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With the rapid development of the global shipping industry, the planning of ship rapid loading is of 

great significance to improve the transportation efficiency and reduce the cost. In order to enhance the 

efficacy of ship fast loading planning, the simulated annealing algorithm is employed subsequently to 

the genetic algorithm, crossover, and mutation operations. The solution generated by the genetic 

algorithm is regarded as the initial solution of the simulated annealing algorithm to develop a hybrid 

algorithm, which will then be applied to the ship fast loading planning model. The results showed that 

compared with the comparison algorithm, the loss value and prediction fitting coefficient of the 

optimized genetic algorithm were 0.003 and 0.9632, respectively, which were better than the 

comparison algorithm. In addition, in the empirical analysis of the proposed ship rapid loading 

planning model, it was found that the maximum planning satisfaction rate of this model was 87.2%, 

which was better than the comparison algorithm. Its planning time was 12.1 s, which was significantly 

lower than the 31.2s of genetic algorithm model and 27.6s of ant colony optimization model. The 

above results indicate that the optimized genetic algorithm has good planning performance in the ship 

rapid loading planning, and has a good application prospect. This study provides a new way to solve 

the optimization problem in the field of ship transportation 

Povzetek: Raziskava uporablja genetski algoritem in simulirano ohlajanje za optimizacijo načrtovanja 

hitrega nalaganja ladij, kar izboljša učinkovitost in zmanjša stroške prevoza.

1 Introduction 

The rapid loading planning of ships is a crucial part of the 

shipbuilding process. A reasonable sequence of hull 

section loading can improve manufacturing efficiency, 

reduce manufacturing costs, and ensure the structural 

stability and quality safety of the hull [1, 2]. However, 

due to the complexity and diversity of ship rapid loading 

planning, determining the optimal loading plan is often 

challenging [3]. In the research of ship rapid loading 

planning, traditional planning methods often face 

problems such as large search space, low solving 

efficiency, and unstable results [4, 5]. In response to these 

issues, the study proposes the use of Genetic Algorithm 

(GA) for optimizing the rapid loading planning scheme of 

ships. As an optimization algorithm, GA can simulate the 

process of evolution and find potential optimization 

solutions in large-scale search spaces. Therefore, it has 

been widely applied in optimization problems in multiple 

fields [6-8]. The research aims to improve the efficiency 

of solving ship rapid loading planning problems by 

optimizing GA, and provide an efficient and accurate 

decision support tool for shipping enterprises. The 

innovation of the research is to improve the encoding 

method of GA, optimize crossover and mutation 

operations, and design adaptive selection strategies to 

enhance the adaptability and feasibility of ship rapid 

loading planning schemes. The objective of this study is 

to develop an efficient and accurate tool for ship rapid  

 

loading planning and decision-making for ship 

manufacturing enterprises. This tool is expected to 

enhance the efficiency and quality of ship manufacturing, 

reduce manufacturing costs, and enhance the 

competitiveness and market share of enterprises. The first 

part of the study briefly describes scholars' exploration of 

the application of GA and ship manufacturing issues in 

recent years. The second part elaborates on the 

optimization of GA and the optimization of ship rapid 

loading planning based on optimization algorithms. The 

third part is the performance comparison of optimized 

GA and the application effect analysis of ship rapid 

loading planning scheme. The fourth part makes an 

in-depth analysis and comparison of the research results. 

The final part is to summarize the entire study. 

2 Related works 

With the rapid development of science and technology, 

GA, as an optimization algorithm, is increasingly used in 

various fields. Its unique optimization ideas and adaptive 

search capabilities enable GA to solve many practical 

problems, especially those with complex constraints and 

high-dimensional search spaces. Nasrabadi et al. lacked 

research literature on parameter analysis and optimization 

of output power density, and designed a model based on 

GA and neural network particle swarm algorithm. After 

comparative experiments, the results showed that using 

this model increased power density by 46% [9]. Pongen 
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et al. proposed an alloy theoretical density and 

experimental density prediction model based on GA grain 

refiner to address the issue of poor casting performance 

caused by density hysteresis in the aluminum alloy 

die-casting process. After empirical analysis, the results 

showed that the model was feasible [10]. The Owoyele 

team proposed a GA-based automatic active learning 

method to solve manual hyperparameter setting in 

computational fluid dynamics simulation technology 

based on machine learning proxy models. After 

comparative analysis, the results showed that this method 

can achieve better optimization results [11]. Ameer et al. 

proposed a hybrid GA-based setting and process planning 

constraint scheme to address the high cost of setting and 

process planning constraints in traditional reconfigurable 

manufacturing systems. After empirical analysis, the 

results showed that this scheme was practical and 

effective, improving economic benefits [12]. 

