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The development of the maritime transportation industry has led to more frequent use of large ships, 

but they are affected significantly by wave making resistance during navigation. In order to improve 

the performance of the calculation model of wave making resistance of large ships, a hybrid 

optimization algorithm FA-SSA is constructed by combining firefly algorithm and squirrel search 

algorithm. By introducing the luminance and attraction mechanism of fireflies, the algorithm enhances 

the global and local search ability of squirrel search algorithm. Then, based on FA-SSA and 

computational fluid dynamics, a new calculation model of ship wave making resistance is established. 

The experimental results show that in the performance comparison of the hybrid optimization 

algorithm, the F-value and G-value of FA-SSA reached 85.2% and 92.3%, respectively, which was 

significantly better than other comparison algorithms, reflecting its high efficiency in solving complex 

optimization problems. Further, in the comparison experiment of the ship wave making resistance 

calculation model, the mean memory consumption of the proposed model was only 883.3Mb, and the 

error value was as low as 0.0086, which is significantly better than the traditional model, and the 

calculation accuracy and efficiency are significantly improved. The above results show that the model 

can accurately and efficiently calculate the nonlinear wave making resistance value of large ships on 

restricted waterways, which is of great value to promote the development of maritime transportation 

industry 

Povzetek: Članek uvaja hibridni FA-SSA model za izračun upora pri valovanju velikih ladij v omejenih 

plovnih poteh, kar izboljša učinkovitost pomorskega transporta.

1 Introduction 

With the increasing prosperity of global trade, the role of 

large ships in maritime transportation industry has 

become increasingly important [1]. However, large ships 

are full of risks in restricted waterways. The resistance 

generated by ship wave making poses significant risks to 

its economy and safety [2]. In restricted waterways, due 

to water depth limitations and constraints on both sides, 

ship wave making exhibits complex nonlinear 

characteristics [3]. This nonlinear wave making not only 

affects the stability of the ship navigation, but also leads 

to turbulence in the waterway, thereby increasing the 

navigation resistance [4]. Accurately calculating the 

nonlinear wave making resistance value of large ships in 

restricted waterways is of practical significance for 

improving navigation efficiency and ensuring navigation 

safety [5]. However, the current calculation accuracy of 

nonlinear wave making resistance values for large ships 

is relatively low. Therefore, it is crucial to find a new 

method for calculating the nonlinear wave making 

resistance value of large ships to improve the calculation 

accuracy. The development of numerical simulation 

techniques such as Computational Fluid Dynamics (CFD) 

has provided new methods for the research of ship wave 

making resistance [6]. CFD can simulate the wave 

making characteristics of ships under different channel 

conditions by constructing precise numerical models, and 

then analyze the mechanism and variation law of 

resistance generated. In addition, the machine learning 

technology has also provided ideas for optimizing the 

calculation method of ship wave making resistance. 

Therefore, this study innovatively combines machine 

learning technology with CFD. Then a new ship wave 

making resistance calculation model based on the two is 

constructed. It is expected that this method can improve 

the ship wave making resistance calculation accuracy, 

thereby promoting the development of maritime 

transportation. The research is divided into five parts. The 

first part reviews the knowledge of mechanics, machine 

learning, and research related to ships. The second part 

constructs the hybrid optimization algorithm and the new 
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ship wave making resistance calculation model. The third 

part compares and analyzes the hybrid optimization 

algorithm and the new ship wave resistance calculation 

model. The fourth part is the discussion and prospect of 

the research results and models. The fifth part is a 

summary of the entire text. 

2 Related works 

With the widespread application of mechanics knowledge 

in various fields, the branch of mechanics, fluid 

mechanics, has been widely applied. For example, 

Brunton combined fluid dynamics technology and 

machine learning technology into a data-driven model to 

propose an efficient and accurate data-driven model. 

Empirical analysis showed that the driving model had 

strong practicality, which was far superior to traditional 

driving models [7]. In addition, Cai et al. proposed a 

network structure based on fluid dynamics and physical 

information to better incorporate noisy data into existing 

algorithms. The results showed that the network structure 

had good application effects in incorporating noisy data 

into existing algorithms, with relatively low cost [8]. 

Machine learning is an interdisciplinary field that 

involves multiple complex disciplines. With the 

development of computer technology, its application 

areas are also becoming increasingly broad. For example, 

Greener et al. proposed a bio-informatics prediction 

model based on machine learning technology to address 

the difficulty of predicting information in biological 

processes. The results showed that the prediction 

accuracy was 98.3%, which was much higher than 

comparison models [9]. To improve the detection 

efficiency of structural damage and defects in civil 

engineering, Flah et al. proposed a structural health 

monitoring system based on machine learning algorithms. 

The actual application effects showed that the structural 

health monitoring system could effectively accurately 

monitor structural damage and defects in civil 

engineering, thereby improving the safety of civil 

engineering [10]. 

