accuracy, which can better predict the shipping 

safety. After the GA-BP model is completed, the model is 

empirically analyzed to find the factors that have the 

greatest impact on shipping safety among the factors 

affecting crew education and training. The model analysis 

outcomes are shown in Table 3. 

 

 
Table 3: Shipping safety assessment outcomes 

Primary index Indicator Code 
Indicator 

code 

Output 

outcomes 

Crew factor 

Family environment background Z1 0.85 

education level Z2 0.91 

Psychological quality Z3 0.92 

Physical quality Z4 0.90 

Adaptability Z5 0.93 

Education and 

training institutions 

Meet the requirements of the competent 

authority 
Z6 0.68 

Teacher level Z7 0.76 

Condition of facilities and equipment Z8 0.55 

Training scale Z9 0.91 

Training cycle Z10 0.93 

Operation of quality system Z11 0.75 

market demand Z12 0.63 

Information integration processing Z13 0.66 

Crew entry standard settings Z14 0.77 

Shipping company 

Feedback of new ship technology Z15 0.56 

Demand for production safety Z16 0.63 

Crew management level Z17 0.72 

Competent authority 
Evaluation of crew training effect Z18 0.48 

Daily supervision service Z19 0.53 

 

The scores of indicators Z2, Z3, Z4, Z5, Z9, and Z10 

were all above 0.90. It can be seen that these indicators 

are most relevant to shipping safety. In the subsequent 

crew education and training, more attention should be 

paid to these indicators. By strengthening these indicators, 

the overall quality of the crew is improved, thereby 

reducing shipping risks and improving shipping safety. 

5 Discussion 

This study conducted performance comparison 

experiments on GA-BP algorithm, BP, and APSO-BP 

algorithm. The experimental results showed that the MSE 

value of the GA-BP algorithm reached stable at 0.00323 

after 130 iterations, However, the MSE value of the BP 

neural network did not reach the stable value until the 

iterations were 300, and the value was the highest at 

0.00973 among the three algorithms. Due to the 

advantage of GA, the weights and thresholds in the neural 

network algorithm are adjusted and the convergence rate 

is optimized. The mean squared error value of GA-BP 

algorithm was less than that of BP. This result is similar 

to the study conducted by Wei et al. [21]. Later, the MAE, 

MAPE and error values of the three algorithms were 

compared. The results showed that the GA-BP algorithm 

converged the fastest, and the MAE, MAPE and 

maximum error value of the algorithm were 0.00152, 

4.8% and 0.019 respectively. The convergence rate of 

APSO-BP algorithm was less than that of GA-BP 

algorithm, and the MAE, MAPE and error value of this 

algorithm were 0.00635, 5.3% and 0.028, respectively. 

However, the BP showed the slowest convergence rate, 

and the maximum MAE, MAPE and error values were 

0.00817, 6.1% and 0.039, respectively. The reason for 

this result may be that the GA in GA-BP algorithm can 

solve the problem that the initial value difference of BP 

causes the local minimum value of training, thus reducing 

the MAE, MAPE, and error values of the algorithm. The 

result coincides with results conducted by Wang [22]. 

The study also compared the prediction results and 

expected results of the three algorithms in practical 

application. The comparison results showed that the 

difference between the predicted results and the expected 
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results was the smallest, followed by APSO-BP algorithm, 

while the BP had the largest difference between the 

expected results. The GA utilized objective function to 

reduce error factor, thus improving the prediction 

accuracy of GA-BP algorithm. This result is similar to the 

Zhang result, as shown in [23]. Finally, An empirical 

analysis was conducted on the education and training 

quality evaluation model based on the GA-BP algorithm. 

By scoring the indicators, the factors that have the 

greatest impact on crew education, training, and shipping 

safety are identified. The experimental results showed 

that the educational level, psychological quality, physical 

quality, adaptability, training scale and training cycle had 

the greatest influence on shipping safety. Therefore, the 

shipping safety can be improved by strengthening the 

training of the above indicators. This result is identical to 

that of the results cunducted by Nopas [24]. From the 

above results, it can be seen that the overall prediction 

performance of GA-BP algorithm is significantly better 

than other algorithms. The influence index of crew 

training quality on shipping safety can be accurately 

obtained through this algorithm. 

6 Conclusion 

With the increase of maritime business, more maritime 

accidents have occurred, and shipping safety has been 

widely concerned. There is a correlation between the 

shipping safety and the quality of crew education and 

training, but the relationship is not particularly clear. At 

present, there is also a lack of research on this issue. To 

solve the problem, the GA was used to adjust the 

parameters of the BP to obtain the optimized GA-BP 

algorithm. The relevant factors in the crew education and 

training were calculated by this algorithm, and the 

correlation between the GA-BP algorithm and the 

shipping safety was obtained. To test the performance of 

the GA-BP algorithm, it was compared with tradition BP 

and APSO-BP algorithm from multiple dimensions. The 

hit rate of GA-BP algorithm was 90%, the maximum 

error value was 0.019, the MAE was 0.00152, the MSE 

was 0.00323, and the MAPE was 4.8%, which were 

better than APSO-BP algorithm and BP. This outcome 

shows that the GA-BP has the best performance, which 

has higher accuracy in predicting samples. In addition, 

the study also conducted an empirical analysis for the 

model. The outcomes showed that the output outcomes of 

education level, psychological quality, physical quality, 

adaptability, training quality, and training cycle were 0.91, 

0.92, 0.90, 0.93, 0.91, and 0.93, respectively. The 

outcomes illustrate that these indicators in crew training 

that have the greatest impact on shipping safety. By 

improving these indicators, shipping safety can be 

improved. This study demonstrates that in actual crew 

training, the education level, physical quality, adaptability, 

and psychological quality of crew members should be 

improved, and educational institutions should pay 

attention to the quality and duration of training. By 

improving the comprehensive abilities of crew members, 

shipping safety can be improved. Although the GA-BP 

algorithm has high prediction accuracy, it is far from the 

expected goal. The follow-up research direction is to 

establish a neural network model more suitable for 

shipping safety prediction. 
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