As science and economy develop, many high-tech 

applications have been made in shipbuilding. For 

example, Breuer proposed a new horizontal folding 

mechanism to address the issue of large widths of 

catamarans and trimarans leading to problems at docks. 

After simulation analysis, the results showed that this 

mechanism was simpler and more stable than many 

existing mechanisms [13]. Guan et al. proposed a 

simulation analysis method for engineering constrained 

assembly using an improved coherent point drift 

algorithm and Analytic Hierarchy Process (AHP) to 

address the issue of low assembly efficiency of ship 

blocks. After comparative analysis, results showed that 

this method reduced the workload of workers and 

improved the efficiency and quality of shipbuilding [14]. 

Li proposed a welding process based on friction stir 

welding to address the limitations of using metal inert gas 

welding technology in ship construction. After empirical 

analysis, the results showed that this welding process was 

effective for the connection of materials such as steel, 

titanium, lead, copper, and aluminum, among which the 

connection of aluminum was particularly advantageous 

[15]. The Vakil team proposed an energy management 

framework based on multiple decision criteria to improve 

energy efficiency in the shipbuilding industry, and 

applied the framework to practical cases for research. The 

results showed that the framework can effectively 

improve energy efficiency while improving the 

productivity and profitability of shipyards [16]. 

Table 1 is a research summary table organized 

according to relevant research content. 

 

 
Table 1: Summary of relevant studies 

Author Year of publication Method Application field Key result 

Nasrabadi and 

Moghimi [9] 
2022 

Model based on GA 

and neural network 

particle swarm 

algorithm 

Output power 

density optimization 

Power density 

increased by 46% 

Pongen et al. [10] 2022 
Prediction model 

based on GA 

Aluminum alloy die 

casting process 
The model is feasible 

Owoyele et al. [11] 2022 

Automatic active 

learning method 

based on GA 

Computational fluid 

dynamics simulation 

techniques 

Get better 

optimization results 

Ameer and Dahane 

[12] 
2023 

Hybrid GA-based 

setup and process 

planning 

Reconfigurable 

manufacturing 

system 

The scheme is 

practical and 

effective to improve 

economic benefit 

Breuer [13] 2021 
Horizontal folding 

mechanism 
berth 

The technical 

structure is simpler 

and more stable 

Guan et al. [14] 2021 

Improved coherent 

point drift algorithm 

and analytic 

hierarchy process 

Hull assembly 

efficiency 

Improve the 

efficiency and 

quality of 

shipbuilding 

Li [15] 2022 

Welding process 

based on friction stir 

welding 

Ship welding 

technology 

It is effective for the 

connection of 

various materials, 

especially for the 

connection of 

aluminum 

Vakil et al. [16] 2022 

Energy management 

framework based on 

multi-decision 

Energy efficiency in 

shipbuilding 

Effectively improve 

energy efficiency, 

productivity and 
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criteria profitability 

 

 

As illustrated in Table 1, although GA has been 

demonstrated to possess optimization capabilities in a 

multitude of fields, its application in the context of ship 

fast loading remains relatively scarce. Currently, there is 

a paucity of research on the utilization of GA in the field 

of ship rapid loading planning. This study aims to address 

this gap and introduce a novel optimization method for 

the ship manufacturing industry. As evidenced by Table 1, 

there is scope for enhancement in the conventional ship 

carrying approach. The application of GA can facilitate 

the identification of more efficient loading schemes, 

thereby enhancing the speed and quality of ship 

construction. In addition, the effect of the existing GA 

application in ship loading is general, and the loading 

efficiency needs to be improved. The SA-GA hybrid 

algorithm proposed in this study demonstrates the 

potential to enhance the planning efficacy of the GA, 

thereby optimizing the efficiency of ship loading 

operations. This approach may serve as a valuable 

reference for other industries. 

 

3 Ship rapid loading planning based 

on optimized GA 
Ship rapid loading and unloading planning refers to the 

process of optimizing the loading sequence and location 

of ship cargo during ship loading and unloading 

operations, in order to maximize loading and unloading 

efficiency and reduce operation time. In order to facilitate 

more efficient planning of rapid loading of ships, an 

optimization GA integrating a simulated annealing 

algorithm is proposed in this chapter. The optimization 

GA is then applied to the planning process of rapid 

loading of ships. 

 

3.1 Optimized GA based on simulated 

annealing algorithm 
The optimization problem of ship rapid loading planning 

is a complex and challenging problem, which involves 

the optimization of multiple factors and constraints [17]. 

