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In routing protocols for wireless sensor networks, the energy depletion of cluster head nodes and centre 

nodes is too fast, resulting in a short network life cycle. Aiming at the problem of excessive energy 

depletion of cluster head nodes and centre nodes in clustering routing protocols for wireless sensor 

networks, a clustering routing protocol based on genetic algorithm and Astar algorithm (GADM-A*) is 

proposed. Firstly, in the process of selecting cluster head nodes, the optimal cluster head combination is 

selected by optimising the genetic algorithm and improving the goodness-of-fit function. This is achieved 

by considering five factors: the energy level of nodes, the number of times a node has become a cluster 

head, the distance between the cluster heads, the distance between the cluster head and ordinary nodes, 

and the distance between the cluster head and the base station. Secondly, the Astar algorithm, which is a 

heuristic function of node energy and transmission distance, is employed to select the optimal path for 

inter-cluster routing. Finally, the sensor network transmits the information. The GADM-A* algorithm 

extends the network lifetime by balancing the overall energy consumption of the network. Simulation 

results show that the proposed protocol has 53% network energy remaining after 1000 rounds of data 

transmission, which is an average of 34.3% improvement in remaining energy over existing algorithms. 

The node mortality rate is 12%, which is 45% lower than the average mortality rate of the remaining 

algorithms. 

Povzetek: Študija predlaga protokol za usmerjanje grozdov v brezžičnih senzorskih omrežjih, ki temelji na 

genetskem algoritmu in algoritmu Astar (GADM-A*). Protokol podaljša življenjsko dobo omrežja in 

zmanjša porabo energije. 

 

1 Introduction  

A wireless sensor networks are composed of a large 

number of sensor nodes, the main function is that 

monitors the information of the target area and transmits 

the information to the base station [1]. In the context of 

the Internet of Things (IoT), there are a multitude of 

potential application scenarios. These include 

applications in marine, aerospace, military, agricultural, 

and disaster relief contexts, among others. The low cost 

and ease of deployment of sensor nodes enables them to 

cope with a wide range of harsh environments. It can be 

deployed by drones in areas that are inaccessible or 

difficult for humans to reach [2-3]. Wireless sensor 

networks offer convenient data collection and 

transmission services, yet they also face numerous 

challenges. For instance, wireless transmission is 

susceptible to interference, and node resources are 

constrained [4]. For the security problems in the 

network, some scholars have used the bio-heuristic 

algorithm to deal with and solve the security problems 

of wireless sensors [5]. Due to the limited energy of 

nodes, the life cycle is short. Therefore, it is a good 

research direction. Through clustering algorithm, the 

network life cycle can be extended by optimization [6]. 

Selecting cluster heads by clustering nodes provides an 

effective method to prolong the lifetime of wireless 

sensor networks [7]. The cluster head selection 

algorithm typically employs three distinct technologies 

[8]. Many scholars have conducted research on this and 

achieved many results. The first model is that the 

traditional routing protocols are used for node selection 

and network optimization.  

Wendi Rabiner Heinzelman first proposed the LEACH 

protocol, which randomly generates cluster heads with a 

certain probability p. The data fusion by aggregating 

nodes reduces energy consumption and prolongs 

network life cycle, and the cluster head directly 

transmits data to the base station in a single hop mode 

[9]. Chafi Safia Amina proposed the W-LEACH 

protocol by improving and optimizing the leach protocol. 

This protocol extends the life cycle of wireless sensor 

networks [10]. Gangal Volkan combined the analytic 

hierarchy process (AHP) with the LEACH protocol and 
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put forward the LEACH-AHP protocol, which maintains 

the matrix in nodes, including the potential threshold 

representing the probability of the node serving as the 

cluster head [11]. This kind of protocol reduces 

communication energy consumption by clustering nodes 

and prolongs network life. The disadvantage of this type 

of algorithm is that as the computational load increases, 

the performance is not as expected. 

The second type of approach is that intelligent 

algorithms were introduced into cluster head selection in 

wireless sensor networks, providing a promising 

approach [12]. Sajwan Mohit proposed a multi-hop and 

multi-path routing protocol for underwater wireless 

sensor networks based on meta-heuristic. GAER-UWSN 

used the multi-path routing technology of a genetic 

algorithm to select the best clustering method with the 

lowest energy consumption [13]. Dinesh K. adopted 

grey wolf optimization to provide efficient clustering of 

nodes and adopted improved sea lion optimization to 

perform efficient routing to solve energy optimization 

and security problems [14]. A kind of enhanced superior 

particle swarm optimization algorithm for cluster 

formation is introduced by K.Solayan, and an energy 

and life cycle aware routing based on trusted cluster is 

proposed through this algorithm [15]. Jiang Chang-Jiang 

proposed an energy-balanced two-layer clustering 

routing TL-EBC protocol for wireless sensor networks 

protocol based on the particle swarm optimization 

algorithm [16]. Muntather Almusawi scholars proposed 

the CGWOA protocol by introducing chaos algorithm 

and grey wolf optimization algorithm, which reduced 

energy consumption by reducing the transmission 

distance of network nodes [17]. Sathyapriya Loganathan 

scholars proposed PSOE algorithm for cluster head 

selection by particle swarm optimization algorithm to 

reduce network transmission energy consumption [18]. 

