
 Informatica 29 (2005) 469–476 469

A Composite Design-Pattern Identification Technique

Marjan Heričko and Simon Beloglavec
University of Maribor, Institute of Informatics,
Smetanova ulica 17, 2000 Maribor, Slovenia
E-mail: marjan.hericko@uni-mb.si, simon.beloglavec@uni-mb.si

Keywords: Design patterns, design metrics, design patterns identification, composite design patterns

Received: June 17, 2005

This paper introduces a new technique for identifying composite design patterns from existing pattern-

based designs. We propose two pattern metrics: pattern coverage and overlapping that can help detect a

composite pattern. The effective composite patterns reflect quality properties that are considered

desirable in the solution for a given problem domain and selected programming paradigm. To identify

appropriate candidates, we propose an assessment with a set of design metrics in addition to pattern

metrics. The calibration of value intervals for metric scores is proposed with the intention of offering the

designer the possibility of adjusting the technique for each individual type of software. In this paper, we

present the steps required for detecting and identifying the suitable composite pattern candidates

through pattern and design metric assessment.

Povzetek: Prispevek predstavlja nov pristop z novimi metrikami vzorcev k identifikaciji sestavljenih

načrtovalskih vzorcev v obstoječih načrtih informacijskih sistemov.

1 Introduction
The typical software design rarely includes an

independent pattern; increasingly, applied patterns are
interconnected. A design pattern (henceforth "pattern")
can be applied to various structural forms. A set of
applied patterns, in selected forms, can promote in the
existing designs desired quality characteristics. What
qualifies as an appropriate design quality depends on the
type of software that has been developed (e.g. local
component, distributed component, programming library,
etc.). Therefore, in some cases a set of patterns proves to
be an efficient solution while in other cases it results in
unwanted design complexity. The designer's goal in a
pattern-based design is the application of an effective
pattern combination. The proven solutions of pattern
applications can be identified from existing designs.

We propose a composite pattern identification
technique that consists of three main steps. The first step
towards the identification of suitable composite patterns
is the construction of the pattern coverage matrix for the
selected design. The matrix holds information over the
selected pattern instantiation form. The instantiated form
is one of the allowable forms of a pattern that includes all
allowed structural and behavioural variations for the
selected pattern. The information over the instantiated
pattern form captured in the pattern coverage matrix
contains a detailed description over the selected
structural and behavioural variations that are applied in a
design. The constructed matrix is then assessed with the
pattern coverage metric that is defined in this paper. The
goal of the assessment is the identification of design
fragments that are covered with patterns. During the
second step, we construct a pattern overlapping matrix
based on the pattern coverage matrix. In this paper, we
define a pattern overlapping metric that is intended for

detecting various levels of overlapping. This step extracts
the set of composite patterns candidates that is assessed
with design metrics in the final step. The final
assessment uses a set of design metrics that exposes
flaws in the design when considering quality attributes
valid for a given solution domain and the selected
programming paradigm. The result of the final stage is a
small subset of new composite patterns or an individual
composite pattern. A possible outcome is also an empty
acceptable set from the set of extracted pattern
candidates. Identified composite patterns act in future
applications equal as atomic patterns.

The application of the technique is presented in two
design cases where composite patterns are identified. The
paper demonstrates how the proposed technique applied
on the first simplified design detects the well-known
composite pattern (MVC- Model-View-Controller
pattern) from an existing design. The second example
demonstrates the technique’s application through a
complex design where the calibration of value intervals
for metric scores is presented in detail and a new
composite pattern is extracted.

The rest of the paper is structured as follows: In
Section 2, relevant background and related works are
discussed. Section 3 contains the steps of the technique
and defines the proposed pattern metrics for coverage
and overlapping. Section 4 demonstrates the application
of the technique through the identification of the MVC
pattern from a design. An approach to the calibration of
value intervals for design metric scores is discussed in
Section 5. Section 6 gives some conclusions and ends
with a discussion of the research findings.