Due to its advantages such as global search ability, 

parallel computing ability, and wide applicability, GA 

can be applied to the optimization problem of ship rapid 

loading planning [18]. GA draws on Darwin's natural 

selection and genetic crossover and mutation principles to 

solve optimization problems. This algorithm simulates 

the natural evolution process and evolves through a 

population approach. In each iteration, individuals are 

evaluated based on the fitness function, and excellent 

individuals are selected for crossover and mutation to 

generate new individuals [19]. The basic process of GA is 

shown in Figure 1. 
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Figure 1: Flow chart of GA 

 

 

In Figure 1, the operation process of GA mainly 

includes encoding, design of fitness functions, selection, 

crossover, mutation, and other operations. In the 

encoding operation, the binary encoding method is 

chosen for this study, and the encoding expression is 

shown in equation (1). 
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In equation (1), maxT  represents the maximum 

parameter value. minT  represents the minimum 

parameter value. m  represents the encoding length. The 

calculation for encoding accuracy at this time is shown in 

equation (2). 

 max min

2 1m

T T−
 =

−
 (2) 

In the process of designing the fitness function, 

when optimizing the objective function ( )f x  to solve 

the maximum problem, the fitness function ( ( ))fit f x  is 

shown in equation (3). 

 
max

1
( ( ))

( )
fit f x

c f x
=

−
 (3) 

In equation (3), maxc  represents the maximum value 

of the objective function. When optimizing the objective 

function ( )f x  to solve the minimum problem, the 

fitness function ( ( ))fit f x  is shown in equation (4). 

 
min

1
( ( ))

( )
fit f x

f x c
=

−
 (4) 

In equation (4), minc  represents the minimum value 

of the objective function. During the selection process, 

the fitness function generates fitness values ( )if x  for 

each individual, with 1,2, ,i n=  representing the 

population size. Then the sum F  of all individual 

fitness values is calculated using equation (5). 

 
1

( )
n

i

i

F f x
=

=  (5) 

Then the selection probability and cumulative 

probability are calculated for each chromosome using 

equation (6). 
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In equation (6), 1,2, ,j d= . d  represents the 

number of iterations. After selection, a uniform crossover 

operation is performed on the parent individuals to 

generate new individuals through the combination of 

genes. Afterwards, a mutation operation is performed on 

the new individual, introducing randomness in a 

non-uniform manner to increase population diversity. The 

'mx  value rules for the mutation positions mx  after 

non-uniform mutation are shown in equation (7). 

max

min

Δ( , ), (0,1) 0
'

Δ( , ), (0,1) 1

m

m m

m m

m m

x t x λ random
x

x t λ x random

 + − =
= 

− − =
 (7) 

In equation (7), min

mx  represents the minimum gene 

value at the mutation position mx . max

mx  represents the 

maximum gene value at the mutation position mx . mλ  

is a random number in min max[ , ]m mx x . Although GA has a 

wide search range and the advantages of adaptability and 

self-learning, in practical applications, due to its 

probabilistic operation and uncertain search direction, it 

is easy to fall into local optimal solutions. The Simulated 

Annealing algorithm (SA) has good local optimization 

ability, but is poor in global optimization [20]. Therefore, 

combining SA and GA can avoid the shortcomings of 

both algorithms. SA is an optimization algorithm based 

on the principle of solid annealing, whose basic idea is to 

simulate the annealing process of solid heating followed 

by gradual cooling. Figure 2 depicts the analogy between 

SA and the solid annealing process. 
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Figure 2: Analog relationship between simulated annealing algorithm and solid annealing process 
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At the beginning of SA, an initial solution is 

randomly selected and its corresponding objective value 

is calculated through the objective function. Then, the 

algorithm will randomly generate new solutions within 

the neighborhood of the current solution and calculate the 

corresponding target value. The neighborhood generation 

is shown in equation (8). 

 new currentx x ε= +  (8) 

In equation (8), currentx  represents the current 

solution. newx  indicates a new solution. ε  represents a 

small random disturbance. The new solution is accepted 

as the current solution if its target value is better. 

Otherwise, the new solution is accepted with a certain 

probability, which is usually related to the difference in 

target values and temperature. This criterion is called the 

Metropolis acceptance criterion, and its expression is 

shown in equation (9). 

