
https://doi.org/10.31449/inf.v48i3.6245 Informatica 48 (2024) 485–496 485

Cloud Computing Security: Assured Deletion

Sarmad Mahmood Ahmed, Baban Ahmed Mahmood

Department of Computer Science, College of Computer Science and Information Technology, Kirkuk University,

Kirkuk, Iraq

E-mail: stcm22006@uokirkuk.edu.iq, babanmahmood@uokirkuk.edu.iq

*Corresponding Author

Student paper

Keywords: cloud service provider, cloud storage, assured deletion, policy revocation

Received: May 22, 2024

With the advent of cloud computing, many organizations, institutions, and individuals have chosen to store

their data in the cloud as a way to compensate for limited local storage capabilities and reduce expenses.

However, the process of uploading data to the cloud results in relinquishing control over it, leaving the

data owner unaware of the details of its storage and location. Hence, ensuring data confidentiality and

integrity has emerged as a critical concern, especially with regard to cloud employees and other potential

attacks. A significant amount of investigation has been conducted on the security aspects of cloud

computing, with a particular focus on permanent removals. Hence This study investigates the deployment

of deletion assurance in cloud computing on two separate cloud platforms, employing strategies such as

cryptographic key partitioning, cryptographic-based random writing, and link deletion within confirmed

deletion scenarios. The characteristics of this approach include security safeguards like asymmetric

encryption (specifically Elliptic Curve Cryptography (ECC)) and multiple hashing algorithms like hash

256 are used to fortify the security and confidentiality of data stored in the public cloud and the secrecy

of files kept in the cloud is unaffected by invasions from the outside or from within an encrypted file

prevents a threat from reading it and the owner may easily encrypt each file with a fresh key by managing

and storing the keys using the key management center also authorized users are able to request this key

thanks to secure access enforcement and In the event of assure deletion, the file is overwritten with random

encryption and uploaded to the cloud, updating all copies while deleting all links and keys from the key

management.

Povzetek: Študija se ukvarja z varnostjp oblačnega računalništva s poudarkom na zagotovitvi brisanja

podatkov. Uporabljeni so algoritmi za kriptografsko brisanje, ECC šifriranje in delitev ključev za varno

in zanesljivo odstranitev podatkov iz oblaka.

1 Introduction
Cloud computing facilitates effective and economical

provision of resources to users upon request through the

internet. The new operational framework of the

organization promotes the utilization of the public

cloud for online data retention and collaboration with

external entities and institutions. Users are solely

charged for the resources they utilize, resulting in

diminished initial establishment and information

technology infrastructure expenses. Cloud services

empower individuals to stockpile and retrieve

substantial volumes of data from a remote location,

thereby diminishing the necessity for data maintenance

and administration [1], [2], [3], [4]. With the use of

commodity clusters, cloud computing has brought

about a framework that makes it easier to assign data

processing responsibilities to outside parties. By

empowering data owners to trust third parties with their

sensitive information, this approach reduces the

computational and administrative costs involved in

granting authorized users access to and manipulation of

the data. When individuals and companies upload data

to the cloud. You lose direct control over this data, so

it is necessary to implement a security access policy for

this data to ensure its security and integrity [1]. The

purpose of secure deletion is to ensure that data is not

used by unauthorized parties [5]. This goal is achieved

by taking steps to prevent unauthorized access to your

data after the deletion process is complete [6], [7]. Data

must be encrypted before being sent to the cloud server.

Therefore, most existing data deletion techniques rely

on decryption key deletion to achieve the desired result

of secure data deletion. Nevertheless, numerous

challenges have arisen in this respect, such as the

intricacy linked with key management, the protracted

procedure of data destruction, and the restricted

authority over data access [6]. Guaranteed deletion can

protect the confidentiality of user data while also

maintaining its accuracy [8]. All of these methods,

meanwhile, fall short when it comes to the validation

process used to evaluate the results of deleting data in

mailto:stcm22006@uokirkuk.edu.iq

486 Informatica 48 (2024) 485–496 S.M. Ahmed et al.

the context of cloud computing. Thus, it is necessary to

investigate the application of strong procedures for safe

data removal as well as validation in the context of

cloud computing [9]. There exist three primary

methodologies. The most straightforward and highly

efficient approach to achieve data eradication is via

dissociation, or elimination. Eradication by

superimposition: In order to supersede the original data

within the cloud by updating it, the proprietor of the

data engenders a data unit haphazardly that bears

identical same name, classification, and magnitude as

the data that necessitates erasure. The fundamental

tenet underlying eradication by cryptology, or the

annihilation of the decryption key, lies in the fact that

the possessor of the data enciphers the dossier prior to

externalization, and subsequently obliterates the

decryption key of the enciphered dossier to render the

encoded text infeasible for use [10], [11], [12], [13].