470 Informatica 29 (2005) 469–476 M. Heričko et al.

2 Background and Related Works
To avoid ambiguity when discussing patterns, it is

important that we define the term composite pattern and
also define the types of patterns that are suitable for the
application of the technique. The composite pattern [19]
refers to a composition of patterns that have a common
solution space and is not to be mistaken for the design
pattern from a fundamental catalogue [1]. Patterns can be
classified in many ways: lifecycle stage (requirement,
analysis and design patterns) and level of abstraction
(idioms, design and architectural patterns). This research
focuses on design patterns and makes a clear distinction
between an atomic and a composite pattern. Atomic
patterns are considered to be the fundamental patterns,
which build a pattern language and cannot be broken
down into a set of sub-patterns. Composite patterns are a
product of pattern integration that go beyond a simple
composition that groups patterns without any synergy
[16]. The existing research defines composite patterns in
various ways. Some researchers consider a composite
pattern to be a set of patterns from various architectural
levels (analysis, design, implementation) [18], others
focus on the dependencies between applied parts of the
patterns in the design [16], [17] or on compositions that
are discussed in a pattern catalogue level without
considering the target design [20]. The fundamental
pattern catalogue [6] also defines a set of relations that
can be treated as connections in a composition. The
presented technique focuses on the patterns applied into a
design and considers the pattern overlapping that can be
present in specific design parts. Overlapping occurs
when an individual design part has a role in two different
patterns. Composite patterns that are identifiable with the
presented techniques all have constituents as overlapped
patterns. The identification technique starts the analysis
from the instantiated pattern variant in a design. The
specific treatment of pattern overlapping distinguishes
the presented approach from other existing attempts at
composite pattern identification.

Some of the early attempts at identifying patterns
from an existing solution were built exclusively from the
structural information that was constructed from a source
code. The fundamental presumption in such research has
been that pattern extraction is possible without additional
information. Many authors ([12], [14], [16] and [22]) use
object-oriented software metrics for the purpose of
identifying structural GoF patterns [6]. In the case of
other pattern types, false positives can occur ([12] and
[16]). False positives must be detected and inspected by
the user alone. Single class metrics are used to reduce the
search space in a structure. In previous research, metrics
such as NOA (Number of Attributes) and NOO (Number
of Operations) have appeared in various configurations.
Metric scores are used for the detection of candidate
classes for structural patterns. The similar usage of
metrics, for detecting the structure of fundamental
patterns, has been tracked by various authors [11], [16].

Patterns can be detected with the help of basic
metrics on the class structure. A question has arisen in
the past: does the application of patterns have an

influence on software quality metric scores? In many
cases, patterns promote weak coupling between classes
and a greater abstraction if the impact is observed on the
level of an individual pattern [7], [21], [9]. A comparison
has to be carefully made while also considering various
influences (other patterns, external non-pattern classes).
The process of detecting composite patterns can return
different results, and should be assessed on adjusted
score intervals, as shown later in the paper. Design
metrics, if applied properly, have proven effective as
indicators of flaws and the inappropriate use of patterns
in existing designs [23].

The domain and language-independent discovery of
patterns is possible with the use of formal specifications,
which serve as an independent meta-layer between a
specific design and conceptual artefacts. A formal
specification language enables the formal definition of
the patterns themselves and their application [1][5]. The
independence from a design paradigm is not pursued in
all research [4]. While in most cases, the analysis of a
source code is the leading source of data, some
researchers also decided to include the data over
behaviour during system run-time [7]. A demanding
construction procedure with such specifications prevents
researchers from utilizing other approaches. The
presented technique does not require such specifications.