These algorithms choose cluster heads more reasonably 

through intelligent algorithms, this improves the balance 

of energy consumption in wireless sensor networks. The 

disadvantage of this type of algorithm is that the 

computation time is increased. 
The third mode is that nonuniform protocols are used to 

improve algorithm performance. In heterogeneous 

wireless sensor networks, verma Axel and other scholars 

put forward the ECSSEEC protocol based on enhanced 

cost and sub-era [19]. Pal. Raju put forward a 

multi-objective binary Grey wolf optimizer to find 

clustering methods in heterogeneous networks, and 

achieved five goals: maximizing the overall cluster head 

energy, minimizing the compactness of cluster heads, 

minimizing the number of cluster heads, minimizing the 

energy consumption from non-cluster heads to clusters, 

and maximizing cluster separation [20]. Das Rahul 

proposed a large-scale energy-aware trust optimization 

algorithm for cluster head selection and malicious node 

detection. The harmonic search genetic algorithm was 

originally used to select cluster heads according to 

energy, trust, distance and density. By considering the 

trust value, this method avoids choosing malicious 

nodes as cluster heads, and then uses energy-aware trust 

estimation models within and between clusters to detect 

malicious nodes, which depends on two modules: direct 

trust and indirect trust between clusters and within 

clusters [21]. Chengfa Li suggested to balance the 

problem of uneven energy consumption in the network 

by proposing the EEUC protocol of different size 

clusters [22]. The algorithms in question have 

demonstrated efficacy in heterogeneous sensor networks. 

The advantage of this type of algorithm is that the 

network performance has been effectively improved, but 

the disadvantage is its weak universality. The 

comparison between algorithms is shown in Table 1. 

 

Table 1: Comparison of the different types of protocols 

involved. 

Mode Algorithm Vantage Drawbacks 

probabil

iy 

protocol 

LEACH 

The algorithm is 

simple and selects 

cluster heads in a 

random manner. 

Random selection of 

cluster heads results 

in irrational cluster 

head selection. 

W-LEACH 

LEACH-AH

P 

group 

intellige

nce 

protocol 

TL-EBC 

More rational 

selection of cluster 

heads with group 

intelligence. 

Cluster intelligence is 

used to select cluster 

heads, and the 

average distribution 

of clusters causes the 

centre node to die too 

quickly. 

CGWOA 

PSOE 

nonunif

orm 

protocol 

ECSSEEC 

The number of 

nodes within the 

cluster is not the 

same, which can 

avoid the rapid 

death of the central 

node. 

Non-uniform 

clustering may result 

in too large a gap in 

the number of nodes 

between clusters. 

MBGWO 

LSEAOA 

EEUC 

 

The different clustering routing protocols proposed by 

the above scholars can reduce the energy consumption 

of the network and extend the network life cycle, but fail 

to select the cluster head combination and cluster head 

to base station path transmission nodes reasonably 

during the protocol design process. In order to solve 

these problems, this paper proposes a genetic algorithm 
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based clustering routing protocol GADM-A*. The 

GADM-A* algorithm can well balance local and 

optimal characteristics. It is crucial to identify the most 

optimal node as the cluster head among all nodes, 

ensuring that each cluster head node possesses the 

highest energy, the shortest distance to the base station, 

the shortest distance from node to cluster head, and the 

lowest number of times to become cluster head. In the 

clustering stage, nodes are clustered according to three 

criteria: the distance between nodes and base stations, 

the distance between cluster heads and base stations, and 

the energy of cluster heads. In the inter-cluster routing 

stage, the heuristic functions of the distance and energy 

of forwarding nodes are designed based on the Astar 

heuristic search algorithm. In order to prevent the hot 

spot phenomenon of nodes, some of the nodes in the 

GADM-A* algorithm transmit directly to the base 

station. The forwarding nodes include cluster head 

nodes and ordinary nodes, which ensures a more 

balanced energy loss and prevents the nodes from dying 

too quickly, thus extending the life cycle of the network. 

 

2 System model 

2.1 Network structure model 

The wireless sensor network is widely used in the 

industrial fields Internet of Things to accurately 

calculate the information of nodes and ensure that the 

base station receives and sends data continuously and 

stably [23-24]. Nodes can choose the appropriate 

transmission power independently according to the 

energy consumption model to avoid the influence of bad 

weather and human factors. The network structure 

model adopted in this paper is shown in Figure 1.  

 
Figure 1: Network structure model. 

 

The network structure needs to meet the following 

specific requirements: 

a) N sensor nodes are in a random dropping area M×M, 

and the node positions after dropping are fixed. 

b) Sensor nodes have unique and different ID. 

c) The base station has unlimited energy and no signal 

interference in the area. 

d) The power sent and received by each sensor node is 

controllable. 

e) All sensors have the same properties and their 

positions remain unchanged relative to the base station. 

 

2.2 Energy consumption model 

This paper employs the first-order wireless 

communication energy consumption model, which is 

dependent on the signal transmission distance. This 

distance can be categorized into two distinct models: the 

short-distance free space model and the long-distance 

multi path model[25]. The first-order wireless 

communication energy consumption model is shown in 

formulae  (1) ~ (3). 

𝐸𝑇𝑥(𝑘, 𝐿) = {
𝑘𝐸𝑒𝑙𝑒𝑐 + 𝑘𝜀𝑓𝑠𝐿2, 𝐿 < 𝐿0

𝑘𝐸𝑒𝑙𝑒𝑐 + 𝑘𝜀𝑚𝑝𝐿4, 𝐿 ≥ 𝐿0

          (1) 

𝐿0 = √
𝜀𝑓𝑠

𝜀𝑚𝑝
                                (2) 

𝐸𝑅𝑥(𝑘, 𝐿) = 𝑘𝐸𝑒𝑙𝑒𝑐                           (3) 

In formulae (1) ~ (3), the ETX is the energy consumption 

for sending k bit data. The Eelec is the energy 

consumption for sending and receiving 1 bit data. The 

εfs is the loss factor of the free space model. The εmp 

is the energy loss factor of the multi path attenuation 

model [26]. L is the data transmission distance and ERX 

is the energy consumption for receiving k bit data. 