With the development of the maritime transportation 

industry, scholars have increasingly diversified their 

research on ships. For example, Song et al. used REGAL 

ordinary cargo ships to optimize the performance of 

full-size ships to test the dynamic performance of ships 

more accurately. The results showed that the optimized 

full-scale ship performance simulation experiment had a 

testing accuracy of 97.8% for ship dynamic performance, 

significantly better than before improvement [11]. In 

addition, the specific relationship between the roughness 

of the hull and the frictional resistance of the ship cannot 

be accurately predicted. Therefore, Song et al. proposed a 

groove test method based on flat plates and model ships. 

Experimental research was conducted on roughness and 

ship resistance using this method. The results showed that 

this method had good predictive performance and 

practicality [12]. To better quantify the forward 

uncertainty of ship engineering problems, Piazzola et al. 

proposed a multi fidelity method based on multi-index 

random configuration and adaptive multi-fidelity random 

radial basis functions. From the results, it could 

accurately quantify the forward uncertainty of ship 

engineering problems, which was helpful for the 

development of the ship engineering [13]. In addition, 

Feng et al. proposed a parameter optimization model 

based on full parameter modeling to improve the wave 

making resistance of ships. The model was used to 

optimize the ship and obtain the optimal hull. It was 

found that the wave making resistance of the optimal hull 

was significantly improved compared with before 

optimization. This result indicated that the proposed 

parameter optimization model had highly practical [14]. 

The results of the above related studies are 

summarized and presented in Table 1. 

 

 
Table 1: Summary of related work and research results 

Study Method 
Data set/application 

object 
Key result 

The shortcomings of 

SOTA 

Brunton's data-driven 

model [7] 

Fluid mechanics 

technology + 

machine learning 

Data-driven model 

Efficient and 

accurate data-driven 

model that 

outperforms 

traditional models 

Not specifically 

targeted for specific 

applications in the 

maritime 

transportation 

The network 

structure of Cai [8] 

Networks of fluid 

mechanics and 

physical 

information 

Noise data 
Good inclusion of 

noise data, low cost 

Without special 

research on nonlinear 

wave making 

resistance of large 

ships 

Greener 

bio-informatics 

prediction model [9] 

Machine learning 

technique 
Bio-informatics data 

The prediction 

accuracy is 98.3%, 

much higher than 

the comparison 

model 

Application areas are 

not ships 
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Flah's Structural 

Health monitoring 

system [10] 

Machine learning 

algorithm 

Structural data of 

civil engineering 

Effectively and 

accurately monitor 

structural damage in 

civil engineering 

Application field is 

non-ship, lack of 

monitoring of ship 

structural health 

Song for full size 

ship performance 

optimization [11] 

REGAL general 

cargo ship 

experiment 

Full-scale ship 

performance testing 

The test accuracy is 

97.8%, which is 

better than before 

the improvement 

The calculation of 

nonlinear wave 

making resistance is 

not involved 

Song's trench test 

method [12] 

Experiments based 

on plates and ship 

models 

Relationship between 

hull roughness and 

resistance 

It has good 

predictive 

performance and 

practicability 

Only the relationship 

between hull 

roughness and 

resistance is studied 

Piazzola's 

multi-fidelity 

approach [13] 

Multi-index random 

configuration and 

adaptive 

multi-fidelity 

method 

Forward uncertainty 

of Marine 

engineering problems 

Quantify positive 

uncertainty 

accurately 

The application to 

ship resistance 

calculation is not 

mentioned 

Feng's parameter 

optimization model 

[14] 

Full parameter 

modeling 

Optimization of hull 

anti-wave capability 

The ability to 

withstand waves has 

been improved 

significantly 

Limited to increasing 

the wave resistance of 

the vessel, not 

involving resistance 

calculation 

 

From Table 1, although fluid mechanics and 

machine learning are widely used in their respective 

fields, there are relatively few applied studies in ship 

nonlinear wave making resistance calculation. The 

current state of the art technology lacks accurate 

calculation methods for nonlinear wave making 

resistance of large ships. In addition, although relevant 

studies have made progress in ship performance 

optimization, the relationship between hull roughness and 

resistance, and ship structural health monitoring, these 

studies have not directly solved the nonlinear wave 

making resistance calculation. Therefore, the current 

needs to fill the gap. Therefore, the research innovatively 

combines fluid mechanics and machine learning 

algorithm. Then it is applied to the nonlinear wave 

making resistance calculation of large ships, so as to 

improve the nonlinear wave making resistance 

calculation accuracy of large ships. This not only helps to 

promote the technological development of the ship field, 

but also enhances the integration and application effect of 

artificial intelligence and physical technology in the ship 

field. 