3 Proposed Technique
New editions of pattern catalogues have motivated

the quest for discovering new design patterns. The
expression discovery process can be ambiguous. Some
research uses the expression discovery, when actually a
recovery of well-known patterns is done. The
identification of patterns using the proposed technique
results in new composite patterns. In the presented case,
we analysed existing solutions where we presumed that
proven composite patterns are present. The technique is
meant to be applied in cases that have already proven to
be successful in the real world. We use the term
identification instead of discovery, in order to stress the
fact that in presented cases, composite patterns are
already present and only need to be identified. Applying
the technique enables the designer to select candidates
from a design and identify the appropriate ones,
considering the positive properties for the selected
programming paradigm. The pattern-based design
preserves the information on applied patterns
(instantiated pattern variants and their locations in a
design). The goal of the identification process in all cases
is to detect the patterns that can be atomic or composite.
Atomic patterns are not a result of composing existing
patterns. Early research dealt with the discovery of
atomic patterns, which are included in existing
catalogues. Finding a new extracted pattern that can be
used in future designs, like any other pattern, justifies the
invested effort. The application of a composite pattern
increases the pattern’s usage and protects a designer from
the inappropriate application of several patterns. The set
of patterns can be applied in a design with many

A COMPOSITE DESIGN-PATTERN IDENTIFICATION... Informatica 29 (2005) 469–476 471

variations, while the composite pattern consists of a
proven solution for their application.

A single pattern can appear in different designs in
many variations. Pattern catalogues suggest basic forms
of a pattern while possible variations are rarely discussed
in detail. Some parts of a pattern can be omitted without
compromising the mission of a pattern. For example, the
pattern Lightweight [1] can in some cases includes the
classes that represent the unshared concrete flyweight,
while in other cases these classes are omitted. In some
cases, the same building element appears in different
shapes. For example, the Flyweight pattern itself can be
described with an abstract class or with an interface. It is
to be expected that the same patterns will have a different
cardinality and types of elements. This fact does not
directly interfere with the presented technique. This fact
should be considered during the construction of the input
data for the technique. The use of a standardized
template, with fixed elements for each individual pattern,
is not adequate in our approach.

The variety of formats tilts many reengineering and
assessment projects away from specifying patterns in
their design [3], [8], [10], [15]. The information in the
applied patterns is a valuable base for further analysis.
The purpose of the presented method is not to identify
pattern candidates through the structural information that
is constructed from the program's source code. A base
consists of information on a pattern’s variants that are
applied in a design. If existing designs preserve
information over the applied patterns, we can extract the
necessary data to apply the technique. In order to
automate the whole procedure, a mapping facility must
be constructed that translates the pattern information into
the form required by the proposed technique. We avoided
building a meta-level specification (formal or informal)
in this research. Existing designs, known to authors, use
a variety of semi-formal and formal notations for
describing applied patterns. The motivation that drove
this research was establishing the minimal denominator
of the pattern information, where construction is feasible
in all known cases.

Figure 1: Activities for a composite pattern identification

In order to perform the technique presented in Figure 1,
the input data must be prepared in a prescribed manner.
For all the patterns used in an observed design, the
distinct variants of the pattern application should be
identified with all the corresponding parts. We presume
that the existing specifications of an analysed design will