 

3 Materials and methods 

In the GADM-A* algorithm, the optimal individual is 
obtained through the continuous iterative updating of the 
population, whereby the fitness function values of each 
round of the population are compared [27-28]. This 
algorithm is very similar to the clustering algorithm, and 
the wireless sensor network and GADM-A* algorithm 
have similar correspondence, as shown in Table 2. 

Table 2: Similar correspondence between wireless 

sensor networks and GADM-A*. 

WSN GADM-A* 

Sensor node number genetic sequence 

Node group 
Individual chromosome 

sequence 

Cluster head node 
combination 

Individuals with the optimal 
fitness function 

Combination of all 
pre-selected cluster head 

nodes 
population 

 

 

The detailed process of the algorithm is given below: 

Step 1. Population initialization 
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P(t) = {P1(t), P2(t), ..., Pn(t)} represents a population 

that has been iterated for t times and contains n 

individuals. Each individual Pi(t) can be expressed as a 

set of chromosomes, in which each gene represents a 

node Nk. Population individuals Pi(t) = {N1(t), N2(t), ..., 

Nk(t)}. 

Step 2. Fitness function 

F=fitness(Pi(t)) is the fitness value of each individual 

Pi(t) at time t, which is used to evaluate individual 

problem-solving ability. 

Step 3. Selection operation 

S(P(t)) means selecting individuals from the current 

population P(t) to form a new population. The selection 

process is usually based on the principle of "survival of 

the fittest", and the fitness value Si and genes {CH22(t), 

CH23(t) ...} of individuals with the highest fitness are 

preserved. 

Step 4. Full crossover operation 

C(pi(t), pj(t)) means that individual pi(t) and 

individual pj(t) are crossed to generate new individuals. 

Individual pi (t) = {CH1 (t), CH12 (t), ..., CHk (t)} and 

individual pj (t) = {CH11 (t), CH2 (t), ..., CHk (t)} adopt 

the intersection mode as a multi-point discontinuous 

intersection. The pi(t) and pj(t) individuals exchange 

gene fragments that are not included in each other by 

one-by-one comparison. After cross transformation, we 

have individuals PI (t) = {CH11 (t), CH2 (t), ..., CHK (t)} 

and individuals PJ(t) = {CH1 (t), CH12 (t), ..., CHK (t)}. 

Step 5. Double mutation operation 

M(pi(t)) means that individual pi(t) is mutated to 

introduce new genetic information. Individual Pi(t) 

randomly changes individual genes with a certain 

probability in the process of free mutation to increase 

the diversity of the population. Free mutation operation 

is a random change of individual genes, with individual 

pi (t) = {CH13 (t), CH24 (t), ..., CHk (t)}. Evolutionary 

mutation operation is to preserve the excellent genes in 

the genes of the excellent individuals in the previous 

population, and the mutation is in the excellent direction, 

with individuals pi (t) = {CH22 (t), CH23 (t), ..., CHk (t)}. 

Step 6. New generation population 

P(t+1) = {...} represents a new generation of 

population generated by selection, crossover and 

mutation operations. 

Step 7. Terminal condition 

The algorithm repeats the operations from step 2 to 

step 6 until the maximum number of iterations is 

reached. 

Step 8. The GADM-A* algorithm output 

The optimal individual fitness value and gene 

sequence, that is, the cluster head combination, are 

obtained. 

Step 9. Cluster entry operation 

By calculating and comparing the fitness function, 

ordinary nodes select the nodes that enter and leave the 

cluster for clustering operation. 

Step 10. Data transmission operation 

The initial node selects the jump node through the 

heuristic search Astar algorithm for data transmission. 

The GADM-A* algorithm has the global search ability 

of a genetic optimization algorithm and the ability to 

deal with complex problems [29]. The GADM-A* 

algorithm employs an iterative process of population 

update, fitness value comparison, and selection of the 

optimal individual, defined as the individual with the 

smallest fitness value. Secondly, ordinary nodes enter 

the cluster by calculating the fitness value of the cluster 

head. Finally, the inter-cluster routing transmission is 

carried out by Astar algorithm. The detailed flow of the 

GADM-A* algorithm is shown in Figure 2. 

 

Figure 2: GADM-A* algorithm flow chart. 
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4 Algorithm implementation 

4.1 Optimal cluster head size 

Node energy consumption is an important criterion for 

evaluating network quality, and the number of cluster 

heads plays a vital role in the whole network [30]. In 

GADM-A* algorithm, the network energy consumption 

is divided into ordinary nodes transmitting cluster head 

E1, ordinary nodes directly transmitting base station E2, 

cluster head nodes receiving intro-cluster node data E3, 

cluster head nodes fusing data E4 and cluster head 

nodes sending data to the base station E5. The nodes 

deployed in the a×a model are evenly distributed, (N-n) 

nodes are evenly distributed in CK circular clusters, and 

n nodes are directly transmitted to the base station, so 

the energy consumption for one round of network 

transmission, is given as formula (4): 

 

𝐸𝐴𝐿𝐿 = CK ∗ (𝐸1 + 𝐸3 + 𝐸4 + 𝐸5) + 𝐸2           (4) 