 

 

 

 

 

3 Construction of nonlinear wave 

making resistance calculation 

model for large ships based on 

FA-SSA 
To better calculate the nonlinear wave making resistance 

for large ships, this chapter first mixes the Firefly 

Algorithm (FA) and Squirrel Search Algorithm (SSA) to 

obtain the FA-SSA. Then, a new ship wave making 

resistance value calculation model is constructed based 

on the FA-SSA and CFD. It is expected that the 

calculation model can accurately calculate the nonlinear 

wave making resistance value for ships, thereby 

improving the navigation efficiency and safety. 

 

3.1 Hybrid optimization algorithm 

combining FA and SSA 
SSA is a novel and powerful global swarm intelligence 

optimization algorithm [15]. It originates from the natural 

foraging behavior of flying squirrels on various trees in 

the forest. Its workflow is shown in Figure 1. 
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Figure 1: Flow chart of the SAA work 

 

When initializing the SSA, the number of squirrels is 

set to FS . A uniform distribution is used to evenly 

distribute the position of each squirrel. The initialization 

is shown in Equation (1). 

, (0,1) ( )i j U LFS FS U FS FS= +  −  (1) 

In Equation (1), ,i jFS  represents the position of the 

i -th squirrel in the j -th dimension. UFS  represents 

the upper boundary of the squirrel position. LFS  

represents the lower boundary. ( )0,1U  represents a 

random value within the [0,1]. The position of each 

squirrel after uniform distribution is random, and each 

squirrel's position represents a vector. All squirrel 

positions are shown in the matrix, as shown in Equation 

(2). 

1,1 1.2 1,

2,1 2.2 2,

,1 ,2 ,

...

...

... ... ... ...

...

m

m

n n n m

FS FS FS

FS FS FS
FS

FS FS FS

 
 
 =
 
 
  

 (2) 

In Equation (2), each squirrel can freely change its 

position to search for food to search for the optimal 

solution. Because squirrels have individual differences, 

even in the same environment, the quantity and quality of 

food obtained by each squirrel are not necessarily the 

same. Therefore, the fitness of squirrels in the 

environment can be determined by the quantity and 

quality of food obtained by each squirrel. The fitness of 

squirrels is shown in Equation (3). 

1 1,1 1.2 1,

2 2,1 2.2 2,

,1 ,2 ,

([ ... ])

([ ... ])

... ... ... ...

([ ... ]

m

m

n n n n m

f FS FS FS

f FS FS FS
FS

f FS FS FS

 
 
 =
 
 
  

 (3) 

In this algorithm, the food sources of squirrels are 

divided into three types: excellent, moderate, and average. 

The three types of food sources correspond to the optimal 

solution, sub-optimal solution, and feasible solution, 

respectively. The fitness results obtained from Equation 

(3) are queued in ascending order. Squirrels with low 

fitness are located on superior food sources. Squirrels 

with moderate fitness are located on moderate food 

sources and tend to fly towards superior food sources. 

Squirrels with high adaptability are located on general 

food sources. In addition, all squirrels that meet their food 

needs tend to fly towards superior food sources, while 

squirrels that do not meet their food needs tend to fly 

towards moderate food sources. At the same time, all 

squirrels adjust their direction towards the food source 

based on the probability of predators appearing. Squirrel 

position adjustment is called position update. There are 

three main types of location updates. The first type is 

squirrels flying from a moderate food source to a superior 

food source, with the position update as shown in 

Equation (4). 

( )1

t t t

at g c ht at dpt

at

FS d G FS FS rand P
FS

Random location otherwise

+
 +   − 

= 


 (4) 

In Equation (4), atFS  represents the squirrel 

position on moderate food sources. htFS  represents the 

squirrel position on premium food sources. gd  

represents the sliding step length. cG  represents the 

squirrel sliding constant. t  represents the number of 

iterations. dpP  represents the probability of predators 

appearing. The second type is squirrels flying from 

general food sources to moderate food sources, with the 

position update as shown in Equation (5). 

 

( )1

t t t

nt g c at nt dpt

nt

FS d G FS FS rand P
FS

Random location otherwise

+
 +   − 

= 


 (5) 

In Equation (5), ntFS  represents the squirrel 
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position on general food sources. atFS  represents the 

squirrel position on moderate food sources. rand  

represents a random value within [0, 1]. The third type is 

squirrels flying from general food sources to superior 

food sources. The position update is shown in Equation 

(6). 

( )1

t t t

nt g c ht nt dpt

nt

FS d G FS FS rand P
FS

Random location otherwise

+
 +   − 

= 


 (6) 

In Equation (6), ntFS  represents the squirrel 

position on general food sources. htFS  represents the 

squirrel position on premium food sources. Although 

SSA has good optimization ability, it has problems such 

as being easily trapped in local optimal solutions, and 

lack of universality and flexibility [16]. Therefore, FA is 

used to optimize it. The brightness attraction mechanism 

and adaptability of FA are used to improve the local 

search ability and flexibility of SSA. FA is a heuristic 

algorithm inspired by the flickering behavior of fireflies 

[17]. The flashing behavior of fireflies can serve as a 

signaling system, aiming to attract other fireflies. The 

principle of FA is shown in Figure 2 [18] 

 

(a) Initial population distribution of 

fireflies

(b) Images of the distribution of fireflies after 

they gather

 

Figure 2: Schematic diagram of firefly algorithm 

 

In Figure 2, when fireflies emit fluorescence, 

surrounding fireflies are attracted by the fluorescence. 

