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With the advancement of port transportation, optimizing the transportation path of container cargo has 

become a crucial consideration for logistics transportation companies. In this paper, a path optimization 

model was established for transporting container cargo from the yard to the customer, considering the 

customer's time window and aiming to minimize the total cost. A genetic algorithm-ant colony 

optimization (GA-ACO) algorithm was then devised to solve the model, and a case was analyzed to verify 

the effectiveness of this approach. It was found that the total cost of the path obtained by the GA-ACO 

algorithm was significantly lower than that of the GA and ACO individually (8.63% and 12.96%), 

reaching 7,458,268 yuan. Moreover, it used fewer vehicles. It suggested that the GA-ACO algorithm 

yielded a more efficient result. An analysis of different task quantities revealed that as the number of tasks 

increased, logistics transportation enterprises achieved higher vehicle utilization rates and better 

economic efficiency in completing container cargo transportation. These findings validate the reliability 

of the GA-ACO algorithm, affirming its applicability in real-world optimization of port container cargo 

transportation paths. 

Povzetek: Hibridni algoritem GA-ACO združuje genetski algoritem (GA) in optimizacijo z mravljinčno 

kolonijo (ACO) za optimizacijo poti transporta kontejnerjev v pristanišču. Uporaba tega algoritma je 

pokazala  zmanjšanje skupnih stroškov transporta ter optimizirano izrabo vozil. 

 

1 Introduction 
Under the influence of economic development, ports have 

gained significant importance in logistics transportation 

[1]. More and more goods are transported by sea [2], 

leading to a year-on-year increase in the throughput of 

containerized cargo at ports [3]. Containers offer a cost-

effective and efficient mode of transportation, serving as a 

link between sea and land transportation. Upon port arrival, 

goods are unloaded from ships, stacked in yards, and 

transported to customers. With the continuous growth of 

container throughput, optimizing the transportation path 

of containerized goods has become essential in meeting 

the demands of logistics transportation [4]. Table 1 is the 

summary table of relevant research on port logistics. 

Table 1. A summary of relevant works 

 The used 

method 

Main 

findings 

Limitation 

Chatterje

e and 

Cho [5] 

Machine 

learning 

and meta-

heuristic 

algorithms 

Artificial 

intelligence 

and machine 

learning are 

necessary 

for port 

management

Only 

simulation 

experiments 

were 

conducted, 

lacking 

, as they 

have 

applicability 

in berth 

scheduling 

and terminal 

allocation. 

analysis on 

actual data. 

Bisevac 

et al. [6] 

A linear 

integer 

programmi

ng model 

was 

established 

for the 

integration 

of the dock 

worker 

assignment 

problem 

and the 

quay crane 

allocation 

problem, 

and an 

integrated 

approach 

was used to 

solve it. 

The method 

could reduce 

the total cost 

of dock 

workers. 

The average 

improvemen

t rate of the 

objective 

function 

value of the 

obtained 

solution was 

26.43%. 

The issue of 

scheduling 

dock cranes 

was not 

taken into 

consideratio

n. 
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Bavar et 

al. [7] 

Genetic 

meta-

heuristic 

algorithm 

The method 

was highly 

efficient in 

solving the 

time and 

problem's 

answer. 

The impact 

of quantity 

and quality 

of goods 

was not 

taken into 

account. 

Zweers 

et al. [8] 

Integer 

linear 

programmi

ng and 

heuristic 

methods 

Compared to 

the methods 

currently 

used in 

practice, 

there was a 

cost 

reduction of 

approximate

ly 20%. 

Only 

include the 

import flow 

of 

containers. 