 

The energy consumption of common nodes in each 
cluster is given as formula (5): 

𝐸1 = (𝑘 ∗ 𝐸𝑒𝑙𝑒𝑐 + 𝑘 ∗ 𝜀𝑓𝑠 ∗ 𝑑𝑐𝑛𝑡𝑜𝐶𝐻
2 ) ∗ ((𝑁 − 𝑛) 𝐶𝐾⁄ − 1)     (5) 

Ordinary nodes directly transmit the energy 
consumption of base stations, which is given as formula 
(6) : 

 

𝐸2 = (𝑘 ∗ 𝐸𝑒𝑙𝑒𝑐 + 𝑘 ∗ 𝜀𝑓𝑠 ∗ 𝑑𝑐𝑛𝑡𝑜𝐶𝐻
2 ) ∗ 𝑛          (6) 

 

The cluster head node receives the energy consumption 
of nodes in the cluster, which is given as formula (7): 

 

𝐸3 = 𝑘 ∗ 𝐸𝑒𝑙𝑒𝑐((𝑁 − 𝑛) 𝐶𝐾⁄ − 1)               (7) 

 

The cluster head node fuses the energy consumption of 
nodes in the cluster, which is given as formula (8) 

 

𝐸4 = 𝑘 ∗ 𝐸𝐷𝐴((𝑁 − 𝑛) 𝐶𝐾⁄ )                    (8)   

 

Energy consumption transmitted from cluster head node 
to base station is given as formula (9): 

 

𝐸5 = 𝑘 ∗ 𝐸𝑒𝑙𝑒𝑐 + 𝑘 ∗ 𝜀𝑓𝑠 ∗ 𝑑𝐶𝐻𝑡𝑜𝐵𝑆
2                (9) 

 

In formula (9), dCHtoBS is the distance from the cluster 
head node to the base station. 

Distance from common node to cluster head node in 
each cluster is given formula (10): 

𝑑𝑐𝑛𝑡𝑜𝐶𝐻 = √𝜌 ∗ ∬(𝑥2 + 𝑦2) 𝑑𝑥 𝑑𝑦 = 𝑎2 √2𝜋 ∗ 𝐶𝐾⁄       (10) 

Considering the above-mentioned formula (4)-(10), and 
calculating the CK value when EALL is minimized by 
deriving the overall energy consumption of the network 
in one round, the optimal number of cluster heads CK is 
got by formula(11) given as follows: 

CK = √(𝑁 ∗ 𝜀𝑓𝑠 ∗ 𝑎2) (2𝜋 ∗ (𝜀𝑓𝑠 ∗ 𝑑𝐶𝐻𝑡𝑜𝐵𝑆
2 − 𝐸𝑒𝑙𝑒𝑐))⁄   (11)                  

4.2 Initial stock selection 

Good population initialization allows the GADM-A* 

algorithm to start searching from several different initial 

starting points, which helps the algorithm to explore 

multiple regions of the solution space, thus increasing 

the likelihood of finding a globally optimal solution. If 

the individuals in the initial population are too 

concentrated, the algorithm may quickly converge to a 

locally optimal solution while ignoring other potentially 

better solutions. A diverse initial population helps to 

avoid this. Proper initialization of the population allows 

the algorithm to find better solutions at an early stage, 

thus speeding up the convergence of the whole search 

process. Therefore, initializing the population is an 

important step in the GADM-A* algorithm, which uses 

the Kmeans clustering algorithm for clustering in order 

to have a more accurate optimal solution for this 

algorithm. The initial population nodes are selected by 

the centre position of each clustered group. The 

calculation of cluster centre positions is based on the 

application of formula (12) and (13). 

𝑿𝒎 = ∑ 𝑿𝒕
𝒊=𝟎 𝒕⁄                              (12) 

𝒀𝒎 = ∑ 𝒀𝒕
𝒊=𝟎 𝒕⁄                              (13) 

 

4.3 Design fitness function 

In order to optimize the selection of cluster heads and 

improve the network's lifespan, once the optimal 

number of cluster heads has been determined, the fitness 

function is set according to the state of nodes and the 

position of the pre-selected cluster heads [31]. The 

cluster head node is responsible for the data forwarding 

of ordinary nodes. Therefore, the selection of cluster 

head should have the characteristics of high energy, 

reasonable location and less times of becoming a cluster 

head [32]. The fitness function of this algorithm is 

designed from the following five aspects: the energy of 

nodes, the number of times nodes become cluster heads, 

the distance between cluster heads, the distance between 

cluster heads and each node, and the distance between 

cluster heads and base stations. 

The energy level of the node itself: it is the reciprocal of 

the remaining energy of the current node. The cluster 

head node is the key condition to support the network 

operation[33]. When the energy of the node is high, the 
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reciprocal is smaller, and the node can forward data 

better under the same conditions. It should be selected 

as the cluster head, as formula (14) given: 

𝑓1 = 1 𝐸𝑁⁄                                  (14) 

The number of times a node becomes a cluster head: 

Nodes serving as cluster heads for many times will lead 

to rapid energy consumption and death of nodes, and 

reduce the network life cycle [34]. To prevent a node 

from frequently becoming a cluster head excessively, 

the number of times a node becomes a cluster head can 

be represented by G. Furthermore, the probability of 

being selected as a cluster head should be increased if 

the number of times a node becomes a cluster head is 

low, as indicated by formula (15) : 

𝑓2 = 𝐺𝑁                                   (15) 