allow us to identify the pattern parts in the design at the
detailed level of methods and attributes. The pattern
coverage matrix needs to be constructed in order to
perform the remaining steps. The matrix values are
calculated as pattern metric scores. The pattern coverage
metric is defined in the following chapter. The values in
the matrix enable the elimination of uncovered design
parts from further analyses. They also constitute the base
for detecting the overlapping of applied patterns, as
calculated and assessed in the overlapping matrix. Only
the parts of the design that are actually covered with
patterns should be considered. Other parts are not
important in the further identification process. The
matrix data on pattern coverage serves for the detection
of pattern overlapping. The reasoning behind treating
overlapping as a key data in the discovery process is
explained in Section 4. In some cases, analyses of the
pattern overlapping matrix produces only one composite
pattern candidate that includes all patterns, which appear
in the design. To avoid the extreme case of accepting a
whole design as a pattern, the strength of overlapping
should also be inspected. Later in the paper, we define
the strength levels for overlapping. Patterns with weak
overlapping can be eliminated from the candidate pool. If
all patterns are connected with the same strength of
overlapping, this combination becomes the only
composite pattern candidate. The type of software that is
being developed dictates the attributes, which can be
expressed through design metric scores. When multiple
candidates are present in a set of detected composite
patterns, the design metric assessment eliminates the
unsuitable candidates. The assessment is also reasonable
in cases when there is only one candidate for a composite
pattern. The purpose of the assessment is to examine the
candidates’ suitability with regard to the quality
characteristics implied by a solution domain. The
technique does not behave as a decision function that
result in one candidate only. The number of final
candidates depends on the calibration of allowed value
intervals for metric scores. The designer’s decision is to
accept all the positive candidates or only the most
appropriate ones considering the metric scores.

Designers try to avoid the realization of the
following statement: "Patterns usually lead to an
increased number of software artefacts, which normally
increases the static complexity of a software system
considerably" [23]. A high level of overlap in a pattern
prevents the undesired increase of artefacts. Upholding
this level forces the designer, with each new pattern
application, to integrate a new pattern well into the
design.

There is no standardized definition for the "glue"
between patterns in a composition. If the connecting glue
is presented by the interaction-dependency between the
pattern parts of various patterns there are as many
candidates to be considered as the composites [16]. If the
analysis encompasses the abstraction level of an interface
(all public patterns are taken into consideration) or an
implementation (all detailed structures are considered),
an excessive amount of interaction is to be expected.
Observing patterns as a whole in a design, it appears that

472 Informatica 29 (2005) 469–476 M. Heričko et al.

all the patterns are connected through some interactions.
An alternative presents the relationships that are defined
by the pattern catalogue. Using these relationships
between patterns, like glue in a composite, significantly
reduces the possible combinations. However, no
standardized set of pattern relations is defined when
considering multiple catalogues. This reduces the space
for pattern detection on an individual pattern language
with the presumption that there is an appropriate set of
relationships available. There is also another downside to
this approach – instantiated pattern variants are not
considered. We followed the idea in the statement:
"Integrated patterns should show synergy that makes the
composition more than just the sum of its parts" [16].
Our interpretation of a pattern synergy concept is as
follows: The individual pattern parts in a composite
should provide more pattern functionality than they
provide when applied separately. The guideline for good
synergy between patterns, in a composition, can be found
in the level of pattern overlapping. The patterns in a
composite can overlap. An individual part of such a
design has various roles in used patterns. Overlapping
can be observed on all the building parts of a pattern that
are suggested in a pattern definition. A high level of
overlapping indicates strong integration between
individual patterns. Henceforth, we will define composite
patterns as a set of patterns that are connected with the
overlapping parts. When overlapping between patterns is
detected, the candidates for composites can be extracted.

The data needed for pattern coverage and pattern
overlapping presentation requires that patterns applied in
a design be conceived as sets of the connected building
elements, which include classes, interfaces, methods and
attributes. The methods and attributes, which are
prescribed by a pattern, present the building parts for
pattern classes and pattern interfaces. Classes and
interfaces are referred to as the main elements of a
pattern or a design, while the methods and attributes of a
class or interface are referred to as sub-elements of a
pattern or a design. The pattern coverage matrix precisely
defines the form of instantiated patterns in individual
design fragments. The matrix can be presented on a
whole pattern, an element or a sub-element level of
detail. For reasons of clarity, we will present only a small
fragment of the sample design on a detailed level.