 

Currently, research on transportation path optimization in 

port logistics transportation primarily focuses on the 

routing from the terminal to the port shore bridge. In 

contrast, research on transportation from the port yard to 

the customer's warehouse still needs to be completed. In 

today's fiercely competitive market, customer 

expectations regarding the timeliness of container cargo 

transportation have increased significantly. This paper 

established a time-window-based optimization model for 

the container cargo transportation path between the 

stockyard and the customer's warehouse to address this 

challenge. A hybrid approach, comprising a genetic 

algorithm (GA) and an ant colony optimization (ACO) 

algorithm, was developed to solve the model, and it was 

proven effective in optimizing container cargo 

transportation paths in ports through experimental 

analysis. This paper provides a new approach for path 

optimization in logistics transportation. Furthermore, it 

offers theoretical support for ports to enhance 

transportation efficiency, increase container cargo 

throughput, and meet customer demands. 

2 Optimization model for 

transportation paths of port 

container cargo 

2.1 Transportation of port container cargo 

A container is a large unit used for the transportation of 

goods without the need to remove the contents during 

transit. Container logistics transportation offers several 

advantages, including excellent sealing, low damage rates, 

high efficiency, and cost-effectiveness. It is a scalable and 

streamlined mode of transportation that ensures the safety 

and efficiency of cargo transport. As a result, container 

logistics transportation finds extensive applications in 

logistics transportation [9]. 

Container cargo transportation ensures the efficient 

movement of goods from the port to the customer. This 

process can be divided into two main stages: firstly, the 

transportation of goods from the port to the yard, and 

secondly, from the yard to the customer's warehouse. 

These operations can be further categorized based on 

import and export activities. 

(1) Import operations: In this scenario, vehicles 

transport containerized cargo from the yard to the 

customer's warehouse and return to the empty yard. 

(2) Export operations: Vehicles depart from the yard 

empty and travel to the customer's warehouse. At the 

warehouse, cargo is loaded into containers, after which the 

vehicles return to the yard. 

Additionally, container cargo transportation can be 

classified based on the nature of the goods in the 

containers. 

(1) Full container load: goods in containers solely 

belong to a single customer. 

(2) Less than container load: goods in containers 

belong to various customers. 

It is assumed that all containerized cargo 

transportation is limited to full container transportation 

(e.g., in situations where clients have a high demand for a 

single cargo). Furthermore, it is assumed that goods 

transported from the port are temporarily stored in the yard 

before onward transportation. 

2.2 Yard-customer transportation path 

optimization model 

Timeliness is crucial in container cargo transportation and 

strongly correlates with customer satisfaction. Amid 

intense market competition, logistics transportation 

companies must strive to meet delivery deadlines and 

enhance customer satisfaction. By doing so, they can earn 

customer trust and loyalty, leading to increased 

profitability. Therefore, this paper incorporates time 

windows into container cargo transportation. The research 

problem is to minimize the total cost of completing 

transportation tasks from the yard to customer warehouses 

by optimizing routes, while meeting time window 

requirements. The following assumptions are made: 

(1) vehicles depart from the yard and return to the 

yard after completing their tasks; 

(2) each task is assigned to one and only one vehicle; 

(3) fixed startup costs and unit driving costs for each 

vehicle are known; 

(4) the one-way travel distance and time between the 

yard and the customer's location are known; 

(5) the loading and unloading time for each task are 

known; 

(6) vehicles must operate within the earliest and latest 

timeframes specified by the customer for accepting the 

service. 

The symbols involved in the yard-customer 

transportation path optimization model are listed in Table 

2. 

Table 2: Symbols involved in the model and their 

implications. 

Symbol Implication 

𝐴 = {1,2, ⋯ , 𝑛} A task set 

𝐵 = {1,2, ⋯ , 𝑘} A set of vehicles available to 

logistics transportation companies 
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𝑥𝑖𝑗  If 𝑥𝑖𝑗 = 1,  it indicates the cargo 

transportation task for customer 𝑖 
is accomplished by vehicle 𝑗 ; 

otherwise, it is not. 

𝑦𝑗  If 𝑦𝑗 = 1, it means that vehicle 𝑗 

is accomplishing the 

transportation task; otherwise, it 

means that it is not. 