Distance level between cluster heads: it is the reciprocal 

of the sum of distances between cluster head nodes. A 

cluster head's position determines the data transmission 

distance of nodes entering the cluster. Cluster heads 

should be evenly dispersed to reach the distance of all 

nodes, as given in formula (16) : 

𝑓3 = 1 ∑ 𝑑𝑖𝑠(𝐶𝐻𝑖 , 𝐶𝐻𝑗)⁄                       (16) 

Distance between cluster head and each node: the sum 

of the distances from cluster head node to all nodes are 

calculated. Energy consumption in the network cycle is 

mainly determined by node transmission. The sum of 

the positions of all nodes in the cluster should be 

smallest to minimize the energy consumption of data 

transmission, as given by formula (17): 

𝑓4 = ∑ 𝑑𝑖𝑠(𝑁𝑗 , 𝐶𝐻𝑖)                         (17) 

Distance from cluster head to the base station: the sum 

of distances from all cluster head nodes to the base 

station BS is calculated. The transmission of the cluster 

head node is the energy consumption of the second part 

of the network cycle, and the distance from the cluster 

head node to the base station determines the energy 

consumption of the cluster head node [35]. Therefore, 

the sum of the distances from the cluster head node to 

the base station is the smallest, and the information can 

be transmitted to the base station with the least energy 

consumption, as given in formula (18) : 

𝑓5 = ∑ 𝑑𝑖𝑠( 𝐶𝐻𝑖 , 𝐵𝑆)                         (18) 

Based on five factors: node energy, the number of 

cluster heads, the distance between cluster heads, the 

distance between cluster heads and nodes, and the 

distance between cluster heads and base stations, the 

fitness function is designed by weight control, which is 

given as formula (19). 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = 𝛼1𝑓1 + 𝛼2𝑓2 + 𝛼3𝑓3 + 𝛼4𝑓4 + 𝛼5𝑓5          (19) 

In formula (19), α1, α2, α3, α4and α5 are weight factors 

and satisfy ∑ αi = 1. 

 

4.4 Weight value of fitness function 

The fitness function needs to determine the weight of 

each sub-function. In previous clustering algorithms, the 

weights are typically selected based on experience and 

then adjusted through different environments [36]. In 

this algorithm, the weights of sub-functions are 

determined by the Analytic Hierarchy Process (AHP), 

which can determine the weights of sub-functions more 

scientifically, thus improving the accuracy of fitness 

function values. The analytic hierarchy process is as 

follows: 

Step1. Constructing judgment matrix 

In GADM-A* algorithm, five sub-functions are 

respectively denoted as A1, A2, A3, A4 and A5. A1 

represents the energy level of nodes, A2 represents the 

frequency of cluster heads, A3 represents the sum of 

distances between cluster heads, A4 represents the sum 

of distances between cluster heads and each node, and 

A5 represents the sum of distances between cluster 

heads and base stations [37]. Then, all the sub-functions 

are compared in pairs to determine their relative 

importance. A judgment matrix is constructed as shown 

in Table 3. 

Table 3: Judgment matrix table. 

 A1 A2 A3 A4 A5 

A1 1 3 3 1/2 2 

A2 1/3 1 1/3 1/2 1/2 

A3 1/3 3 1 2 1/2 

A4 2 2 1/2 1 1/2 

A5 1/2 2 2 2 1 

 

Step2. The characteristic root λmax with the largest 

absolute value of the matrix and the characteristic vector 

corresponding to λmax are calculated. 

Through the above matrix calculation, the characteristic 

root with the largest absolute value is λmax，and its 

corresponding feature vector is (𝑎 , 𝑏 , 𝑐 , 𝑑 , 𝑒)𝑇. 

Step3. The feature vector is processed to make the sum 

of the elements of the processed feature vector equal to 

1. The calculation process is shown in formulas (20) ~ 

(24). 

 

a/(a + b + c + d + e) = 𝛼1                (20) 

b/(a + b + c + d + e) = 𝛼2                (21) 

c/(a + b + c + d + e) = 𝛼3                (22) 

d/(a + b + c + d + e) = 𝛼4                (23) 

e/(a + b + c + d + e) = 𝛼5                (24) 

 

The weights processed by AHP are 𝛼1,𝛼2,𝛼3,𝛼4and 𝛼5, 
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and satisfy the following requirements ∑ 𝛼𝑖 = 1. 

The improved fitness function enables the calculation of 

the functions of all individuals, with the gene sequence 

of the best individual being selected. Flow chart of the 

algorithm Function 1 is shown in the Table 4. 

 

 

Table 4: Improved cluster head node selection. 

Function 1: Select cluster heads according to the 

improved fitness function. 

Begin: 

    Initializing network nodes and initializing the 

number of network populations. 

        Calculate the fitness value of population 

individuals, and keep the individual gene and 

fitness value with the minimum fitness value. 

            While t<tmax do. 

                 The whole population crosses 

C(pi(t), pj(t)). 

                 Individual variation M(pi(t)) of all 

populations. 

                 Update population. 

                 Calculate the fitness value of the 

new population. 

                 Update Individual gene with 

minimum fitness value and fitness 

value. 

                 t = t + 1. 

           return Individual gene with minimum 

fitness value. 

End 

 

4.5 Ordinary node into clusters 

The purpose of common nodes into clusters is that the 

energy consumption for direct data transmission are 

reduced. And it is clear from the energy model that the 

consumption is mainly due to distance. Therefore, the 

GADM-A* algorithm reduces the energy consumption 

by preventing the nodes from occurring transmission 

away from the base station. The mathematical median 

line theorem is as shown in Figure 3.  