Let ps = <es1,…,esi > be a pattern ps where esx is an
element of the pattern ps. For each esx there are an array
of sub-elements esx = <s1,…,sj> where esx is a sub-
element of the pattern ps. The design can be presented in
a similar way. Let d=<ed1,…edm> be a design or a design
fragment. For each edx there are an array of design sub-
elements as in the pattern edx=<sd1,…,sdn>. A main
element of a design (class or interface) can be covered
with the multiple pattern elements that belong to various
patterns. In the overlapping matrix, the columns
represent pattern parts, while the rows represent design
parts. The matrix can be presented through various detail
levels, which reveal the pattern coverage on a level that
is appropriate to perform analyses. On a sub-elemental
level, the matrix values can only be presented with the
values of 0 or 1. The value 1 means that a sub-element of

the pattern is instantiated in the sub-element that is
presented in a matrix row. On the main elemental level,
the idea is to determine how many pattern sub-elements
(attributes and methods) cover the main element of a
design. The value is the sum of the coverage. On the
whole pattern level, the values as expected represent the
sum of all main element coverage. The previously
described coverage values are defined by the following
formulas:

(1)

⎭
⎬
⎫

⎩
⎨
⎧ ∈∧∈→

=−
otherwise

psdsss
ss y

d

x

d

xy

y

d

xsubsub
0

;1
),(cov

(2) ∑ −− +=
i

y

d

isubsuby

d

xsubmain ssse),(cov1),(cov

(3) ∑ −− =
i

i

d

xsubmainy

d

xmainmain seee),(cov),(cov

(4) ∑ −− =
i

i

d

xmainmainy

d

xpatternmain eeee),(cov),(cov

Formula 1 is used to determine coverage between the
sub-elements of a particular pattern and the sub-elements
of a design. The value 1 in formula (2) is added because
a class or interface should also be counted as an element.
For representing the matrix in all coverage details, the
following formulas are also necessary:

(5) ∑ −− +=
i

i

d

xsubsuby

d

xmainsub sses),(cov1),(cov

(6) ∑ −− =
i

i

d

xmainsub

d

xpatternsub esps),(cov),(cov

The coverage on the whole design is not important
because it results in the number of all pattern parts in a
pattern. Thus, it is meaningless, since we are interested in
those parts of a design that are strongly related to applied
patterns. Pattern coverage (cov) is the first of the two
pattern-based metrics we proposed in this paper. To
demonstrate the use of the defined coverage metric, we
will use a sample design, presented in Figure 2. As we
can see, the well-known MVC [13] composite pattern has
been applied. The MVC pattern integrates three atomic
patterns: Observer, Strategy and Composite [1].

Figure 2: Sample design (the MVC pattern design)

A COMPOSITE DESIGN-PATTERN IDENTIFICATION... Informatica 29 (2005) 469–476 473

Design / Pattern (cov) Composite Observer Strategy Context Strategy
Concrete
Strategy

Model 2 5 0 0 0 0

ConcreteModel 0 3 0 0 0 0

View 2 2 2 1 0 0

ConcreteView 2 4 0 0 0 0

state 0 1 0 0 0 0

model 0 1 0 0 0 0

update 1 1 0 0 0 0

ConcreteCompositeView 6 4 0 0 0 0

Controller 0 0 1 0 1 0

ConcreteController 0 0 1 0 0 1

Table 1: Pattern coverage for sample design

Table 1 contains pattern coverage values with various
level of details for a sample design (Figure 2). With the
previously defined formulas (1-6) we calculated table-
cell values only. The main design element ConcreteView
is presented on a sub-elemental level of details. The
pattern Strategy is presented on the main-element level.
We propose that the level of detail be adjusted by the
designer, as regards the desired clarity level of the
presentation. The pattern coverage matrix that is
presented in an appropriate level of detail proves useful
when presenting how parts of a pattern are instantiated in
a particular design.
From the main-element level of details for the pattern
Strategy, we can notice that the design class View
represents the context in the Strategy pattern, for which
different strategies can be available. In the sample
design, only one concrete strategy is present and is
instantiated in the design class "ConcreteController". The
basic behavior of the strategy is defined in the pattern
with the class Strategy that is instantiated in the design
class "Controller". The inspection of the sub-elemental
level of detail for the design class ConcreteView shows
that the attributes "state" and "model" have a role in the
pattern Observer, while the update() method appears to
have a role in both the Composite and Observer patterns.