1.1 Contribution

 In this paper, we put forward a hypothesis for a

theoretical framework and plan for the encryption of

information, the administration of cryptographic keys, and

the preservation of keys. Additionally, we argue for the

use of two separate cloud infrastructures to house both

keys and documents. Furthermore, we propose the

execution of a reliable method for data removal,

employing a technique of overwriting using randomized

encryption. Moreover, we suggest the elimination of keys

and the revocation of the association policy.

 The rest of the paper is organized as follows. Section 2

presents the most recent related work. The proposed

method is presented in section 3. In section 4

Implementation and thorough analysis of the proposed

method are presented. Section 5 concludes the paper.

2 Literature review
 Researchers have suggested many deletion schemes

based on policy revocation technology Overwriting, and

other techniques. Below are some of the recent related

works.

 Tang et al. [14] designed a system for assured file

deletion by revoking the file access policy. They depend

on the encryption of data files and a data key to guarantee

the privacy of files Initially, each data file is associated

with a single policy or multiple policies through logical

connections. In order to delete the file, the owner of the

data revokes the policy associated with the file, and

subsequently the key manager erases the private key

rendering the data key irretrievable.

 Yuchuan Luo et al. [15] proposed a new scheme for

assured deletion called Permutation-based Assured

Deletion Scheme (PADS) for the purpose of deleting data

in cloud storage. This particular system involves the cloud

generating data blocks in a random manner in order to

overwrite the original data and ensure its recoverability.

Additionally, it allows the data owner to confirm the

results of the overwrite operation, ensuring successful

deletion of data in the cloud.

 Tyne et al. [8] A safe and effective ordered overwrite

and erase scheme (SEAD-OO) is proposed. This method

provides a multi-copy storage system for cloud data and

adopts an ordered coverage method. The technology is

composed of four basic components: Cloud Service

Provider (CSP), Key Manager, Hyperledger Fabric, and

Data Owners (including Authoritative Data Owner (ADO)

and General Data Owner (GDO)).). ADO encrypts the

file, uploads the ciphertext to the CSP, and passes the

corresponding key to key management. ADO and GDO

use the Diffie-Hellman protocol to establish session keys.

Data accessibility is exclusively authorized based on the

attributes of the data owner.

 Zakaria and Mustapha [16] proposed a system to

produce and store encryption keys locally rather than by a

third party which was based on the Trusted Platform

Module (TPM). Secure storage and cryptographic

operations are offered by TPM, a hardware device often

installed on the motherboard of a laptop or computer. By

using the TPM chip's cryptographic features, the data is

encrypted throughout the guaranteed deletion process, and

a distinct key is created for it. Following the completion

of the encryption procedure, only the encrypted data

remains in the cloud storage with the original data being

completely wiped. Because the encryption key is safely

kept inside the TPM chip, FADETPM guaranteed deletion

ensures that data cannot be accessed or recovered by

unauthorized parties. This is what makes the technology

unique.

 Zhenjie Xie and colleagues [17] introduced a novel

technique for ensuring the deletion of cloud data. By

incorporating the XOR operation within a block cipher,

the resulting cipher data becomes highly nonwearable,

which presents an appealing approach to achieving

assured deletion. The non recoverability of the original

data subsequent to a deletion operation can be

significantly enhanced by eliminating the key and certain

encrypted data through the involvement of a trusted third

party (TTP).

 Wang and Luo [18] introduced a classification system

for secure cloud data removal that is based on

cryptographic methods. They examined this classification

from two perspectives: one that involves a third-party key

management centre and another that does not.