𝑠𝑖 One-way travel distance from 

yard to customer 𝑖 
𝑡𝑖 One-way travel time from yard to 

customer 𝑖 
𝑇𝑖  The cargo handling time for 

customer 𝑖  
𝐽 The vehicle fixed startup cost 

𝐿 The vehicle unit driving cost 

[𝑎, 𝑏] Vehicle time window, i.e., each 

vehicle starts transportation no 

earlier than 𝑎'o clock and returns 

to the yard by no later than 𝑏 'o 

clock. 

[𝐸𝑇𝑖 , 𝐿𝑇𝑖] Clients 𝑖 ' most satisfied service 

period 

 𝐸𝑖  The earliest time that a vehicle 

reaches customer 𝑖 
 𝐿𝑖  The latest time that a vehicle 

reaches customer 𝑖 
 𝑜𝑖  The time that a vehicle reaches 

customer 𝑖 
𝑃1 Penalty factor when a vehicle 

reaches within [ 𝐸𝑖 , 𝐸𝑇𝑖] 
𝑃2 Penalty factor when a vehicle 

reaches within [𝐿𝑇𝑖 ,  𝐿𝑖] 
 

The final model for yard-customer transportation path 

optimization is: 

𝑚𝑖𝑛𝐶 = ∑ 𝐿 × 2𝑛
𝑖=1 𝑠𝑖 + ∑ 𝑝𝑖

𝑛
𝑖=1 + 𝐽 × ∑ 𝑦𝑖

𝑘
𝑗=1 . 

The constraints of the model are as follows. 

(1) Each task is completed by one and only one 

vehicle: ∑ 𝑥𝑖𝑗
𝑘
𝑗=1 = 1. 

(2) Vehicle𝑗's total transportation time cannot exceed 

its maximum working hours: ∑ (𝑇𝑖 + 2𝑡𝑖 + 𝑤𝑖) ×𝑛
𝑖=1

𝑥𝑖𝑗 ≤ 𝑦𝑖 × (𝑎 − 𝑏). 

(3) The earliest departure time for each task shall be 

later than the earliest departure time for the vehicle:  𝑜𝑖 −
𝑡𝑖 ≥ 𝑎. 

(4) The latest end time for each task shall be earlier 

than the latest closing time for the vehicle:  𝑜𝑖 + 𝑤𝑖 + 𝑡𝑖 ≤
𝑏. 

(5) The time that vehicle 𝑗 reaches customer 𝑖 must be 

within the customer's time window:  𝐸𝑖 ≤  𝑜𝑖 ≤  𝐿𝑖 . 

(6) Penalty costs for vehicles arriving early or late: 

𝑝𝑖 = {

𝑃1 × (𝐸𝑇𝑖 −  𝑜𝑖),  𝐸𝑖 ≤  𝑜𝑖 ≤ 𝐸𝑇𝑖

0, 𝐸𝑇𝑖 ≤  𝑜𝑖 ≤ 𝐿𝑇𝑖

𝑃2 × ( 𝑜𝑖 − 𝐿𝑇𝑖), 𝐿𝑇𝑖 ≤  𝑜𝑖 ≤  𝐿𝑖

. 

(7) Waiting time of the vehicle at the customer's 

place: 𝑤𝑖 = {
(𝐸𝑇𝑖 −  𝑜𝑖),  𝐸𝑖 ≤  𝑜𝑖 ≤ 𝐸𝑇𝑖

0,  𝑜𝑖 ≥ 𝐸𝑇𝑖
. 

3 Solution algorithm based on GA 

and ACO 
In the field of transportation path optimization, various 

methods have been applied, including GA [10] and 

simulated annealing algorithms [11]. However, for 

complex problems, it is often difficult to obtain good 

results using only one algorithm. Combining different 

algorithms effectively can significantly enhance the 

solving ability [12].  

GA is an algorithm based on the principles of 

biological evolution, which obtains approximate optimal 

solutions through generations of evolution. It is 

particularly suitable for large-scale searches and has a 

relatively high search speed. GA mainly includes the 

following content. 

(1) Encoding: The parameters of the problem that 

need to be solved are converted into a gene string structure, 

known as a chromosome, which can be processed by GA. 