 

Figure 3: Median line. 

 

 

When the ordinary node is located on the median line of 

the link from the cluster head node to the base station, 

the distance from the ordinary node to the cluster head 

and base station is the same. Therefore, when d3>d1/2 

ordinary nodes will perform cluster head selection 

operation through algorithm Function 2. 

The clustering ordinary nodes can reduce the energy 

consumption of direct data transmission. From the 

energy consumption model, it can be observed that the 

energy consumption is mainly affected by the distance 

factor [38]. Therefore, this algorithm reduces energy 

consumption by preventing nodes from transmitting far 

away from the base station. As shown in Figure 4, the 

cluster head node CH2 will be selected first when the 

distance d3 from the common node to the base station is 

greater than the distance d2 from the cluster head node 

CH2 to the base station. Although it can be seen that the 

distance d4 from the common node to the cluster head 

node CH1 is smaller than the distance d5 from the cluster 

head node CH2, the cluster head node {CH2…} of the 

common node will be pre-selected with less energy. If 

the pre-selected cluster head set is empty, the node data 

is directly sent to the base station. 

 
Figure 4: Cluster head selection model of common 

nodes. 

 

Through the fitness function value of cluster head nodes, 

the pre-selected cluster head with the minimum value is 

compared, i.e., the cluster head node of ordinary 

nodes[39]. The fitness function of this algorithm is 
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shown in formula (25) given. 

F = 𝛽1E + 𝛽2dis(N, CH)                       
(25)  

In formula (25), dis(N,CH) indicates the distance from 

the common node to the pre-selected cluster head node, 

and E represents the energy of the pre-selected cluster 

head node in the current round. 𝛽1 and 𝛽2 are weight 

influencing factors and satisfy 𝛽1 + 𝛽2 = 1 . The 

weights are calculated by AHP as β1 = 0.6 and β2 =
0.4. 

According to the improved fitness function, the 

algorithm Function 2 flow is shown in Table 5. 

Table 5: Ordinary node clustering. 

Function 2: According to the improved fitness function, 

ordinary nodes select appropriate cluster heads for 

clustering operation. 

Begin: 

  Obtaining the cluster head node set in algorithm 

Function 1. 

  if  Meet the conditions of pre-selecting cluster heads 

for ordinary nodes. 

       The cluster head is put into the reselected 

cluster head set. 

    Else. 

       Ordinary nodes are put into the set of direct 

transmission base stations. 

    End. 

    Calculate the fitness value of the pre-selected 

cluster head. Ordinary nodes select the cluster head 

node and perform cluster entry operation. 

End. 

 

4.6 Node data transfer based on Astar 
algorithm 

Data transmission is the main energy consumption in 

wireless sensor networks and cannot be avoided 

altogether. Therefore, the energy consumption can only 

be as minimal as possible. From the trilateral 

relationship of obtuse triangle, it is known that the 

square of the longest side is greater than the sum of the 

squares of the other two sides. Therefore the proposed 

algorithm uses multiple hops for data transmission. 

In the course of routing, the Astar algorithm and 

heuristic search are used to select transmission paths and 

reach the destination base station by finding the 

minimum cost [40]. The selection of neighbor nodes in 

this algorithm is the same as pre-selecting cluster heads in 

the clustering algorithm. Figure 5 shows the neighboring 

nodes {L1 ...} of the starting node n. If the neighbor 

node is empty, the base station is directly transmitted. 

 
Figure 5: Neighbor node selection model. 

 

The heuristic function of neighbour nodes enables the 

comparison of the neighbour nodes with the minimum 

value, namely the next hop node of the starting node 

[41]. The heuristic function is shown in formula (26). 

F = 𝛾1𝐸 + 𝛾2𝑑𝑖𝑠(𝑁, 𝐿) + 𝛾3𝑑𝑖𝑠(𝐿, 𝐵𝑆)           
(26)  

In formula (26), E represents the energy of neighboring 

nodes, dis(𝑁, 𝐿)  represents the distance from the 

starting node to neighboring nodes. And the dis(𝐿, 𝐵𝑆) 

represents the distance from neighboring nodes to the 

base station.  𝛾1 , 𝛾2  and 𝛾3  are weight influencing 

factors and satisfy 𝛾1 + 𝛾2 + 𝛾3 = 1. The weights of 

this algorithm are calculated by AHP as 𝛾1 = 0.55, 

𝛾2 = 0.3 and 𝛾3 = 0.15. 

Based on the improved heuristic function, the flow of 

the Astar algorithm Function 3 is shown in Table 6. 

 

Table 6: Inter-cluster routing transmission. 

Function 3: Routing transmission between clusters according 

to the improved heuristic function. 

Begin:  

    The cluster head node set and the direct transmission set 

in the acquisition algorithm 1 are merged into the initial 

node set. 

    while Starting node ≠ base station. 

       If  Meet the condition of neighbor nodes 

          Ordinary nodes are put into the set of neighboring 

nodes. 

       End. 

If  Neighbor node set is empty. 

The originating node directly transmits the base 

station,break. 
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       Else. 

           Calculate the heuristic function of neighbor 

nodes, select the next hop node and transmit 

data. 

       End. 

    End.   

End. 