 
( )

( ) min1,
( )

new

current

f x
P accept

f x
=  (9) 

In equation (9), ( )newf x  and ( )currentf x  represent 

the objective function values of the new solution and the 

current solution, respectively. As the algorithm iterates, 

the temperature will gradually decrease, and the 

probability of accepting a worse solution will also 

gradually decrease until the temperature drops to the 

preset minimum value and the algorithm terminates. In 

SAs, the temperature gradually decreases as iteration 

increases. The temperature update is shown in equation 

(10). 

 new currentT αT=  (10) 

In equation (10), currentT  represents the current 

temperature. α  is the cooling coefficient. The advantage 

of SA is that it can avoid falling into local optima and 

have the opportunity to find global optima. At the same 

time, it has little dependence on the initial solution and 

has a certain degree of robustness. The SA-GA hybrid 

algorithm proposed in this study mainly follows the 

genetic, crossover, and mutation operations of GA, 

followed by the SA algorithm. Treat the solution 

generated by GA as the initial solution in SA, and then 

perturb to generate a new solution. If the objective 

function of the new solution is better, the current solution 

is replaced. Firstly, the initial temperature, termination 

temperature, and number of internal loop iterations of the 

SA algorithm are set based on the set parameters, and the 

current individual of GA is used as SA's initial solution, 

then the internal loop of the SA algorithm is started. The 

increment of its objective function and objective function 

is calculated. The objective function increment is 

calculated in equation (3). 

 ( ') ( )f f f  = −  (11) 

In equation (11),   represents the initial solution. 

'  indicates possible planning options. ( ')f   

represents the objective function of possible planning 

solutions. ( )f   represents the objective function of the 

initial solution. The SA-GA basic process is shown 

below. 
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Figure 3: Flowchart of SA-GA 

 

Figure 3 shows the running flowchart of the SA-GA. 

If the increment of the objective function is less than 0, 

the current solution is updated to a new solution, 

otherwise the current solution is accepted as a new 

solution according to Metropolis probability. The above 

operation is repeated until the number of inner loop 

iterations is met. After exiting the inner loop, whether the 

outer loop termination condition is met is determined. If 

not, it is cooled down to update the external circulation 

temperature, the new temperature is the product of the 

current temperature and annealing rate, and then the 

internal circulation is restarted. If the outer loop 

termination condition is met, the search is terminated. 

Finally, it is determined whether the current iteration 

count of GA reaches the set maximum iteration value. If 

so, the overall solution process will end and the optimal 

solution will be output. If it is not reached, iteration is 

continued from the selection operation. 
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3.2 Ship rapid loading planning optimization 

based on optimized GA 
Ship rapid loading planning refers to the efficient and 

reasonable planning and optimization of the cargo 

loading process of a ship. The goal is to ensure that ships 

complete the loading and unloading of goods safely and 

efficiently in the shortest possible time, thereby 

improving the efficiency and economic benefits of the 

entire shipping process. Ship rapid loading planning 

involves the efficiency and economy of ship 

transportation. When carrying out ship rapid loading 

planning, multiple factors need to be comprehensively 

considered to ensure the safety of navigation, the integrity 

of goods, and the efficiency of transportation. The 

important factors affecting the rapid loading planning of 

ships are shown in Figure 4. 
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Figure 4: Important factors affecting the planning of rapid loading of ships 

 

As shown in Figure 4, the most important 

influencing factors in ship rapid loading planning mainly 

include ship stability, ship load capacity, cargo 

characteristics, and destination requirements. The 

stability of ships is a factor that cannot be ignored in 

loading planning. By reasonably arranging the loading 

position and weight distribution of goods, the stability of 

the ship during navigation can be ensured. The ship 

stability is shown in equation (12). 

 
( )i i

i

z
GM






=



 (12) 

In equation (12), GM  represents the initial 

metacentric height of the ship. i  indicates the weight 

of the i  cargo or equipment. iz  represents the vertical 

coordinate of the i  cargo or equipment. Its application 

can help planners calculate the initial metacentric height 

of ships, judge their stability under different loading 

conditions, and take corresponding adjustment measures. 

Secondly, the load-bearing capacity of ships is also an 

important constraint in loading planning. To ensure the 

safety of navigation, the total loaded weight of a ship 

cannot exceed its deadweight tonnage. By making 

reasonable use of the ship's load-bearing capacity, the 

loading capacity of goods can be maximized and 

transportation efficiency can be improved. The ship load 

capacity is shown in equation (13). 

 i DWT   (13) 

In equation (13), i  represents the total weight 

of all goods and equipment. DWT  represents the 

deadweight tonnage of a ship. Its application can help 

planners monitor the total weight during the loading 

process, avoid overloading, and ensure that ships are 

transported within legal and compliant limits. In addition, 

rapid loading planning also needs to consider the 

characteristics of the goods and the requirements of the 

destination. Different goods have different sizes, weights, 

and transportation requirements, and need to be 

reasonably arranged in the loading plan. At the same time, 

according to the needs of the destination and the 

limitations of transportation time, suitable loading plans 

and routes can be selected to provide efficient and 

reliable transportation services. A comprehensive 

consideration of factors such as ship stability, load 

capacity, and cargo characteristics allows for the 

development of a fast, efficient, and safe loading plan. 