Methods such as binary encoding and ordered string 

encoding can be used. 

(2) Population initialization: As a population-based 

search method, before genetic operations, an initial 

population is generally generated using random methods. 

Each initial individual represents an initial solution. 

(3) Fitness: GA uses fitness to evaluate the quality of 

individuals and selects individuals based on their fitness 

to ensure that individuals with better fitness can produce 

more offspring in the next generation. 

(4) Genetic operations: it includes selection, crossover, 

and mutation. Selection involves choosing individuals 

from the parent population to pass on to the next 

generation. Crossover is a process of exchanging parts of 

genes in chromosomes in a certain way to create new 

individuals and ensure diversity in the new population. 

Mutation is also a way to generate new individuals by 

replacing gene values at certain loci in the coding string, 

maintaining population diversity. 

(5) Termination condition: GA generally uses 

convergence and accuracy as termination criteria. Setting 

the maximum iteration count is the most commonly used 

method. If the maximum iteration count is reached, then 

the algorithm terminates; otherwise, it continues searching. 

The ACO algorithm is a random search algorithm 

based on the foraging mechanism of ants. During the 

foraging process, ants release pheromones to find paths. 

Higher concentrations of pheromones indicate a greater 

probability of being chosen by subsequent ants. Based on 

this, the optimal path can be found. As a positive feedback 

algorithm, the ACO algorithm has good robustness and 

parallelism and is easy to combine with other algorithms. 

Currently, it has been widely applied in problems such as 

path planning and vehicle scheduling. 

GA is known for its robust global search capability 

but may encounter issues such as premature convergence 

[13]. The ACO algorithm excels in local optimization but 

may require longer search times. To address these 

challenges, a hybrid algorithm that combines GA and 

ACO has been successfully applied in various domains, 

such as parameter optimization and task scheduling [14]. 

This paper uses both GA and ACO to solve the 
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optimization model established in the previous section. 

Initially, the ACO algorithm is utilized to obtain an initial 

solution. Subsequently, GA is employed to search for the 

optimal solution, leading to higher-quality solutions and 

improved convergence speed [15]. 

The natural number coding method [16] is used in the 

coding process. 0 represents the port yard. For example, it 

is assumed that a logistics transportation company uses 

three vehicles to transport containerized goods to seven 

customers. The order in which each vehicle serves the 

customers represents a path. All paths form a chromosome 

code, for example, 01502603470. It means that vehicle 1’s 

transportation route is 0-1-5-0, vehicle 2’s transportation 

route is 0-2-6-0, and vehicle 1’s transportation route is 0-

3-4-7-0. 

The population initialization is based on the ACO 

algorithm. Let the quantity of nodes be 𝑛, the quantity of 

ants be 𝑚 , and the distance between nodes be 𝑑𝑖𝑗 , the 

pheromone concentration be 𝜏𝑖𝑗 , and the intimate 

concentration be 𝜗𝑖𝑗, 𝜗𝑖𝑗 = 1/𝑑𝑖𝑗. The probability of ant 

𝑘 transfering from node 𝑖 to node 𝑗 is written as: 

𝑝𝑖𝑗
𝑘 = {

𝜏𝑖𝑗
𝛼 (𝑡)𝜗𝑖𝑗

𝛽(𝑡)

∑ 𝜏𝑖𝑗
𝛼 (𝑡)𝜗

𝑖𝑗
𝛽(𝑡)𝑗∈𝑎𝑙𝑙𝑜𝑤𝑒𝑑𝑘

, 𝑗 ∈ 𝑎𝑙𝑙𝑜𝑤𝑒𝑑𝑘

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, 

where 𝛼 is an information heuristic factor that reflects 

the impact of the amount of information on each path on 

ant’s choice of paths,  𝛽 is an expectation heuristic factor 

that reflects the impact of heuristic information on ant path 

selection, and 𝑎𝑙𝑙𝑜𝑤𝑒𝑑𝑘  is a set of nodes that ant 𝑘 can 

access. 