As presented, some design elements are covered with
multiple patterns. We use the term pattern overlapping in
cases where an individual design part is covered with
multiple patterns. Pattern overlapping can be observed, in
a similar way as pattern coverage, in various levels of
detail. Pattern overlapping is meaningful when observed
in different patterns. Let sx, sy be a sub-elements and ex,
ey a main-elements of distinct pattern applications px, py
for a same pattern:

 yxpespesyx
y

yy

x

xx
≠∧∈∧∈∀ ,,;, .

If in a design there are two applications of the same
pattern, these patterns are considered as different and an
overlapping value can be calculated. We applied the
following formulas:

(7)

⎭
⎬
⎫

⎩
⎨
⎧ ∈∃→∧→

=−
otherwise

dsssss
ssovl

dd

y

d

x

yxsubsub
0

;1
),(

(8) ∑ −− +=
i

ixsubsubyxmainsub ssovlesovl),(1),(

(9) ∑ −− =
i

yimainsubyxmainmain esovleeovl),(),(

(10) ∑ −− =
i

yxmainmain

y

xpatternmain
eeovlpeovl),(),(

(11) ∑ −− =
i

y

xpatternmain

yx

patternpattern
peovlppovl),(),(

Formula (7) defines overlapping on its basic sub-
elemental level. In formula (9) we provided a joint
formula for the overlapping of the two main pattern
elements. Overlapping is also assessed on a whole
pattern level in formula (11). The remaining formulas (8)
and (10) enable the calculation of a presentation on
various detail levels.

Pattern (ovl) Composite Observer Strategy

Composite - 10 1

Observer 10 - 1

ObserverPart 2 - 0

ConcreteObservedPart 0 - 0

Observer 2 - 1

ConcreteObserver 6 - 0

Strategy 1 1 -

Table 2: Pattern overlapping matrix for the sample

design

Table 2 lists scores for the overlapping metric. The
pattern Observer is shown on a main-element level of
detail. To express how strong the overlapping is between
two patterns we define a pattern metric, the overlapping
factor. Let npx and npy be the number of all the pattern
parts (main and sub-elements) for the patterns px and py.
The overlapping factor fovl between these patterns can
be expressed as:

(12)

pypx

yx

patternpatternyx

patternpattern
nn

ppovl
ppfovl

+
= −

−

),(
),(

Pattern (fovl) Composition(15) Observer(14) Strategy(4)

Composition - 0,34 0,05

Observer - - 0,06

Strategy - - -

Table 3: Pattern overlapping factors

Table 3 shows values for the factor of overlapping

that is calculated on the base of results from the Table 2.
The scores show that if the pattern px overlaps with the
pattern py it is also true that py overlaps with px. For this
reason, we omit a redundant calculation of these
elements if the table is observed as a matrix. The
numbers of pattern parts are stated in brackets near the
pattern name. The results show that in the MVC pattern
all elements are connected through overlapping. The
overlapped patterns are the appropriate candidates for
new composites.

4 The Overlapping Detection
In the previously presented sample design, the MVC

pattern has been detected. The calculated values for the
overlapping factor show different strengths between used
patterns. These strength levels can serve for the
extraction of smaller pattern candidates that show high
integration, if overlapping factor is considered. The
following example is a design with five applied patterns.
The intention is to demonstrate a possible reduction of a
pattern candidate’s size in the situation where all pattern
parts appear to build a single composite pattern. From the
patterns applied in a design, the designer should identify
the suitable composite pattern candidate that appears to

474 Informatica 29 (2005) 469–476 M. Heričko et al.

have the strongest overlapping between involved
patterns.