 Joshi and Panchal [19] conducted a study on the

requirements that need to be taken into account when

ensuring assured data deletion in cases where the client

does not have trust in the cloud server provider. These

requirements include fine-grained deletion, cloud

computation, availability of services, timeliness, complete

deletion, and deletion acknowledgement. Furthermore,

Cloud Computing Security: Assured Deletion Informatica 48 (2024) 485–496 487

they presented existing techniques for ensuring assured

deletion in the cloud, along with their limitations.

Table 1 highlights several strategies and mechanisms that

have been utilized in the literature bringing out the most

important features of each method.

Table 1: Comparison of various file assured deletion mechanisms based on common techniques

References

Assure deletion Proof of

deletion

Policy

Overwriting

KM TTP

[8] ✓ ✓ ✓ ✓

[9] ✓ ✓

[14] ✓ ✓ ✓ ✓

[15] ✓ ✓ ✓ ✓

[16] ✓

[17] ✓

3 Methods and implementation

As we noted in Section 2, we propose a conjecture for a

conceptual framework and blueprint for the encryption of

data, the management of cryptographic keys, and the

retention of said keys in a key custodian. Furthermore, we

advocate for the utilization of two distinct cloud

infrastructures to store both keys and files. Moreover, we

put forward the implementation of a secure approach for

data eradication, employing a process of overwriting

utilizing randomized encryption. Additionally, we

recommend the eradication of keys and the annulment of

the association policy.

3.1 Preliminaries

 In this section, we give four preliminaries encryption,

Secure Hash Algorithm (SHA-256), Encryption Standard

Algorithm (AES) and Rivest-Shamir-Adelman (RSA).

3.1.1. ECC encryption

 Elliptic curve cryptography (ECC), a variant of the

public key cryptosystem RSA, distinguishes itself by its

enhanced adaptability and its provision of a desirable

alternative for cryptographic algorithm researchers. In

addition, the capacity of ECC to ensure a comparable level

of security to RSA, despite using smaller key sizes, is

noteworthy; for example, a 160-bit ECC key provides a

level of security equivalent to that of a 1024-bit RSA key

[20], [21].

3.1.2. Secure hash algorithm (SHA-256)

There are several options for cryptographic hash

functions, including secure hashing algorithms. This

algorithm is known as a "one-sided" cryptographic

function, meaning that the original text cannot be

recovered through decryption. The deterministic and

consistent properties of a hash function ensure that it

always produces the same hash result every time it

processes a given message [22], [23].

 3.1.3. Encryption standard algorithm (AES)

 Known alternatively as private key cryptography, the

Advanced Encryption Standard method (AES) is a

cryptographic method based on symmetric cryptography

principles. In this approach, the encryption and decryption

operations are carried out using the same key. Several

lengths of cryptographic keys are used to ensure safe data

encryption. There are three different key size options: 128,

192, or 256 bits. Data is encrypted using AES in blocks of

128 bits each, functioning as a block cipher. As a result, it

takes an input of the same length and outputs a 128-bit

encrypted ciphertext[24].

3.1.4. Rivest-Shamir-Adleman (RSA)

 the public key, which is used for encryption, is

distributed to all users, while the private key, which is

used for decryption, is kept secret. This is an example of

an asymmetric cryptography algorithm. Usually, the keys

have a length of 1024 or 2048 bits. Digital signatures and

488 Informatica 48 (2024) 485–496 S.M. Ahmed et al.

public key encryption are two applications for this

method. The difficulty of factoring in huge prime

numbers, which are used to produce the keys, is the

foundation of its security[25], [26], [27].

3.2 System model

 The principal constituents of a secure file deletion

system, as delineated in Figure 1, are derived from the

FADE-ECC model. The model comprises four distinct

entities, namely the data owner, key manager, cloud

service provider1, and cloud service provider2

3.2.1. Data owner - cloud users (DO)

 The clients consist of both corporate entities and

individual users. These clients engage in the rental of

cloud services that are offered by the cloud service

provider. These services entail a diverse selection of

offerings, such as storage spaces, resources,

infrastructure, and other related services. The purpose of

availing these services is to leverage their economic and

administrative merits, thereby alleviating the local burden

associated with the utilization of these resources. Service

consumers, in turn, establish an account with the cloud

providers to make use of the most suitable cloud services

available.

Figure 1: System model

3.2.2. Key manager (KM)

 The key manager is responsible for generating and

managing the ECC private-public keys (control keys).