This will help improve the transportation efficiency of 

ships, reduce transportation costs, and ensure that goods 

arrive at their destination safely and on time. In order to 

better optimize ship rapid loading planning, the SA-GA is 

applied to it. The optimization process of ship rapid 

loading planning based on SA-GA is shown below. 
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Figure 5: Optimization process of ship rapid loading planning based on SA-GA 

 

From Figure 5, the optimization process for ship 

rapid loading planning based on SA-GA includes eight 

steps. The first step is to clarify the objective function and 

constraint conditions for ship loading planning. Then 

initialize the parameters, which mainly include the 

population size, crossover probability, mutation 

probability of GA, as well as the initial temperature and 

cooling coefficient of SA. The third step is to generate an 

initial population using GA. Each individual represents a 

ship loading plan. Then, the fitness function evaluates the 

fitness of each individual in the population. The fifth step 

is to use GA for selection, crossover, and mutation 

operations. The sixth step is to generate a new solution 

using SA and determine whether to accept it. After that, it 

is determined whether the termination conditions have 

been met. If the termination conditions have been met, 

the optimal ship carrying plan is output. If the termination 

conditions have not been met, the evaluation of 

population fitness is restarted until the termination 

conditions are met. This process combines the GA's 

global search ability with the SA's avoidance of local 

optima feature, aiming to more effectively solve the 

problem of ship rapid loading planning. Through this 

optimized ship rapid loading planning process, not only 

can the loading efficiency be improved, but also 

navigation safety can be ensured, achieving maximum 

economic benefits. In practical operation, the fitness 

function can be used to further improve the optimization 

effect, and the fitness expression is shown in equation 

(14). 

 1 2 3Fitness w M w W w Z=  +  +   (14) 

In equation (14), M  represents the objective 

function value. W  represents stability indicators. Z  

represents the load capacity indicator. 1w , 2w , and 3w  

represent the weights of M , W , and Z , respectively. 

This fitness function comprehensively considers the 

weighted sum of objective function values, stability 

indicators, and load-bearing capacity indicators, used to 

comprehensively evaluate the advantages and 

disadvantages of ship loading schemes. 

 

4 Performance comparison of 

improved algorithms and analysis 

of optimization scheme effects 
The study utilized SA to improve GA and constructed a 

corresponding ship rapid loading planning model. To 

verify the superiority of SA-GA, this chapter not only 

compared it with the comparative algorithm through 

simulation analysis, but also applied it to practical 

scenarios of ship rapid loading, and verified its practical 

application effect. 

 

4.1 Performance comparison results analysis 

of optimized GA 
Firstly, the performance of the proposed SA-GA was 

verified. The experiment was conducted in MATLAB 

and simulated by Simulink. The environment settings are 

shown below. 

 

 

 
Table 2: Environment settings 

Parameter variables Parameter selection 

Overall implementation platform Simulink 

Operating system Windows11 

Operating environment MATLAB 

PC side memory 8G 

CPU main frequency 3.00Hz 

Global procurement unit GTX-1650 

Central Processing Unit i7 7820X 

Data regression analysis system SPSS26.0 
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This study selected the Traveling Salesman Problem 

(TSP) dataset as the comparative experimental dataset. 

The TSP dataset was constructed based on TSP, and the 

definition of TSP problem was to find the shortest path to 

access each city and return to the origin given the 

distance between a set of cities and each pair of cities. In 

the TSP dataset, the true values of each edge were 

determined by the TSP path provided by the Concord 

solver, and the TSP dataset used this time contains 5000 

pieces of data. SA-GA combined the global search of GA 

and the local fine search of SA. In the SA part, the initial 

temperature was set to 1000, the temperature drop rate 

was set to 0.95, and the termination temperature was set 

to 1 to improve the ability of the algorithm to jump out of 

the local optimum. The population size was set to 100, 

the crossover rate to 0.7, and the variation rate to 0.01 in 

GA. The roulette selection method was used, with the 

termination condition of reaching 500 generations or 

meeting the preset accuracy. The selection of the above 

parameters was aimed at balancing search diversity and 

computational efficiency, ensuring that the algorithm 

performs sufficient search in the global domain and 

gradually focuses on the better solution, so as to 

accurately compare the performance of the three 

algorithms in solving the TSP. Firstly, the effectiveness 

of the improved algorithm was tested, with the shortest 

path as the optimization objective. The convergence 

curve of the SA-GA was obtained, and compared with 

GA and Wolf Pack Algorithm (WPA) algorithms, as 

shown in Figure 6. 
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Figure 6: Convergence curves of the three algorithms under the shortest path goal 