The initial visit point for each ant is generated 

randomly. The beginning of each chromosome is the port 

yard (0), and a random number point is selected for 

visiting. Then, according to the state transition rules, the 

next visit point is generated and added to the taboo list. 

The operation repeats until traversal ends. 

To avoid prematurity, a combination of deterministic 

and random selection is used. Variable 𝑞0 is introduced; 

the ants are selected in the following way: 

𝑆 = {
𝑎𝑟𝑔𝑚𝑎𝑥(𝑝𝑖𝑗

𝑘 ), 𝑞 < 𝑞0

𝑟𝑎𝑛𝑑(𝑎𝑙𝑙𝑜𝑤𝑒𝑑𝑘), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
, 

where 𝑞 is a random variable, 𝑞 ∈ (0,1). According 

to the above equation, if 𝑞 < 𝑞0, then the node with 𝑝𝑖𝑗
𝑘  is 

visited; otherwise, a random accessible node is visited. 

The fitness function is based on the objective function 

established in the previous section. For individual 𝑖, there 

is an evaluation function: 

𝑓𝑖 = 𝐶′/𝐶, 

where 𝐶′  stands for the cost of the optimal 

chromosome in each chromosome population and 𝐶 

stands for the optimal total cost. 

The fitness function of individual 𝑖 is: 

𝐹𝑖 =
𝑓𝑖

∑ 𝑓𝑖
𝑛
𝑖=1

, 

The crossover operator uses the partial matching 

crossover (PMX) method [17]. For example, for two 

parents, 

A: 125684937, 

B: 325716849, 

the cross symbol "|" is randomly generated: 

A: 12|5684|937, 

B: 32|5716|849. 

The selected substring "5684" in A is placed at the 

beginning, and the genes in B are compared with "5684" 

in turn. The final result is obtained after deleting the same 

gene: 

A1: 5684 325716849 → A1: 568432719, 

B1: 5716 125684937 → B1: 571628493. 

In the transportation path optimization model, each 

chromosome contains "0" representing the yard. However, 

there may be instances where the offspring generated 

through the PMX operation do not meet the criteria. 

Therefore, in each PMX operation, it is necessary to check 

whether the first and last genes of the offspring are "0". If 

they are not, any "0" gene in the middle of the offspring is 

exchanged with either the first or last gene to obtain a 

qualified offspring. 

The mutation algorithm uses reverse order mutation 

to randomly generate mutation points and do reverse order 

mutation on selected substrings, for example: 

before reverse order mutation: 526|4891|37, 

after reverse order mutation: 526|1984|37. 

After completing the path assignment for all ants, the 

pheromone is updated: 

𝜏𝑖𝑗(𝑡 + 1) = (1 − 𝜌)𝜏𝑖𝑗(𝑡) + ∆𝜏𝑖𝑗 , 

∆𝜏𝑖𝑗 = ∑ ∆𝜏𝑖𝑗
𝑘𝐾

𝑘=1 , 

∆𝜏𝑖𝑗
𝑘 = {

𝑄/𝐿𝑘 , 𝑖𝑓 𝑡ℎ𝑒 𝑘 − 𝑡ℎ 𝑎𝑛𝑑 𝑝𝑎𝑠𝑠𝑒𝑠 𝑟𝑜𝑢𝑡𝑒(, 𝑗)

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
, 

where 𝜏𝑖𝑗(𝑡 + 1)  refers to the total amount of 

pheromone after the 𝑡 + 1 -th iteration, 𝜌  refers to the 

pheromone volatilization factor (0 ≤ ρ < 1), ∆𝜏𝑖𝑗  is the 

pheromone concentration of all ants between 𝑖 and 𝑗, ∆𝜏𝑖𝑗
𝑘  

is the pheromone concentration released by the 𝑘-th ant 

between 𝑖 and 𝑗 (initial value = 0), 𝑄 is a constant, which 

represents the total amount of pheromone released by an 

ant after traversing once, and 𝐿𝑘 is the distance passed by 

the 𝑘-th ant. 