Generates control keys based on the password hash value

provided by the data owner, sends the public key to the

data owner for use in encryption and keeps the private key

for decryption. It deletes the private key when the data

owner asks to delete it.

3.2.3. Cloud service providers 1 (CSP1) and 2

(CSP2)

These are two different businesses that provide elastic

computing resources that are pay-as-you-go accessible to

operations throughout the network.

3.3. System description

This section shows how the various components of the

architecture work together and provides a high-level

overview of its data activity, including uploads,

downloads, deletions, and post-deletion verification.

3.3.1. Data encryption and uploading process

 The public/private key (ei, di)' creation of the ECC is

performed by the data owner (DO). The file is encrypted

using the public key (ei), while the private key is split into

two parts (d1f, d2f) based on the data owner's policy.

Additionally, a SHA-256 hash of the file name is created

and sent to the key manager. Key Manager (KM), on the

other hand, creates two ECC type keys (ekm, dkm),

maintains the private key (dkm) with a hash of the file

name, and sends the public key (ekm) to the data owner.

The keys that were divided are then encrypted using the

Cloud Computing Security: Assured Deletion Informatica 48 (2024) 485–496 489

public key of the key manager (KM) through ECC

encryption. Afterwards, the encoded document and the

initial encoded key are transferred to the initial cloud,

while the checksum of the document is transferred with

the second encoded key to the second cloud. Finally, all

keys are erased, as illustrated in Figure 2

Figure 2: Data encryption and uploading process

3.3.2. File downloading and integrity

checking process

The encrypted file (C) and the first encrypted key (K1) are

downloaded by the data owner (DO) from the first cloud.

Additionally, the data owner (DO) downloads the second

encrypted key (K2) along with the file hash and the policy

(pi) from the second cloud. Subsequently, a random value

(R) is selected by the data owner (DO) and combined with

the encrypted keys. These encrypted keys, along with the

Hash-256 of the file name, are then transmitted to the key

manager (KM).

Upon receipt, the key manager (KM) performs a

comparison with the stored data. If a hash match is found,

the sent keys are decrypted by the key manager (KM)

using the ECC private key that is stored with him. The

decrypted keys are then returned to the data owner.

Following this, the random value (R) is removed and the

keys (di) are collected based on the specified policy.

Subsequently, the file is decrypted using ECC and finally

opened. It is evident as depicted in the Figure 3.

490 Informatica 48 (2024) 485–496 S.M. Ahmed et al.

Figure 3: File downloading and integrity checking process

3.3.3 File deletion and verification process

 In the process of confirmed deletion, the data owner

(DO) employs a technique known as overwriting of the

file. This involves encrypting the file a second time,

utilizing a random public key of the ECC type without a

private key. Simultaneously, the DO encrypts the file

using the public key (PupR) and sends the Hash-256 of the

file name to the key manager (KM). The KM is requested

to erase the private key that they possess and subsequently

re-uploads the file to the cloud, where the provider updates

their copies. Following this, the DO asks the provider to

erase the file. As a result, it can be ensured that the file

stored in the cloud is rendered unusable since it is

encrypted with a random encryption and lacks a first

decryption key which has also been erased from key

manager (KM), as portrayed in Figure 4.

3.4 Working environment
The mechanism known as FADE-ECC along with the

FADE archetype were effectively implemented and

executed on our Personal Computer as well as on the

Firebase cloud. The process of execution entailed the

utilization of a Python program in conjunction with a

PyCharm editor on a Windows 10 Pro operating system.

This particular OS is a 64-bit platform equipped with an

Intel(R) Core (TM) i5-6300U processor that operates at a

speed of 2.40GHz. Furthermore, the system was bolstered

by a 16GB Random Access Memory (RAM) to support

the execution of the tasks at hand. In order to gauge the

performance of the application we proposed, a series of

tests were conducted at various stages using files of

different sizes, ranging from 1KB to 10 MB. The duration

of the application's execution was carefully measured and

then juxtaposed against that of the FADE mechanism at

each stage. The primary objective of this evaluation was

to assess the effectiveness of the implementation of our

application. The interface of our implementation

application is constructed based on the Tkinter module

within the Python programming language. The

functionality of our application commences with the input

of credentials to grant access to the client for the use of the

application. This process involves the design of a login

system window, for entry. These fields require the

Cloud Computing Security: Assured Deletion Informatica 48 (2024) 485–496 491

authorized customer's user name and password for

progression to the subsequent window of the application,

which encompasses the stages involved in the

implementation of our proposed design. Individuals

lacking authorization to access the system or those

without the requisite login credentials are unable to

advance beyond the initial window of the simulated

application. Consequently, our application serves as a

barrier to prevent hackers and unauthorized users from

infiltrating the system and gaining access to client data.