 

In Figure 6, the shortest path of the SA-GA after 

algorithm iteration was 104km. The shortest path after 

WPA algorithm iteration was 112km, and the shortest 

path after GA iteration was 118km. This result indicated 

that after multiple iterations of stable performance, the 

optimization performance of SA-GA was superior to 

WPA algorithm and GA. Subsequently, to further 

compare and analyze SA-GA's performance, comparative 

experiments were conducted with Ant Colony 

Optimization (ACO), Differential Evolution Algorithm 

(DE), and Particle Swarm Optimization (PSO). The TSP 

dataset was also used, and the loss results and fitting 

between the evaluation results and the actual results of 

the four algorithms are shown in Figure 7. 
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Figure 7: Loss results and fitting results of different algorithms 
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From Figure 7 (a), the loss curves of all four 

algorithms showed a decreasing trend as iteration 

increases, but the overall loss results of the loss curves of 

ACO, DE, and PSO were greater than those of the 

SA-GA proposed in the study. The SA-GA only exhibited 

small microwave fluctuations when the number of 

iterations was less than 1000, but gradually approached a 

loss value of 0.003 in the later stage, while the loss values 

of PSO algorithm, DE algorithm, and ACO algorithm 

were 0.005, 0.005, and 0.010. In Figure 7 (b), the 

predicted and measured values of the SA-GA for data 

evaluation were closer to the fitting curve, with a 

coefficient of 0.9632, which was greater than the 0.8821, 

0.8632, and 0.8532 of PSO, DE, and ACO. The above 

results indicated that the SA-GA exhibited relatively 

stable performance. In addition, the study also compared 

the error and accuracy of four algorithms, as shown in 

Figure 8. 
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Figure 8: Comparison results of error and accuracy of the four algorithms 

 

In Figure 8 (a), the errors of all four algorithms 

decreased with the increase of iteration times, with the 

lowest stable error value of SA-GA being 0.002, which 

was lower than 0.003 for DE, 0.004 for PSO, and 0.005 

for ACO. As shown in Figure 8 (b), the accuracy of all 

four algorithms increased with the number of iterations, 

with the highest accuracy of SA-GA being 0.96, which 

was higher than DE's 0.91, PSO's 0.88, and ACO's 0.94. 

The above results indicated that from the dimensions of 

error and accuracy, the performance of the SA-GA 

proposed in the study was superior to similar algorithms. 

To comprehensively analyze the robustness of SA-GA, 

the other five benchmark algorithms, GA, WPA, ACO, 

DE and PSO, were compared in detail. Performance 

comparison indexes were primarily comprised of average 

computing time, standard deviation, sensitivity change, 

and statistical significance. The specific comparison 

results are presented in Table 3. 

 

 

 
Table 3: Specific comparison results of indicators of different algorithms 

Type of 

algorithm 

Average 

calculation time 

(s) 

Standard 

deviation 

Performance 

change at +10% 

parameter (%) 

Parameter -10% 

performance change 

(%) 

P value 

compared to 

SA-GA 

SA-GA 60.5 0.0005 +0.5 -0.4 / 

GA 72.3 0.0008 +1.2 -1.0 0.030 

WPA 68.9 0.0007 +0.9 -0.8 0.015 

ACO 65.2 0.0009 +1.5 -1.3 0.012 

DE 62.8 0.0006 +1.0 -0.9 0.025 

PSO 64.1 0.0010 +1.7 -1.4 0.005 
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In Table 3, the average calculation time of SA-GA 

was relatively short, which was 60.5 seconds. The 

standard deviation was the smallest, which was only 

0.0005, indicating its stable performance. In the 

sensitivity analysis with the parameter variation of ±
10%, the performance of SA-GA changed the least, 

showing strong robustness. In addition, the performance 

indexes of SA-GA and five benchmark algorithms were 

tested by t statistics. It was concluded that the P-value of 

all algorithms is less than 0.05, which indicates that the 

performance indexes of SA-GA are significantly 

improved compared with other benchmark algorithms. 