The process of the based solution algorithm is 

described below. 

(1) Based on the ACO algorithm, the population is 

initialized. 

(2) The fitness value is calculated. A new generation 

of populations is generated through crossover and 

mutation operations. 

(3) The pheromone on the path is updated. 

(4) Whether the termination condition is reached is 

determined. The optimal solution is obtained. The path 

numbers are converted to customer points to get the 

optimized transportation path. 

4 Results and analysis 

4.1 Experimental setup 

The experiment was carried out in a computer with a 

Windows 10 system, Intel Core i7-6500U CPU, 2.5 GHz, 

and 8 GB memory. MATLAB R2017b was used as the 

simulation platform. The settings of parameters involved 

in the GA-ACO algorithm are presented in Table 3. The 



Hybrid GA-ACO Algorithm for Optimizing Transportation Path… Informatica 48 (2024) 73–80 77 

parameter values were determined based on existing 

literature and a large number of experiments. 

Table 3: GA-ACO parameter settings 

Parameter Value 

Colony size 50 

𝛼 1 

𝛽 5 

𝑞0 0.5 

𝜌 0.1 

𝑄 50 

Crossover probability 0.9 

Mutation probability 0.1 

Maximum number of 

iterations 

100 

 

In the yard-customer transportation path optimization 

model, it was assumed that the logistics transportation 

enterprise had 86 vehicles for completing the 

transportation service for 250 customers, and Table 4 

shows the settings of relevant parameters in the model. 

Table 4: Model parameter settings 

Symbol Hidden meaning Value 

𝐽 The vehicle fixed 

startup cost 

200 yuan/vehicle 

𝐿 The vehicle unit 

running cost 

20 yuan/km 

[𝑎, 𝑏] Vehicle time 

window, i.e., each 

vehicle starts 

transportation no 

earlier than 𝑎 'o 

clock and returns 

to the yard by no 

later than 𝑏 'o 

clock. 

[6,24] 

𝑃1 Penalty factor 

when a vehicle 

reaches within 
[ 𝐸𝑖 , 𝐸𝑇𝑖] 

20 yuan/hour 

𝑃2 Penalty factor 

when a vehicle 

reaches within 
[𝐿𝑇𝑖 ,  𝐿𝑖] 

40 yuan/hour 

 

The customer's distance from the yard, the service time 

window, and the loading and unloading time were known. 

The data for some of the customers are shown in Table 5. 

Table 5: Selected customer data 

Custome

r number 

Distanc

e to the 

yard/k

m 

[𝐸𝑇𝑖 ,  𝐿𝑇𝑖] [ 𝐸𝑖 ,  𝐿𝑖] Loading 

and 

unloadin

g time 

1 71.26 [7:00-

8:30] 

[6:30-

9:30] 

15 

2 25.31 [8:30-

10:30] 

[7:30-

11:30] 

20 

3 15.69 [7:00-

8:45] 

[6:30-

8:30] 

10 

4 54.26 [8:30-

9:30] 

[7:00-

10:30] 

5 

5 51.96 [9:30-

11:30] 

[7:30-

12:30] 

12 

...... ...... ...... ...... ...... 

250 26.95 [10:30-

11:30] 

[9:30-

12:30] 

20 

4.2 Result analysis 

The solution results of the GA, ACO, and GA-ACO 

algorithms for the yard-customer transportation path 

optimization model are displayed in Table 6. 