4 Analysis and experiment

The FADE-ECC mechanism and the FADE archetype

were effectively executed on our Personal Computer and

on the Firebase cloud. The execution involved the

utilization of a Python program and a PyCharm editor on

a Windows 10 Pro operating system, which is a 64-bit OS

equipped with an Intel(R) Core (TM) i5-6300U processor

operating at a velocity of 2.40GHz. Additionally, the

system was supported by a 16GB Random Access

Memory (RAM). To evaluate the performance of our

proposed application, we conducted tests at each of the

three stages using files of varying sizes, ranging from 1KB

to 10 MB. The execution duration of our application was

measured and compared with that of the FADE

mechanism at each stage. This assessment aimed to

evaluate the efficacy of our application implementation.

Figure 4: File deletion and verification process

4.1. File encryption and uploading stage

 At this point, our system generates keys using ECC

and choosing a policy, then encrypts the file, hashes the

private key, and sends the hash with the file name to the

key manager. The key manager also creates keys using

ECC and sends the public key, then (encrypts) the keys

and sends them to two clouds, while choosing the

FADE model. At this stage, he chooses a policy

associated with the file, then creates a key of type AES

and sends the policy to the key manager to create two

keys of type RSA and send the public key is sent to the

file manager to encrypt the private key and send it to

the cloud. The time has been calculated for the two

492 Informatica 48 (2024) 485–496 S.M. Ahmed et al.

models as shown in Tables 1 and 2 and compared in

Figure 5.

Table 2: FADE-ECC Execution Time (Seconds)

File size File encryption Key manger Key encryption File upload Total

1KB 0.000958 0.02295 0.02318 3.48912 7.32628

10KB 0.001351 0.030574 0.02336 4.80971 11.00565

100KB 0.000997 0.028453 0.03497 4.09435 11.75391

1M 0.004986 0.030191 0.02353 5.46235 12.93462

10M 0.030574 0.025616 0.019398 18.53329 34.32785

Table 3: FADE Execution Time (Seconds)

File size File encryption Key manger Key encryption File upload Total

1KB 0.011967 3.647901 0.003008 2.255421 10.6916

10KB 0.016942 5.212392 0.002023 2.947587 12.9932

100KB 0.021533 5.574451 0.002091 4.155981 13.4686

1M 0.024003 7.75404 0.002093 5.233113 18.3231

10M 0.08769 9.14106 0.0019814 25.28561 41.9516

Figure 5: Comparison between the execution time of FADE and FADE-ECC

4.2 File downloading and decryption file

 At this particular stage within our model, the

individual who possesses the data proceeds to download

both the file and the initial key from the first cloud. In

addition to this, they also download the hash of the file and

the second key from the second cloud. Following this, the

individual in question selects a random value and

combines it with the keys. Subsequently, they send this

amalgamation, along with the hash of the file name, to the

key manager. The key manager then proceeds to compare

the hash with its own data and subsequently employs ECC

to decrypt it using the provided keys. The key manager

then transmits the decrypted keys back to the data owner,

who then proceeds to gather the key and decrypt the file

using ECC as well. In the FADE model, the data owner

initially sends the key along with the random value to the

key manager. The key manager then decrypts both the key

and the random value using RSA, subsequently returning

them to the data owner so that they may decrypt the file

using AES. The time associated with both of these models

is provided in Table 3 and 4, and is compared in Figure 6.