Because the brightness of the fluorescence emitted by 

each firefly varies, and the firefly moves towards the 

firefly that emits brighter fluorescence, all fireflies will 

eventually gather near the firefly that emits brighter 

fluorescence. The relative fluorescence brightness of 

fireflies is shown in Equation (7). 

 0
abr

I I e
−

=   (7) 

In Equation (7), 0I  represents the fluorescence 

brightness of fireflies. 0I  represents the objective of the 

corresponding optimization problem. The higher 

fluorescence brightness indicates a larger target value.   

is the light intensity absorption coefficient, which can 

reflect the different fluorescent brightness corresponding 

to different propagation media and moving distance. abr  

is the distance between firefly individuals a  and b , 

and its expression is shown in Equation (8). 

2

1

( )
d

ab a b ak bk

k

r x x x x
=

= − = −  (8) 

In Equation (8), ax  represents the spatial location 

of firefly a . bx  is the spatial location where firefly b  

is located. In addition, the attraction of fireflies is shown 

in Equation (9). 

2

0
abr

e
 =               (9) 

In Equation (9),   represents the attraction of 

fireflies. 0  represents the maximum attraction. When 

firefly a  is attracted by firefly b  and moves towards 

the firefly b , the position update of firefly a  is shown 

in Equation (10). 

( ) ( 1/ 2)i i b ax x x x rand = +  − +  −  (10) 

In Equation (10),   and rand  represent the 

movement step factor and random factor of fireflies, 

respectively. The study improves the SSA through the FA 

to improve its search efficiency. The improved FA-SSA 

can continue to search for the optimal solution at local 

extremes. The running process of this hybrid algorithm is 

shown in Figure 3 
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Figure 3: Running flow of FA-SSA 

 

FA-SSA combines the brightness and attraction 

mechanism of FA with the search strategy of SSA to 

improve the solving efficiency of global optimization 

problems. The detailed operation process of the algorithm 

is as follows. Firstly, the algorithm parameters are 

initialized, including population size, number of iterations 

and brightness attenuation coefficient, etc., and the 

location and speed of the squirrel population are 

randomly generated. Then, each squirrel's fitness value is 

calculated to assess its performance. In the main loop, the 

algorithm first introduces the brightness and attraction 

from FA, guiding the search direction by calculating the 

brightness of each squirrel and the attraction between 

them. The squirrel's position and speed are then updated 

based on attraction and brightness information, combined 

with randomness and perturbation mechanisms. After 

each iteration, the local search is performed to further 

explore potential better solutions near the current optimal 

solution. At the same time, the algorithm dynamically 

adjusts its parameters according to the feedback 

information in the search process to optimize the search 

process. When the termination condition is satisfied, the 

algorithm stops iterating and outputs the optimal solution 

and its corresponding fitness value. 

 

3.2 Construction of ship wave making 

resistance calculation model combining 

improved FA-SSA and CFD 
CFD has emerged with the development of computer 

technology and numerical calculation techniques [19]. 

The basic principle of CFD is to numerically solve the 

differential equations that control fluid flow, obtain the 

discrete distribution of the fluid flow field in a continuous 

region, and approximately simulate fluid flow [20]. The 

basic flowchart of CFD is shown in Figure 4. 
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Figure 4: Basic flow chart of CFD operation 
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In Figure 4, CFD first establishes the control 

equation. The general form of the control equation is 

shown in Equation (11). 

( )
( ) ( )u S

t


  


+ =   +


 (11) 

In Equation (11),   represents a universal variable. 
  and u  represent fluid density and velocity vectors, 

respectively.   and S  represent diffusion coefficients 

and source terms, respectively. Then, based on the control 

equation, the initial and boundary conditions are 

determined. Secondly, the computational grid is divided, 

computing nodes are generated, and discrete equations 

are established. The discrete equation is shown in 

Equation (12). 
1

1

12
( 2 )

n n

n n nm m

m m m
t x

 
  

+

+

−

− 
= − +

 
 (12) 

In Equation (12), 
n

i  represents the variable value 

at time n  and spatial point m . t  and x  represent 

time and space steps, respectively. Subsequently, the 

discretization initial and boundary conditions of the 

discrete equation are determined. The control parameters 

for solving the discrete equation are provided. If the 

obtained solution converges, the calculation result is 

finally output. If the obtained solution does not converge, 

the discrete equation is re-established for calculation. The 

commonly used convergence criterion is based on 

residual variation, which is the difference between the 

actual solution and the previous iteration solution. 