 

5 Experimental and data analysis 

5.1 Experimental parameter setting 

In order to test the simulation effect of the GADM-A* 

algorithm in prolonging the network life cycle, the 

algorithm is compared and analyzed on the MATLAB 

R2023b platform [42-43]. The experiments 

demonstrated the superiority of the GADM-A* 

algorithm in terms of energy consumption, number of 

dead nodes and number of surviving nodes of the 

network system, when compared to the LEACH 

protocol with threshold random selection of cluster 

heads, EEUC protocol with non-uniform clustering and 

PL-EBC protocol based on Particle Swarm Optimization 

Algorithm, CGWOA protocol based on Grey Wolf 

Optimization Algorithm and PSOE protocol. From the 

first-order wireless communication energy consumption 

model (1) ~ (3), L0 = 87 can be calculated. Assuming 

that the experimental area is uniformly divided into 100 

blocks and each node is located at the center of each cell 

block, the 100 nodes are randomly distributed within the 

800 m × 800 m experimental simulation area. The 

experimental simulation area of 800 m × 800 m can be 

used for the communication between the two modes. 

The experimental area can better contain the free space 

and multi-path fading communication mode. The base 

station is located in the center of the area. The optimum 

number of cluster heads can be obtained by formula (11), 

k = 0.04 * n. The specific parameters are shown in 

Table 7.  

 

Table 7: Experimental parameter table. 

parameter numerical value 

Number of network nodes (units) 100 

Network area size/m2 800×800 

Energy loss coefficient of free space 

model(𝑝𝑗 𝑏𝑖𝑡⁄ /𝑚) 
10 

Energy loss coefficient of multi-path 

attenuation model(𝑝𝑗 𝑏𝑖𝑡⁄ /𝑚2) 
0.0013 

Node initial energy 𝐸0 𝐽⁄  3 

Population iteration times 30 

Network operation times 1000 

The simulation system is designed as shown in Figure 6. 

 

Figure 6: System simulation results. 

 

5.2 Analysis of system energy change 

The residual energy of wireless sensor network system 
reflects the length of the network life cycle and indicates 
that the more the residual energy, the longer the network 
life cycle [44]. The network energy of the six algorithms 
changes as a whole, as shown in Figure 7: 

 

Figure 7: System residual energy change. 

 

The LEACH protocol consumes all the energy in round 

189, the PL-EBC protocol has 16% energy remaining in 

round 1000. And the EEUC protocol has 23% energy 

remaining in round 1000, the CGWOA and PSOE 

protocols respectively have 30% and 40% energy 

remaining in round 1000. The GADM-A* algorithm still 

has 50% energy in round 1000 and consumes energy 

slower than the other algorithms from round 0 to round 

1000. Compared to the other algorithms, the GADM-A* 

algorithm selects the optimal cluster head by improving 

the genetic algorithm with node energy and node 
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transmission distance as the main factors. The number 

of times a node becomes a cluster head and the distance 

between the cluster heads as the secondary factors, and 

the cluster selection in the clustering phase is based on 

the transmission distance and the node energy and not 

weighted by a single distance between clusters. And the 

Astar algorithm is used to select the optimal cluster head 

based on the node energy and design heuristic function 

for path planning. 

 

5.3 Analysis of the change in the number of 
dead nodes 

The number of dead nodes in wireless sensor networks 
reflects the overall stability. The more dead the nodes, 
the greater the impact on the whole network and the 
faster the death rate [45]. The number of dead nodes of 
the six algorithms changes, as shown in Figure 8: 

 

Figure 8: Changes in the number of dead nodes. 

 

The number of rounds of data transfer for all the 

algorithms with the same number of dead nodes can be 

clearly seen from Fig. (8). When the dead nodes reach 

10% of the total nodes, Leach algorithm goes through 

only 30 rounds, CGWOA algorithm goes through 84 

rounds to reach, PL-EBC algorithm reaches 10% 

through 176 rounds of dead nodes, whereas the 

GADM-A* algorithm, the EEUC algorithm and the 

PSOE algorithm go through 400 rounds before they 

reach 10% node death. Although neither the EEUC 

algorithm nor this paper's algorithm reaches 30% node 

death after 1000 rounds, the EEUC algorithm locally 

dies faster. The PSOE algorithm reaches 30% node 

death after 890 rounds. The LEACH algorithm has 

faster node death than CGWOA, PSOE, EEUC and 

PL-EBC algorithms. In contrast, it can be seen that 

GADM-A* algorithm has relatively stable nodes, with 

only 13% of nodes dead after 1000 rounds. In a word, 

the GADM-A* algorithm balances the overall energy 

consumption of the network, spreads the energy loss to 

all the nodes, avoids localized deaths , prolonging the 

network life cycle. 

5.4 Analysis of the change in the number of 
surviving nodes 

Wireless sensor network nodes are frequently employed 

in dangerous processes, such as military operations, 

emergency rescue and disaster relief surveys, and are 

not typically replaced frequently. However, these are 

limited by the energy of nodes. Therefore, for the same 

environment, the more the nodes survive, the fewer the 

dead nodes, and hence more data are collected. The 

number of surviving nodes of the six algorithms varies 

from 0 to 1000 rounds, as shown in Figure 9. 

 
Figure 9: Changes in the number of surviving nodes. 

 

Almost all LEACH nodes died after 240 rounds, nodes 

of PE-EBC and CGWOA protocols died after 100 and 

98 rounds respectively. EEUC protocol died faster than 

GADM-A* algorithm, PSOE protocol starts to have 

dead nodes after 200 rounds and has a faster rate than 

EEUC protocol. The GADM-A* algorithm still has 88% 

nodes survive after 1000 rounds, which improves the 

data transmission time. The GADM-A* algorithm is 

stable and suitable for data collection in special 

environments, has good optimization capabilities. The 

improvement of fitting function further optimizes the 

accuracy and efficiency of cluster head election. Astar 

algorithm reduces the energy consumption of cluster 

heads in inter-cluster route construction and avoids the 

premature death of cluster head nodes, which has the 

ability to collect and transmit information throughout 

the network. 