Cloud Computing Security: Assured Deletion Informatica 48 (2024) 485–496 493

Table 4: FADE-ECC execution time (seconds)

File size KM+ decryption keys File decryption Total

1KB 0.0132588 0.017235 0.0209423

10KB 0.0139636 0.017953 0.0329111

100KB 0.0150213 0.044862 0.0448623

1M 0.0130618 0.054103 0.0492492

10M 0.0120723 0.071856 0.0958753

Table 5: FADE execution time (seconds)

File size KM+ decryption keys File decryption Total

1KB 0.019984 0.0301421 0.0321423

10KB 0.026381 0.0404043 0.0534001

100KB 0.029749 0.0571117 0.064261

1M 0.027643 0.0625601 0.077583

10M 0.023937 0.0940403 0.126302

Figure 6: Comparison between the execution time of FADE and FADE-ECC

4.3 File deletion and verification phase

 In our proposed model, this particular stage is

characterized by the process of overwriting the file with a

second layer of encryption using ECC. Additionally, this

stage involves the removal of the initial encryption keys

and the associated policy. In contrast, the FADE model

entails the complete removal of the file from the cloud,

deletion of the keys from the key manager, and

elimination of the associated policy. This temporal

progression of events is highlighted in table, specifically

494 Informatica 48 (2024) 485–496 S.M. Ahmed et al.

in the time frame of the two models, as depicted in Figure

7.

Table 7: Time of assure deleting FADE-ECC

File size Key manger Total

1KB 0.159873 5.967233

10KB 0.159855 11.57982

100KB 0.169753 16.68525

1M 0.168642 22.76039

10M 0.292135 51.80828

Table 8: Time of assure deleting FADE

File size Key manger Total

1KB 0.001999 9.391458

10KB 0.290616 16.231414

100KB 0.290593 16.542681

1M 0.265314 16.563211

10M 0.385641 18.749572

Figure 7: Comparison between the execution time of FADE and FADE-ECC

 By implementing both our system and the FADE

system on the same computer, the results we obtained

showed the efficiency of our model in the encoding and

decoding phases in terms of time. This is achieved through

the use of ECC-type encryption, which features shorter

keys and stronger security measures for both the data

owner and the key manager. In contrast, FADE used AES

encryption and RSA encryption for the key manager.

From a security perspective, our model excelled in several

aspects. we used two distinct clouds and used a file

manager policy to split and distribute the keys. This

ensures that sensitive files can only be accessed if all four

parties cooperate, thus ensuring the integrity of our files

even in the event of collusion between the service

providers and the file manager, or in the event of an attack

by an external party. Moreover, in the confirmed erasure

phase, we used two confirmed erasure methods. The first

method involved overwriting the file with random

encryption and then uploading it to the cloud which would

update all its copies. The second method involved all links

Cloud Computing Security: Assured Deletion Informatica 48 (2024) 485–496 495

and keys being deleted from the key manager. Thus, our

approach provides enhanced security for sensitive data,

unlike FADE, which relies on deleting links and keys

within the file manager (KM).

5 Discussion
All the systems that have been put forward in previous

years have exhibited a myriad of robust features and

characteristics within their mechanisms aimed at the

preservation of confidential data. However, there are

certain aspects that may be deemed as weaknesses or areas

that require improvement, such as the necessity to avoid

certain practices and to adopt more potent or cutting-edge

techniques in the realm of system design and operation.

An exemplary model that served as a point of comparison

with our own proposed system is FADE, which comprises

three primary components: the data user, the file manager,

and the cloud service provider. This system navigates

through a sequence of three distinct stages: the initial

phase involves the encryption of files followed by their

upload to the cloud, then comes the stage of downloading

files and subsequent decryption, and finally, the phase of

confirmed scanning. The encryption of files in this system

is facilitated by the application of AES encryption

technology, while the encryption of the key is

accomplished using RSA technology, in addition to the

utilization of policies in conjunction with files. Contrarily,

our proposed system incorporates four essential elements:

the data owner, the file manager, cloud provider A, and

cloud provider B, all of which are intricately

interconnected in the context of the research endeavor.