Therefore, the convergence criterion is shown in 

Equation (13). 

 

1n n

n

 




+ −
  (13) 

In Equation (13),   represents the acceptable error 

limit. When the ratio of residual to solution is less than 
 , it indicates that the solution has converged. The 

calculation method of ship wave making resistance is 

important research in the ship engineering. This study 

proposes a CFD-based ship wave making resistance 

calculation model, which accurately predicts the wave 

making resistance generated by ships during navigation 

through the CFD, providing strong support for ship 

design and optimization. When constructing the 

CFD-based model for calculating ship wave making 

resistance, a three-dimensional geometric model of the 

ship is first established. It is meshed, discretizing the ship 

surface and surrounding fluid into a large number of 

computational units. The constructed three-dimensional 

geometric model of a large ship is shown in Figure 5. 

 

 

Figure 5: 3D geometric model of large ship 

 

Secondly, based on the fluid control equation, 

combined with appropriate initial and boundary 

conditions, the motion equation of the ship in the fluid is 

constructed. The fluid control equation used in the study 

is the Navier-Stokes equation, which is expressed as 

Equation (14). 

21
( )

u
u u p v u g

t 


+  = −  +  +


 (14) 

In Equation (14), u  represents the velocity vector 

of the fluid.   and p  represent fluid density and 

pressure, respectively. u  and g  represent kinematic 

viscosity and gravitational acceleration, respectively. In 

addition, considering the nonlinear effects of fluids, this 

computational model adopts high-order numerical 

methods for solving, ensuring the accuracy and stability 

of the calculation results. Finally, key data such as the 

wave making resistance coefficient and waveform of the 

ship are obtained through post-processing of the 

calculation results, providing intuitive reference for ship 
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designers. The wave making resistance coefficient is 

shown in Equation (15). 

 
20.5

w

w

R
C

V S
=  (15) 

In Equation (15), 
20.5 V  represents the dynamic 

pressure. S  represents the wet surface area of the ship. 

wC  and wR  represent the wave making resistance 

coefficient and the ship wave making resistance, 

respectively. Although the CFD-based ship wave making 

resistance calculation model can effectively calculate the 

wave making resistance, there are still shortcomings in 

terms of computational efficiency and global 

optimization. Therefore, this study utilizes the FA-SSA to 

optimize the parameters in the CFD-based ship wave 

making resistance calculation model to improve its 

computational efficiency and global optimization ability. 

The specific process of the proposed ship wave making 

resistance calculation model that integrates the FA-SSA 

and CFD is shown in Figure 6. 

 

Model preparation

Mesh generation

Initial and boundary 

condition Settings

Governing equation and 

numerical method selection

Incorporate FA-

SSA algorithm

CFD solution and 

post-processing

       Step 2     Step 3       Step 4      Step 5        Step 6Step 1  

Figure 6: Flow of ship wave resistance calculation model combining FA-SSA and CFD 

 

From Figure 6, the integration of CFD and FA-SSA 

first needs to determine the three-dimensional geometry 

of the hull, and lays the foundation for subsequent 

analysis by establishing an accurate three-dimensional 

CAD model. Then, the CFD model is prepared, which 

includes simulating the computational domain size and 

boundary conditions of the real marine environment, as 

well as using CFD processing software to finely mesh the 

ship surface and computational domain. After setting the 

initial and boundary conditions of the CFD model, the 

appropriate governing equation is selected for solving. 

Before solving the CFD equation, FA-SSA algorithm is 

introduced to optimize the key parameters in the CFD 

model. The optimization process is similar to that of 

FA-SSA, but the optimization goal is to find the model 

parameters that make the CFD calculation results optimal. 

After the optimization is completed, the CFD equation is 

solved according to the best parameters obtained, and the 

calculated results are post-processed to extract key data 

such as wave making resistance coefficient and waveform. 

Finally, the results are analyzed deeply to evaluate the 

rationality of hull design and navigation performance, 

which provides strong support for marine engineering 

practice. 

 

 

4 Performance comparison of the 

improved optimization algorithm 

and empirical analysis of the 

resistance calculation model 
To analyze the application effect of the FA-SSA 

proposed in the study, this chapter conducts comparative 

experiments on four optimization algorithms on the CEC 

dataset and BBOB dataset to demonstrate the high 

performance of the FA-SSA. In addition, a comparative 

experiment is conducted on the ship wave making 

resistance calculation model in this chapter. The 

experimental results demonstrate the superiority of the 

proposed model for calculating ship wave making 

resistance. 

 

4.1 Performance verification of improved 

FA-SSA 
To verify the performance of the FA-SSA, it is first 

validated on the CEC competition function dataset. The 

test results of the FA-SSA on the training and testing sets 

are shown in Figure 7. 
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Figure 7: Test results of training set and testing set 

 

From Figure 7 (a), the square correlation coefficient 

value of the FA-SSA in the training set was 0.9201, and 

the mean square error was 0.00633. The above two data 

indicate that the FA-SSA has high fitness in the training 

set, with strong generalization ability in the training set. 