 

 

 

 

 

4.2 Actual planning effect analysis of 

optimizing GA 
After verifying the superiority of the SA-GA, in order to 

analyze its practical application effect in ship rapid 

loading planning, the study applied it, along with the GA 

and ACO algorithm, to four different scenarios of ship 

rapid loading planning. Scenario 1 was an emergency 

evacuation scenario. Scenario 2 was a military action 

scenario. Scenario 3 was the departure of a luxury cruise 

ship. Scenario 4 was the scene of a scientific research 

investigation ship going to sea. The actual planning 

effectiveness of three algorithms was compared by their 

planning satisfaction rate, planning time, and expert 

ratings in four different scenarios. Figure 9 shows the 

planning satisfaction comparison results. 
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Figure 9: Planning satisfaction rate of three algorithms in four different scenarios 

 

Figure 9 (a) shows the planning satisfaction results 

of the SA-GA in four different scenarios. As shown in 

Figure 9 (a), when the number of people was 700, the 

minimum and maximum planning satisfaction rates of the 

SA-GA in four scenarios were 82.3% and 87.2%, 

respectively. Figure 9 (b) shows the planning satisfaction 

results of the GA in four different scenarios. As shown in 

Figure 9 (b), when the number of people was 700, the 

minimum and maximum planning satisfaction rates of the 

GA in four scenarios were 71.1% and 79.0%, respectively. 

Figure 9 (c) shows the planning satisfaction results of the 

ACO algorithm in four different scenarios. As shown in 

Figure 9 (c), when the number of people was 700, the 

minimum and maximum planning satisfaction rates of the 

ACO algorithm in four scenarios were 77.5% and 79.8%, 

respectively. This indicated that SA-GA had good 

planning performance in different scenarios of ship rapid 

loading planning. The planning time results of the three 

algorithms in the first three scenarios are shown in Table 

4. 
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Table 4: Planning time of the three algorithms in different scenarios (s) 

Carrying capacity 100 200 300 400 500 600 700 

SA-GA 

Scenario 1 

8.3 9.1 9.8 10.4 11.0 11.6 12.1 

GA 15.2 17.1 19.5 22.2 25.3 28.6 31.2 

ACO 13.5 15.8 18.1 20.3 22.8 25.1 27.6 

SA-GA 

Scenario 2 

8.5 9.3 10.5 10.9 11.5 12.3 12.9 

GA 15.8 17.5 19.6 22.4 25.5 28.9 31.8 

ACO 13.9 16.1 18.8 21.5 23.7 25.8 27.9 

SA-GA 

Scenario 3 

8.6 9.1 9.8 10.4 11.0 11.6 12.1 

GA 15.2 17.1 19.5 22.2 25.3 28.6 31.2 

ACO 13.5 15.8 18.1 20.3 22.8 25.1 27.6 

 

From Table 4, in Scenario 1, when the number of 

passengers was 700, the planning time of the SA-GA was 

12.1 seconds, significantly lower than the 31.2 seconds of 

the GA and the 27.6 seconds of the ACO algorithm. In 

Scenario 2 and Scenario 3, the planning time of the 

SA-GA was also significantly better than the other two 

comparative algorithms. In planning time dimension, the 

performance of SA-GA was also better than that of the 

comparison algorithm. Finally, the actual application  

 

effects of the three algorithms were compared through 

relevant expert scoring methods. The scoring results of 

the two algorithms are shown in Figure 10. The study 

selected 100 relevant experts and randomly divided them 

into 4 groups. The overall rating of the algorithm was 

based on the expert group's overall rating, with a 

maximum score of 100 points. Higher score meant higher 

evaluation. 
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Figure 10: Expert rating results 

 

In Figure 10, the relevant experts rated the practical 

application effectiveness of the SA-GA above 90 points, 

with an average score of 92.3 points, significantly higher 

than the 83.5 points of the GA and the 87.2 points of the 

ACO algorithm. This result indicated that from the 

perspective of expert evaluation, the performance of the 

SA-GA proposed in the study as better. Based on the 

comparison of the above dimensions, it could be found 

that the SA-GA had good performance in practical 

applications of ship rapid loading planning. Therefore, its 

application in practice could promote the development of 

the ship loading field. In order to further strengthen the 

influence of the research, the model was applied to the 

SA-GA in the rapid ship loading planning of a large port. 

Table 5 shows the application effect of the SA-GA in the 

rapid ship loading planning of a large port. 
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Table 5: Application effect of SA-GA in fast ship loading planning of a large port 

Index Traditional method The SA-GA 

Loading efficiency (ship/day) 20 25 

Operating cost (10,000 

yuan/month) 
300 250 

Planning time (hours) 10 8 

Error rate (%) 5 2 

 

In Table 5, compared with the traditional method, 

the SA-GA significantly improved the loading efficiency, 

reduces the operating cost, shorters the planning time and 

reduces the error rate in the rapid loading planning of 

ships. Among them, the carrying efficiency was increased 

from 20 vessels/day to 25 vessels/day, the operating cost 

was reduced from 3 million yuan to 2.5 million yuan, and 

the planning time was shortened from 10 hours to 8 hours. 