The indispensability of these elements is underscored by

the fact that the research work would not be deemed

complete in their absence. Similarly, our system

progresses through three key stages, namely the

encryption phase and subsequent uploading of files, the

phase of downloading files from the cloud, decryption,

and the stage of confirmed scanning. In the encryption of

files and keys within our system, we opted for the

utilization of ECC encryption technology owing to its

reputation as the most robust form of encryption

characterized by having the smallest key size and posing

a formidable challenge in terms of code-breaking

compared to other encryption methods. Additionally, we

incorporated hashing techniques to ensure data integrity

and prevent unauthorized tampering with the data. Upon

an exhaustive evaluation of several systems within this

domain, the efficacy of a system is contingent upon how

well the encryption keys are handled and stored within the

system infrastructure or the cloud environment. Notably,

our proposed system stands out as one of the most robust

systems due to our distinctive approach to key

management and the integration of state-of-the-art

technologies in the handling of sensitive files

6 Conclusion

Assured deletion has become challenging topic in the

recent years. This paper introduces a suggested security

system to tackle concerns in cloud computing by utilizing

two separate cloud platforms, dividing encryption keys,

utilizing overwriting methods, and unlinking connections

through verified deletion. Hence, the proposed method

fulfils both secure and integral file upload/download and

assured deletion utilizing the above-mentioned

techniques.

References

[1] S. Kaushik and C. Gandhi, “Capability Based

Outsourced Data Access Control with Assured File

Deletion and Efficient Revocation with Trust

Factor in Cloud Computing,” International Journal

of Cloud Applications and Computing, vol. 10, no.

1, pp. 64–84, 2020, doi:

10.4018/IJCAC.2020010105.

[2] A. Lec Ghassan Sabeeh Mahmood, “Data Security

Protection in Cloud Computing by using

Encryption ,” 2017. [Online]. Available:

www.kujss.com

[3] A. Hameed and Ogr. Uye. O. Karan, “Cloud Data

Storage Confidentiality Using Steganography and

Visual Cryptography: A Review,” Journal of

Education and Science, vol. 32, no. 4, pp. 60–70,

Dec. 2023, doi:

10.33899/edusj.2023.140697.1370.

[4] H. Kumar, P. J. Soh, and M. A. Ismail, “Big Data

Streaming Platforms: A Review,” Iraqi Journal for

Computer Science and Mathematics, pp. 95–100,

Apr. 2022, doi: 10.52866/ijcsm.2022.02.01.010.

[5] B. Li, Y. Fu, and K. Wang, “A Review on Cloud

Data Assured Deletion,” in 2022 Global

Conference on Robotics, Artificial Intelligence and

Information Technology (GCRAIT), IEEE, Jul.

2022, pp. 451–457. doi:

10.1109/GCRAIT55928.2022.00101.

[6] J. Tian and Z. Wang, “Cloud data assured deletion

scheme based on dynamic sliding window,” Peer

Peer Netw Appl, vol. 15, no. 4, pp. 1817–1833, Jul.

2022, doi: 10.1007/s12083-022-01318-3.

[7] Y. Miao et al., “Privacy-Preserving Attribute-

Based Keyword Search in Shared Multi-owner

Setting,” IEEE Trans Dependable Secure Comput,

vol. 18, no. 3, pp. 1080–1094, May 2021, doi:

10.1109/TDSC.2019.2897675.

[8] J. Tian and T. Zhang, “Secure and effective assured

deletion scheme with orderly overwriting for cloud

data,” Journal of Supercomputing, vol. 78, no. 7,

496 Informatica 48 (2024) 485–496 S.M. Ahmed et al.

pp. 9326–9354, May 2022, doi: 10.1007/s11227-

021-04297-z.

[9] J. Ma, M. Wang, J. Xiong, and Y. Hu, “CP-ABE-

based secure and verifiable data deletion in cloud,”

Security and Communication Networks, vol. 2021,

2021, doi: 10.1155/2021/8855341.

[10] H. Ritzdorf, N. Karapanos, and S. Čapkun,

“Assited deletion of releted content,” in ACM

International Conference Proceeding Series,

Association for Computing Machinery, Dec. 2014,

pp. 206–215. doi: 10.1145/2664243.2664287.

[11] K. Q. Aziz and B. A. Mahmood, “Assured data

deletion in cloud computing: security analysis and

requirements,” Indonesian Journal of Electrical

Engineering and Computer Science, vol. 28, no. 2,

pp. 1174–1183, Nov. 2022, doi: 10.11591/ijeecs.

v28.i2.pp1174-1183.

[12] J. Hao, J. Liu, W. Wu, F. Tang, and M. Xian,

“Secure and Fine-Grained Self-Controlled

Outsourced Data Deletion in Cloud-Based IoT,”

IEEE Internet Things J, vol. 7, no. 2, pp. 1140–

1153, Feb. 2020, doi:

10.1109/JIOT.2019.2953082.