According to Figure 7 (b), the square correlation 

coefficient and mean square error of the FA-SSA in the 

testing samples were 0.8706 and 0.01312, respectively. 

The above results indicate that the FA-SSA performs well 

in both the training and testing sets. To verify the 

effectiveness of the FA-SSA, comparative experiments 

are conducted with SSA, GA-SSA, and GA-FA on 

Matlab simulation software. Convergence, G-value, and 

F-value are used as comparison indicators for 

performance comparison. The comparison results of the 

convergence curves of the four algorithms on the CEC 

competition function dataset and the BBOB dataset are 

shown in Figure 8. 
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Figure 8: Comparison of convergence curves of different algorithms 

 

From Figure 8 (a), the FA-SSA had the best 

convergence in the CEC dataset, reaching its optimal 

convergence at 5 iterations, which was far superior to 

other comparison algorithms. Moreover, the convergence 

curve of this algorithm was stable, with little fluctuation. 

From Figure 8 (b), compared with other algorithms in the 

BBOB dataset, the FA-SSA had the fastest convergence 

speed, reaching its optimal convergence at 3 iterations. 

The convergence speed of FA-SSA was 31.8 times, 22.9 

times, and 21.6 times faster than SSA, GA-FA, and 

GA-SSA, respectively. From the above results, the 

performance of the FA-SSA is significantly better than 

that of the comparison algorithms. Finally, performance 

analysis is conducted by comparing the F-value and 

G-value of the four algorithms. The experimental results 

of the F-value and G-value of the four algorithms are 

shown in Figure 9. 
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Figure 9: F-value and G-value of the four algorithms 

 

In Figure 9, the F-value of the FA-SSA was 

concentrated around 85%. The SSA was concentrated 

around 67%. The GA-FA was concentrated around 73%. 

The GA-SSA was concentrated around 78%. In addition, 

from Figure 9, the G-value of FA-SSA, SSA, GA-FA, 

and GA-SSA was approximately 92.3%, 76.5%, 77.2%, 

and 84.1%. High F-value and G-value indicate better 

performance of the algorithm. The F-value and G-value 

of the FA-SSA are higher than those of comparison 

algorithms. Therefore, the overall performance of the 

FA-SSA is better than other comparison algorithms. 

Finally, in order to verify the wide applicability and 

robustness of the FA-SSA, two benchmark datasets IEEE 

CEC 2017 and IEEE CEC 2020 are added to the CEC and 

BBOB datasets. These two datasets contain different 

types of complex optimization problems, which can 

comprehensively evaluate the performance of the 

algorithm. Table 2 shows the performance comparison 

results between FA-SSA and other three comparison 

algorithms (SSA, GA-FA, GA-SSA) on four benchmark 

datasets. The number of convergence iterations, the mean 

value of the optimal solution, the standard deviation and 

the results of statistical significance test are listed in 

Table 2. The P-value represents the T-test P-value 

between FA-SSA and other algorithms on the mean value 

of the optimal solution. When the P-value is less than 

0.05, it indicates that the difference is significant. 

 

 
 

Table 2: Performance comparison on four algorithm benchmark datasets 

Data set Algorithm 
Convergence 

iterations 

The mean 

of the optimal 

solution 

Standard 

deviation 
P 

CEC 2013 

FA-SSA 5 0.00633 0.00015 / 

SSA 16 0.01021 0.00023 <0.001 

GA-FA 12 0.00874 0.00019 <0.001 

GA-SSA 10 0.00756 0.00017 <0.001 

BBOB 

FA-SSA 3 0.00210 0.00005 / 

SSA 96 0.00682 0.00018 <0.001 

GA-FA 72 0.00543 0.00012 <0.001 

GA-SSA 68 0.00581 0.00015 <0.001 

IEEE CEC 

2017 

FA-SSA 7 0.00456 0.00011 / 

SSA 21 0.00789 0.00020 <0.001 

GA-FA 17 0.00623 0.00014 <0.001 

GA-SSA 14 0.00598 0.00013 <0.001 

IEEE CEC 

2020 

FA-SSA 6 0.00321 0.00008 / 

SSA 19 0.00567 0.00016 <0.001 

GA-FA 15 0.00482 0.00012 <0.001 

GA-SSA 12 0.00423 0.00010 <0.001 
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From Table 2, FA-SSA outperformed other 

comparison algorithms on the four benchmark datasets. 

FA-SSA not only converges quickly, but also performs 

well in the mean value and stability of the optimal 

solution. From T-test, the difference between FA-SSA 

and other algorithms was statistically significant 

(P<0.001), which proved the wide applicability and 

robustness of FA-SSA for solving different types of 

complex optimization problems. Its excellent 

performance makes FA-SSA have great potential in 

practical applications. 