Table 6: Solution results of different algorithms 

Solution 

algorithm 

Transportation path Minimum 

total cost 

Iteration 

times for 

optimal 

solution 

GA Path 1 0-1-3-55-

67-84-

91-0 

8,162,543 

yuan 

99 

2 0-52-64-

44-72-

69-92-0 

3 0-68-99-

123-126-

135-216-

0 

4 0-7-94-

88-207-0 

5 0-231-

216-116-

157-0 

...... …… 

Path 85 0-245-

233-158-

92-0 

ACO Path 1 0-26-33-

46-91-0 

8,569,258 

yuan 

87 

2 0-25-39-

48-116-

217-2-0 

3 0-16-19-

29-31-

84-0 

4 0-137-

165-142-

0 

5 0-67-18-

22-7-0 

...... …… 
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Path 86 0-111-

105-187-

219-233-

0 

GA-ACO Path 1 0-2-56-

95-85-

24-0 

7,458,268 

yuan 

56 

2 0-3-5-91-

45-6-84-

16-0 

3 0-22-19-

25-33-

37-0 

4 0-1-57-

61-38-

201-116-

112-0 

5 0-24-34-

59-68-

231-168-

0 

...... …… 

Path 84 0-7-31-

145-171-

0 

 

 

Figure 1: Cost analysis of optimal solutions of different 

algorithms 

Based on the analysis of Table 6 and Figure 1, it was 

observed that the ACO solution yielded the highest total 

cost of 8,533,997 yuan, including penalty costs and 

vehicle usage costs (35,261 yuan). According to Table 6, 

the GA yielded 85 transportation paths, meaning that 85 

vehicles were needed to complete the transportation task. 

In contrast, the ACO algorithm required 86 vehicles. The 

total cost of the paths obtained by the GA was slightly 

lower than that of the paths obtained by the ACO 

algorithm, indicating that the GA performed better than 

the ACO algorithm. The proposed GA-ACO hybrid 

method achieved the lowest total cost of 7,458,268 yuan, 

which was 8.63% and 12.96% lower than the costs from 

the GA and ACO algorithm, respectively. The total 

transportation cost was 7,436,740 yuan, with penalty and 

vehicle usage costs amounting to 21,528 yuan. This cost 

was lower than that of both ACO and GA algorithms. 

Moreover, only 84 vehicles were required to complete the 

container cargo transportation task for 250 customers. 

These findings demonstrated the reliability and 

effectiveness of the hybrid algorithm in solving the 

optimization model for yard-customer transportation 

paths. In terms of the number of iterations required for 

optimal solutions, the GA required 99 iterations, the ACO 

algorithm required 87 iterations, while the  GA-ACO 

algorithm only needed 56 iterations, significantly fewer 

than either GA or ACO alone. This result demonstrated 

the superior optimization performance of the GA-ACO 

algorithm, i.e., its ability to achieve faster convergence. 

To further demonstrate the reliability of the proposed 

method, it was compared with some existing hybrid 

solving methods (Table 7). 

Table 7: Comparisons with other hybrid solving 

algorithms 

 Total 

cost/yuan 

Number of 

vehicles/n 

The average 

penalty cost 

and use cost 

per 

vehicle/yuan 

The hybrid 

k-means GA 

[18] 

7,885,621 85 23,154 

Cross 

entropy  

genetic 

algorithm 

(CEGA) [19] 

7,765,821 85 22,985 

Cellular 

genetic 

algorithm 

(CGA) [20] 

7,652,185 85 22,451 

Quantum 

genetic 

algorithm  

[21] 

7,598,658 84 21,986 

Artificial bee 

colony 

(ABC) 

algorithm + 

GA [22] 

7,514,526 84 21,853 

Chicken 

swarm 

optimization 

algorithm + 

GA [23] 

7,486,157 84 21,774 

GA-ACO 7,458,268 84 21,528 

 

From Table 7, it can be observed that compared to 

some existing hybrid solution methods, the GA-ACO 

algorithm possessed some advantages. The hybrid k-

means GA), CEGA, and CGA all required 85 vehicles for 

transportation, resulting in relatively high total costs. Both 

the ABC+GA and CAO+GA algorithms required the same 

number of vehicles as the GA-ACO algorithm, which was 

84 vehicles; however, the GA-ACO algorithm had a lower 

total cost, thus proving the reliability of combining the GA 

with the ACO algorithm. 
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Penalty cost refers to the cost of waiting after the 

vehicle arrives at the customer's point because it cannot be 

serviced in time. The total cost and penalty cost of the 

algorithms were compared under different numbers of 

tasks (Table 8). 