The above data further verified the effectiveness and 

superiority of the SA-GA in practical application. 

5 Discussion 

The experimental results indicated that the SA-GA has 

the advantage in solving the problem of ship rapid 

loading planning. Compared with traditional GA and 

other advanced optimization methods, the SA-GA 

showed significant improvement in convergence speed, 

accuracy and computational efficiency. First, in terms of 

convergence speed, SA-GA achieved faster convergence 

by combining the local search capability of SA and the 

global search capability of GA. Experimental results 

showed that the SA-GA reaches the shortest path in 183 

iterations, which is significantly lower than 377 iterations 

of WPA and 415 iterations of GA. Its convergence speed 

was significantly better than that of traditional GA and 

contrast algorithms. This result was similar to the 

conclusion obtained by Zhang and Deng in the study of 

SA-GA [21]. The primary reason for the rapid 

convergence of the SA-GA is the incorporation of the 

Metropolis criterion within the SA algorithm. This 

criterion enables the algorithm to accept suboptimal 

solutions with a certain probability, thereby preventing 

the algorithm from becoming trapped in local optima and 

accelerating the search for global optima. 

Secondly, in terms of accuracy, SA-GA also showed 

excellent performance. Through comparative experiments, 

it was found that the loss value of SA-GA when solving 

TSP problem is 0.003, which is significantly lower than 

that of PSO algorithm 0.005, DE algorithm 0.005 and 

ACO algorithm 0.010. This result was coincided with the 

research result of Qiu team in 2022 [22]. The above 

results demonstrated that the SA-GA can explore the 

solution space more effectively and find the solution 

closer to the global optimal. The outcome is mainly 

attributable to the fact that the SA-GA integrates the 

precision of the SA algorithm with the comprehensive 

search capability of the GA. Finally, in terms of 

computational efficiency, SA-GA also showed significant 

advantages. The experimental results indicated that the  

 

planning time of SA-GA is 12.1s, which is significantly 

lower than 31.2s of GA and 27.6s of ACO algorithm. The 

findings indicated that the SA-GA can facilitate the 

development of optimization schemes with greater 

efficiency, thereby enhancing the efficacy and 

responsiveness of decision-making processes. 

In summary, the proposed SA-GA is superior to 

traditional GA and other advanced optimization methods 

in terms of convergence speed, accuracy and 

computational efficiency. This innovative solution 

provides a new contribution to the field of rapid ship 

loading planning and is expected to drive further 

development in this field. 

6 Conclusion 

With the continuous growth of global trade and the 

increasingly tight supply chain, the shipping industry is 

facing enormous pressure and challenges. In order to 

improve transportation efficiency and reduce costs, ship 

rapid loading planning has become a research hotspot in 

this field. However, the planning effectiveness of ship 

rapid loading planning is currently poor. To address this 

issue, a SA-GA hybrid algorithm that combines SA 

advantages and GA advantages has been proposed. Based 

on this algorithm, a ship rapid loading planning model 

has been proposed to improve the planning effectiveness. 

In algorithm comparison, it was found that the stability 

error value of SA-GA was 0.002, which was lower than 

0.003 of DE, 0.004 of PSO, and 0.005 of ACO. In 

addition, it was found that the accuracy of SA-GA was 

0.96, which was higher than DE's 0.91, PSO's 0.88, and 

ACO's 0.94. Afterwards, it was noted through expert 

evaluation of the algorithm's actual application 

performance that the average score of the SA-GA's actual 

application performance was 92.3 points, significantly 

higher than the 83.5 points of the GA and the 87.2 points 

of the ACO algorithm. This indicates that the SA-GA has 

good performance in practical applications of ship rapid 

loading planning. However, although the SA-GA is 

excellent in several aspects, there are some potential 

limitations. For instance, the efficacy of the algorithm is 

susceptible to alterations in the parameter settings, with 

disparate parameter combinations potentially yielding 

unstable outcomes. Moreover, the computational 

complexity of the SA-GA is likely to intensify in the 

context of ultra-large-scale ship loading, which could 

compromise its efficiency. Consequently, future research 

may wish to investigate avenues for optimizing the 

parameter configuration of the algorithm, with a view to 
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enhancing its stability and adaptability. In addition, the 

development of parallel computing or distributed 

computing technologies should be considered to address 

the challenges posed by very large-scale ship carrying 

problems. 
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