Figure 3: Sample design (the MVC pattern design)

Figure 3 shows a design for the bill of material

component (BoF). The following patterns are applied:
Decorator, Command, Composite, Visitor and Flyweight.
The Composite pattern enables the building of a
composite BoF. There are the three possible
compositions that can appear in the BoF:
"GraphicalSubsystem", "ProcessorSubsystem" and
"MainBoard". A final leaf component is represented by
the instances of the class "BuildPart". The client façade is
presented by the class "Client". The Façade pattern is not
explicitly exposed explicitly in the further analysis. The
Flyweight pattern introduces a pool of instances for the
building parts. This prevents the redundancy of objects
that construct a large BoF. The Decorator pattern is
introduced to later enable a dynamic adding of
functionality to the class "ComputerComponent". The
Visitor, in combination with the Command, enables the
execution of individual calculations of the individual
building parts for the BoF. To extract the most suitable
composite pattern it is recommended to isolate parts with
a high level of overlapping.

Overlapping / Patterns Dekorator Command Composite Visitor Flyweight

CommandBilling 0 2 0 2 0

Command 0 2 0 2 0

Client 1 5 2 0 4

ComponentFactory 0 0 0 3 3

ComputerComponent 3 0 4 1 1

BuildPart 0 1 2 3 2

MainBoard 1 1 5 5 4

ProcessorSubsystem 1 1 5 5 4

GraphicSubsystem 1 1 5 5 2

Table 4: Pattern overlapping matrix

Table 4 shows the pattern coverage in the given

component design. A brief analysis of the calculated
values indicates a strong overlapping in some cases. To
distinguish between different overlapping levels, we
propose following value intervals for pattern overlapping
factors that can present a base for the classification. We
have defined three levels of overlapping: weak
{0<fovl<0,3}, medium {0,3<fovl<0,5} and strong
{x>0,5}. The intervals were defined based on our
experiences and an analysis of various designs. The
scores for the detected MVC pattern in the previous

example indicate a weak overlap between the pattern
Strategy and the other two patterns. A medium overlap
exists between the patterns Composition and Observer.
Reduction should be considered in cases where the
candidate pattern appears to be over-specialized. The
trash point should be determined by the designers, based
on their experience.

Pattern (fovl) Dekorator Command Composition Visitor Flyweight

Dekorator - 0,16 0,21 0,26 0,23

Command - - 0,24 0,38 0,43

Composition - - - 0,52 0,79

Visitor - - - - 0,89

Flyweight - - - - -

Table 5: Pattern overlapping factors

Table 5 shows pattern overlapping factors for the

BoF components. In some designs, such a table can
become large and unclear. To achieve a clearer overview
we propose a graphical representation of the overlapping
levels.

Figure 4: Graphical representation of overlapping levels

The lines that connect the patterns show the strength

of the pattern overlap. In Figure 4, weak overlapping is
indicated with a dotted line, medium with a dashed one,
and strong overlap with a solid line. In the presented
case, the Decorator pattern can be omitted from the
composite pattern candidate if weak overlapping is not
considered. To confirm the suitability of the composite
pattern candidate, a design metric assessment should be
performed.

In some cases, multiple existing designs have to be
reviewed and analysed and the designer has to select
suitable composite pattern candidates. If various levels of
strength in overlapping are detected, then only the
patterns connected with a medium or strong overlap
should be considered in the further analysis.

5 Assessment of Candidates
According to the proposed technique, composite

pattern candidates should be validated in the final stage.
Validation is performed in the form of an assessment
with the selected design metrics. The acceptance criteria
should be defined based on the design metric scores that
are specific for the solution space and the targeted type
of software. The metric assessment eliminates unsuitable
candidates in the final stage of the composite pattern
identification procedure. The interval for the individual
metric has to be calibrated to meet the expected property
values for the given solution space and design paradigm.
The sets of metrics are specific for the individual
programming paradigm. Selected metrics in a set vary
regarding the type of software that is developed.