 

5.5 Comparative analysis of node data 
transmission delay 

Another crucial criterion is network transmission delay. 

This is largely determined by the distance between 

nodes in the transmission path. In the same experimental 

setting, this paper compares the network delay by the 

average distance transmitted by the node network. The 
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mean transmission distance of the six algorithms varies 

from 0 to 1000 rounds, as illustrated in Figure 10.  

Figure 10 illustrates that the average transmission 

distance of the Leach protocol is greater than that of the 

other protocols. This is because, after 230 rounds, all the 

nodes are dead, resulting in a transmission distance of 0. 

In contrast, the transmission distance curve of the 

GADM-A* algorithm is at the lowest level, with an 

average transmission distance that is lower than the 

other protocols.  

 

 

Figure 10: The average variation in node transmission 
distance per round. 

The comparison of the average transmission distance in 
every 1000 rounds is presented in Figure 11. 

 

Figure 11: A comparison of the average transmission 
distance of nodes is presented. 

 

A comparison of the average transmission distance for 

each 100-round interval in Figure 11 reveals that the 

average transmission distance of the GADM-A* 

algorithm is 16% less than that of the PSOE protocol. 

Furthermore, the average transmission distance of the 

PSOE protocol is 58% less than that of the EEUC and 

PL-EBC protocols. 

 

 

 

5.6 Comparison of results of surviving 
nodes in areas of different sizes 

This paper compares the number of surviving nodes 

after 0, 500 and 1000 rounds of data transmission in 

three different areas: a 1000*1000 area (high percentage 

of multi-path fading communication method), an 

800*800 area (roughly the same percentage of both 

methods) and a 600*600 area (high percentage of free 

space communication method). The results are presented 

in Table 8. 

Table 8: Comparison of the number of surviving nodes 

in different rounds. 

 
PL-E

BC 

Leac

h 

GADM-

A* 

EEU

C 

PSO

E 

CGW

OA 

100
0 
* 

100
0 

0 100 100 100 100 100 100 

500 27 0 94 12 79 49 

100
0 

10 0 73 4 34 37 

800 
* 

800 

0 100 100 100 100 100 100 

500 60 0 97 94 83 46 

100
0 

33 0 88 78 64 40 

600 
* 

600 

0 100 100 100 100 100 100 

500 90 16 98 96 97 71 

100
0 

82 0 94 93 86 59 

 

From Table 8, it can be seen that as the working area of 

the wireless sensor network increases in size, the overall 

network life cycle decreases. The main reason for this is 

the increase in the average number of hops on the 

transmission path as well as the distance between the 

nodes in the cluster, which leads to an exponential 

increase in the amount of energy consumed for data 

transmission.  

In a network with a large area, the cluster heads that are 

far away from the base station die quickly. With 100 

nodes in a 600*600 area, the GADM-A* algorithm has 

94 surviving nodes remaining after 1000 rounds, which 

improves the number of surviving nodes by 37% 

compared to the CGWOA algorithm and 8% compared 

to the PSOE algorithm. When the number of nodes in 

the 800*800 area is 100, the number of surviving nodes 

after 500 rounds of data transmission respectively 

decreases by 33%, 100%, 1%, 2%, 14%, and 35% 

compared to the 600*600 area. The GADM-A* 

algorithm and the EEUC algorithm are relatively stable. 

However, the number of surviving nodes of GADM-A* 

algorithm after 1000 rounds of data transmission in 

1000*1000 region is reduced by only 22%. In addition, 

the GADM-A* algorithm has 73 surviving nodes after 

1000 rounds of data transmission in the 1000*1000 area, 

which increase 49% in the number of surviving nodes 

compared to CGWOA algorithm. For the GADM-A* 
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algorithm, centre-of-mass selection of cluster head 

nodes and multi-hop transmission are used to further 

extend the network life cycle. Therefore, the network 

life cycle of GADM-A* algorithm is the longest, which 

proves that the scalability and stability of GADM-A* 

algorithm is much better than the other 5 algorithms. 

 

6 Discussion 

In this paper, a cluster routing algorithm based on 

Genetic Algorithm and through minimum cost Astar 

path is proposed. The fitness function is improved by 

energy of nodes, distance between cluster heads, 

distance from cluster head to node, distance from cluster 

head to base station and frequency of cluster head. The 

GADM-A* algorithm is used to update the population 

and select the best individual based on the fitness value, 

which has the advantage of global search and 

convergence and balances the network energy 

consumption of each cluster. In the communication 

phase of inter-cluster routing, Astar algorithm based on 

heuristic function is used to reduce the energy 

consumption of cluster head nodes. The analysis of the 

results shows that the algorithm has a reduced node 

mortality rate, reduced energy consumption of the entire 

network, and the maximum number of surviving nodes 

in the network, which effectively improves the life cycle 

of the network. 

 

7 Conclusion 

In future research, the optimize will be continued by 

certain methods to make the protocol consume less 

energy and reduce the running time of the protocol. The 

algorithm will be integrated with the IoT model under 

agriculture to collect and transmit data in agriculture. It 

will be more reasonable and convenient to deal with the 

problem of data in large agricultural fields and more 

reasonable to grow agriculture. 
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