[13] S. M. Khudaier and B. A. Mahmood, “A Review

of Assured Data Deletion Security Techniques in

Cloud Storage,” Iraqi Journal of Science, vol. 64,

no. 5, pp. 2492–2511, 2023, doi:

10.24996/ijs.2023.64.5.33.

[14] Y. Tang, P. P. C. Lee, J. C. S. Lui, and R. Perlman,

“FADE: Secure Overlay Cloud Storage with File

Assured Deletion.”

[15] Y. Luo, M. Xu, S. Fu, and D. Wang, “Enabling

assured deletion in the cloud storage by

overwriting,” in SCC 2016 - Proceedings of the 4th

ACM International Workshop on Security in Cloud

Computing, Co-located with Asia CCS 2016,

Association for Computing Machinery, Inc, May

2016, pp. 17–23. doi: 10.1145/2898445.2898447.

[16] Z. Igarramen and M. Hedabou, “FADETPM:

Novel Approach of File Assured Deletion Based on

Trusted Platform Module,” 2019, pp. 49–59. doi:

10.1007/978-3-319-97719-5_4.

[17] Z. Xie, W. Fu, J. Xu, and T. Zhu, “Assured

Deletion: A Scheme Based on Strong

Nonseparability,” J Sens, vol. 2022, 2022, doi:

10.1155/2022/9691724.

[18] G. Wang and Y. Luo, “A Review on Assured

Deletion of Cloud Data Based on Cryptography,”

Procedia Comput Sci, vol. 187, pp. 580–585, 2021,

doi: 10.1016/j.procs.2021.04.111.

[19] S. B. Joshi and S. D. Panchal, “A Survey on

Assured Data Deletion in Cloud Storage,”

International Journal of Computer Sciences and

Engineering, vol. 7, no. 6, pp. 548–553, Jun. 2019,

doi: 10.26438/ijcse/v7i6.548553.

[20] S. Kumar Verma and D. Ojha, “A Discussion on

Elliptic Curve Cryptography and Its Applications,”

2012. [Online]. Available: www.IJCSI.org

[21] M. Ma, “Comparison between RSA and ECC,” in

2021 2nd International Seminar on Artificial

Intelligence, Networking and Information

Technology (AINIT), IEEE, Oct. 2021, pp. 642–

645. doi: 10.1109/AINIT54228.2021.00129.

[22] R. Martino and A. Cilardo, “A Configurable

Implementation of the SHA-256 Hash Function,”

2020, pp. 558–567. doi: 10.1007/978-3-030-33509-

0_52.

[23] S. R. Prasanna and B. S. Premananda, “Performance

Analysis of MD5 and SHA-256 Algorithms to

Maintain Data Integrity,” in 2021 International

Conference on Recent Trends on Electronics,

Information, Communication & Technology

(RTEICT), IEEE, Aug. 2021, pp. 246–250. doi:

10.1109/RTEICT52294.2021.9573660.

[24] R. Saha, G. Geetha, G. Kumar, and T. Kim, “RK-

AES: An Improved Version of AES Using a New Key

Generation Process with Random Keys,” Security and

Communication Networks, vol. 2018, pp. 1–11, Nov.

2018, doi: 10.1155/2018/9802475.

[25] A. H. Thiziers, H. Cisse, J. T., and B. Michel,

“Enhanced, Modified and Secured RSA

Cryptosystem based on n Prime Numbers and Offline

Storage for Medical Data Transmission via Mobile

Phone,” International Journal of Advanced Computer

Science and Applications, vol. 10, no. 10, 2019, doi:

10.14569/IJACSA.2019.0101050.

[26] Y. Tang, P. P. C. Lee, J. C. S. Lui, and R. Perlman,

“Secure Overlay Cloud Storage with Access Control

and Assured Deletion,” IEEE Trans Dependable

Secure Comput, vol. 9, no. 6, pp. 903–916, Nov.

2012, doi: 10.1109/TDSC.2012.49.

[27] Shahla Uthman, “An Improved RSA based on Double

Even Magic Square of order 32,” Kirkuk University

Journal /Scientific Studies (KUJSS), vol. 12, no. 1992

– 0849, 2017.