 

4.2 The actual effect verification of nonlinear 

wave making resistance calculation model 

After verifying the performance superiority of the 

proposed FA-SSA, the application effect of the wave 

making resistance calculation model based on FA-SSA 

and CFD was compared with other commonly used 

methods, including the proposed wave making resistance 

calculation model (Model 1), CFD-based wave making 

resistance calculation model (Model 2), and the wave 

making resistance calculation model based on machine 

learning algorithm (Model 3). The data of large ships on 

restricted waterways are collected as the dataset for this 

comparative experiment. The large ship calculation grid 

and free-liquid surface waveform used in the dataset are 

shown in Figure 10. 

 

(a) Large ship computing domain grid (b) Free liquid surface waveform diagram

 

Figure 10: Calculation grid and free-liquid surface waveform of large ships 

 

The prediction error results of the three models  

in this dataset are shown in Figure 11. 
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Figure 11: Calculation error results of the three models in this dataset 
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From Figure 11, the overall error of Model 1 was 

better than that of Model 2 and Model 3. The maximum 

error value of Model 1 was 0.019, Model 2 was 0.025, 

and Model 3 was 0.038. The deigned method was 

significantly better than comparison methods. The 

calculation error value of Model 1 was mostly in the 

range of -0.01 to 0.01, with little overall fluctuation. 

Furthermore, in Figure 11, the mean error of Model 1 was 

0.0086, significantly lower than 0.013 of Model 2 and 

0.019 of Model 3. From the perspective of calculation 

error, Model 1 performs better than comparison models. 

In addition, the study also statistically analyzes the 

computational time and consumption of the three models, 

as displayed in Table 3. 

 

 
Table 3: Comparison of the computing time, memory consumption, and CPU usage of the three models 

Test serial 

number 
Model class Computing time (s) Memory consumption (MB) CPU usage (%) 

1 

Model 1 68 878 60.5 

Model 2 536 4125 95.3 

Model 3 122 1533 75.8 

2 

Model 1 65 883 59.6 

Model 2 551 4156 94.8 

Model 3 118 1563 76.2 

3 

Model 1 66 889 61.2 

Model 2 562 4218 95.8 

Model 3 119 1486 74.9 

 

According to Table 3, in all three experiments, 

Model 1 had the lowest computational time, with a mean 

computational time of 66.3 s, model 2 was 549.7 s, and 

model 3 was 119.7 s. Comparatively speaking, the 

method proposed in the study is significantly lower. In 

addition, the mean memory consumption and CPU usage 

of Model 1 were 883.3 Mb and 60.4%, respectively, 

which were significantly lower than comparison models. 

The above results indicate that the overall computational 

consumption of Model 1 is better than Model 2 and 

Model 3, which is more practical in the nonlinear wave 

making resistance calculation of ships. Finally, the 

correlation analysis is used to compare the computational 

accuracy of the three models. The correlation analysis 

results of the three models are shown in Figure 12. 
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Figure 12: Prediction accuracy of different models 

 

In Figure 12 (a), Model 1 had a high computational 

accuracy, with an R2 of 0.97. In Figure 12 (b), the 

calculation accuracy of Model 2 was moderate, with an 

R2 of 0.73. In Figure 12 (c), the calculation accuracy of 

Model 3 was relatively low, with an R2 of 0.63. Based on 

the comprehensive comparison of Figures 12 (a), (b), and 

(c), the computational accuracy of Model 1 is 

significantly better than that of Model 2 and Model 3. 

This result indicates that the proposed model also has 

good computational performance. Based on the above 

dimensions, the computational efficiency and 

computational consumption of the proposed model are 
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better than those of the comparison models, which is at a 

relatively high level. 

5 Discussion 

5.1 Comparison between FA-SSA and other 

optimization methods 
The results show that FA-SSA has significant advantages 

in convergence speed and accuracy. Compared with SSA, 

GA-FA, GA-SSA and other optimization algorithms, 

FA-SSA performs better than comparison algorithms on 

multiple benchmark datasets such as CEC, BBOB, IEEE 

CEC 2017, and IEEE CEC 2020. Among them, FA-SSA 

performs well in the convergence speed. For example, it 

only took 5 iterations to achieve optimal convergence on 

CEC dataset, while it only took 3 iterations on BBOB 

dataset, and its convergence speed was tens of times that 

of SSA, GA-FA and GA-SSA respectively. In addition, 

FA-SSA also performs well in the mean value and 

stability of the optimal solution, with F-value and 

G-value significantly higher than other algorithms, which 

proves the efficiency and robustness of FA-SSA in 

solving complex optimization problems. This result is 

consistent with the results obtained by XX et al. [21]. The 

reason for this difference is that FA-SSA combines the 

brightness and attraction mechanism of FA with the 

search strategy of SSA. The brightness and attraction 

mechanism of FA provides the algorithm with global 

search capability, while the search strategy of SSA 

enhances the local search capability. The combination 

enables FA-SSA to quickly locate the approximate 

location of the optimal solution on a global scale, and 

fine-tune the quality of the solution through the local 

search strategy, thus achieving fast and high-precision 

convergence. 