Table 8: Relationship between penalty cost and the 

quantity of tasks 

Number 

of tasks 

Total 

cost/yuan 

The 

quantity 

of 

vehicles/n 

The average 

penalty cost and 

use cost of every 

vehicle/yuan 

50 152,648 18 127.84 

100 302,514 36 111.25 

150 451,241 51 100.76 

200 602,536 64 95.21 

250 7,458,268 84 87.87 

300 8,215,263 112 81.23 

 

Based on Table 6, it is evident that as the number of 

customers to be served increased, the total cost produced 

in the yard-customer container cargo transportation 

process and the number of vehicles used by the logistics 

transportation company also increased. However, the 

average penalty cost and usage cost of every vehicle 

exhibited the average cost decreased as the number of 

tasks increased. For instance, when the cargos were 

transported to 50 customers, the company utilized 18 

vehicles, resulting in an average cost of 127.84 yuan. 

When there were 300 customers, the company employed 

112 vehicles, and the average cost decreased to 81.23 yuan, 

showing a reduction of 36.46% compared to that when 

there were 50 customers. These findings indicated that the 

logistics transportation company achieved better 

economic efficiency when the task became more 

extensive. 

5 Discussion 
With the continuous development of the port logistics 

industry, port logistics has become one of the hot research 

topics. Port logistics includes many aspects, such as 

optimizing the layout of import cargo yards, port berths, 

transportation routes for vehicles between ships and yards, 

and container collection and distribution in ports. Current 

research mainly focuses on transportation from docks to 

port bridges by vehicles, with limited studies on the 

optimization of transportation routes from yards to 

customers. Therefore, this paper established a model and 

designed the GA-ACO algorithm to solve this issue. 

Through the analysis of experimental results on the 

simulation case, it can be observed that the GA-ACO 

algorithm achieved the best solution. It obtained a result 

with 84 vehicles and a total cost of 7,458,268 yuan in the 

case study. Compared to single GA and ACO algorithms, 

it scheduled fewer vehicles with a lower total cost and 

required fewer iterations. This result demonstrates the 

advantages of the hybrid algorithm over single algorithms 

in terms of solving speed and performance. 

Hybrid algorithms can combine the advantages of 

different algorithms to achieve better results. The GA 

enables fast global search over a wide range but often 

needs more repetitive iterations, leading to low efficiency. 

On the other hand, the ACO algorithm employs a 

distributed and parallel approach for searching but 

requires a longer search time. By combining a GA and an 

ACO algorithm, their respective shortcomings can be 

overcome, achieving complementarity and obtaining 

optimal solutions while speeding up the solving process. 

In comparison with other hybrid solving algorithms (Table 

7), the GA-ACO algorithm also achieved the best results. 

Compared with the ABC+GA and CSO+GA algorithms, 

which used the same number of vehicles (84), the GA-

ACO algorithm reduced the total cost by 0.75% and 0.37%, 

respectively. This result further demonstrates the 

superiority of the GA-ACO algorithm in model solving. 

In the study of optimizing transportation routes for 

container cargo in ports, this article has achieved some 

results. However, there are some limitations, such as 

making some assumptions during model establishment to 

facilitate research, which restricts the application of the 

model in practical scenarios. Additionally, only the 

minimization of total costs was considered, which is 

limiting. Therefore, in future research, efforts should be 

made to relax assumptions as much as possible and 

analyze real-life scenarios while considering the influence 

of more objective functions. 

6 Conclusion 
This paper proposed a yard-customer transportation path 

optimization model for port container cargo 

transportation. A GA-ACO algorithm was developed to 

address this model effectively. The case analysis indicated 

that both the model and problem-solving approach were 

found to be highly effective. The results indicated that the 

GA-ACO algorithm achieved a lower total transportation 

cost than the GA and ACO, showing better solving effects. 

It provides a lower-cost and more efficient method for 

vehicle dispatching in logistics transportation enterprises, 

which can be applied in practical logistics transportation 

enterprises. 
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