 

5.2 Improvement of calculation model 

efficiency and accuracy 
The research results also showed that compared with the 

traditional CFD method, the wave making resistance 

calculation Model (Model 1) based on FA-SSA and CFD 

improved the calculation efficiency and accuracy. This 

result is similar to the conclusion obtained by XX team 

[22]. Although traditional CFD methods can accurately 

simulate fluid flow, the computational cost is high, 

especially when dealing with complex geometry and 

large-scale computing domains, which consumes a lot of 

computing time and resources. In Model 1, FA-SSA is 

introduced to optimize the key parameters in the CFD 

model, which significantly reduces the calculation cost. 

As shown in Table 3, the mean computation time of 

Model 1 was only 66.3s, compared with 549.7s for the 

Model 2, while memory consumption and CPU usage 

were also significantly reduced. In terms of accuracy, the 

Model 1 also performs well. As shown in Figure 11, the 

maximum error value of Model 1 was 0.019, which was 

significantly lower than that of Model 2 (0.025) and 

Model 3 (0.038), and the mean error was only 0.0086. 

This shows that Model 1 effectively reduces computing 

cost and improves computing efficiency while 

maintaining high accuracy. This improvement is mainly 

due to the FA-SSA algorithm accurately optimizing the 

parameters of the CFD model, allowing the model to 

more accurately simulate fluid flow during the calculation 

process, thereby improving the accuracy of the 

calculation results. 

 

5.3 Explanation of the new method 

combining FA-SSA and CFD 
The method combining FA-SSA with CFD to calculate 

wave making resistance is an innovative attempt. This 

method makes use of the advantages of FA-SSA in global 

optimization and the accuracy of CFD in fluid simulation. 

By optimizing the parameters of CFD model through the 

algorithm, the computational efficiency and accuracy are 

improved. FA-SSA first optimizes key parameters such 

as turbulence model coefficient and boundary layer 

treatment in CFD model, so that the model can be closer 

to the actual flow situation in the calculation process. 

Then, the optimized CFD model is used to calculate the 

wave making resistance, and the accurate result is 

obtained. This combination method not only improves the 

calculation efficiency, but also guarantees the accuracy of 

the calculation results, providing a new method for the 

wave making resistance calculation in the field of marine 

engineering. 

 

5.4 Potential practical applications and 

limitations 
The proposed model has broad potential practical 

applications in the field of marine engineering. Especially 

in the calculation of wave resistance for large ships 

navigating in restricted waters, this model can accurately 

predict wave resistance and provide strong support for 

ship design and optimization. In addition, the model can 

also be applied to other fluid dynamics problems, such as 

ship maneuverability, sea-keeping etc. However, there are 

some limitations to this model. First of all, the accuracy 

and efficiency of the model are affected by the algorithm 

parameters and the complexity of the CFD model, which 

needs to be adjusted and optimized according to the 

specific situation in practical applications. Secondly, the 

adaptability of the model to complex geometry and 

extreme flow conditions needs to be further verified and 

improved. In order to give full play to the potential of this 

model, future research can focus on the following aspects. 

The first is to further optimize the algorithm parameters 

and CFD model to improve the accuracy and efficiency 

of the model. The second is to carry out more 

experimental verification and case studies to evaluate the 

applicability of the model in different scenarios. The third 

is to explore the application potential of the model in 

other fluid dynamics problems and broaden the 

application range of the model. 
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6 Conclusion 

In response to the insufficient accuracy in the wave 

making resistance calculation model for large ships today, 

an improved ship wave making resistance calculation 

model that integrated intelligent optimization algorithms 

and CFD was proposed. The study first constructed a 

wave making resistance calculation model based on CFD, 

and then optimized the parameters of CFD using AF-SSA 

to obtain an improved ship wave making resistance 

calculation model. In the comparative experiment of 

AF-SSA, the convergence speed of the FA-SSA was 31.8 

times, 22.9 times, and 21.6 times faster than that of the 

SSA, GA-FA, and GA-SSA, respectively. Afterwards, 

performance tests were conducted on the proposed ship 

wave resistance calculation model in a nonlinear wave 

dataset. The results showed that the mean error of the 

proposed model was 0.0086, significantly lower than 

0.013 of Model 2 and 0.019 of Model 3. The above 

results indicate that the improved the wave making 

resistance calculation model has higher accuracy in 

calculating the nonlinear wave making resistance of ships. 

Therefore, it can be applied to calculate the nonlinear 

wave making resistance of large ships in restricted 

waterways, providing data support for formulating 

appropriate optimization strategies. In addition, the 

validation dataset for the study is single. In the future, 

more data needs to be selected for experiments to 

demonstrate the universality of the model. 
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