A COMPOSITE DESIGN-PATTERN IDENTIFICATION... Informatica 29 (2005) 469–476 475

The metric assessments used in an appropriate
design stage help detect weaknesses in a design. Their
application in the re-engineering phase helps to analyse
the suitability of the design fragments. Only metrics that
are influenced by the pattern application are stressed.
Patterns, if assessed individually, promote a weak
coupling and higher abstraction levels, which reflects on
metric scores. Expected scores should reflect the desired
qualities for the type of software (for a given problem
domain and/or solution space). We propose a calibration
of the targeted acceptance intervals for the each
particular case. Defined intervals should reflect the
properties that are expected to be met. For example:
patterns that help build individual components should
allow inherent coupling, and promote re-usability of the
whole structure instead of re-usability on an individual
class level. To prevent the influence of non-pattern
elements, the design metric assessment is performed on
isolated design fragments. Those that are influenced by a
pattern application in the design phase of software
development.

6 Conclusions
This paper presented the technique for identifying

composite patterns in existing pattern-designs. The
identification process encompasses various metric
assessments. We have introduced two pattern-based
metrics that enabled us to assess design fragments. While
other existing researchers propose pattern identification
through source code metrics, the presented technique
performs assessments on the pattern level. With a sample
design, we have demonstrated that the technique is also
able to identify well-known composite patterns such as
MVC. The identification of composite patterns, i based
on pattern metrics, can result in multiple pattern
candidates. To confirm if the given candidates are
suitable, an additional assessment with design metrics
was proposed. The goal of this assessment was to
identify the most suitable candidate. A designer specifies
acceptable intervals for selected metric scores that reflect
the properties of a design fragment. The final result of
performing the steps of the technique is composite
candidates with metric scores within acceptable intervals.
We have demonstrated a sample calibration of intervals
for metric scores with the sample design of a component.

Through the application of the presented technique,
new composite patterns can be identified in existing
designs. Identified patterns can enhance the existing
fundamental catalogues and provide good practice for
how to apply a group of atomic patterns in similar
solution spaces. This technique distinguishes itself from
existing approaches of pattern identification through the
use of combined assessment with pattern and design
metrics. The technique can also be modified for the
identification of composite anti-patterns. An additional
repository of anti-patterns could prove useful in forward
engineering, when the composition of patterns is
required.

References
[1] J. Bazan, J. F. Peters, A. Skowron, N. Hung Son,

M. Szczuka, Rough set approach to pattern
extraction from classifiers, Electronic Notes in
Theoretical Computer Science, Volume 82, Issue 4,
March, 2003, p. 1-10.

[2] S. Chidamber, C. Kemerer, A metric suite for
object-oriented design, IEEE Transactions on
Software Engineering 20(6), 1994, p. 476-493.

[3] J. Dong, Adding pattern related information in
structural and behavioral diagrams, Information and
Software Technology, Volume 46, Issue 5, 15 April
2004, p. 293-300.

[4] A. H. Eden, A. Yehudai, J. Y. Gil, Precise
specification and automatic application of design
patterns, Proceedings of the 1997 International
Conference on Automated Software Engineering
ASE'97, 1997.

[5] J. Fabry, T. Mens, Language-independent detection
of object-oriented design patterns, Computer
Languages, Systems & Structures, Volume 30,
Issues 1-2, April-July 2004, p. 21-33.

[6] E. Gamma, R. Helm, R. Johnson, J. Vlissides,
Design patterns – elements of reusable object-
oriented software, Addison-Wesley, Reading, MA,
1995.

[7] B. Henderson-Sellers, Object-oriented metrics:
Measures of complexity, Prentice-Hall, 1996.

[8] H. Huang, S. Zhang, J. Cao, Y. Duan, A practical
pattern recovery approach based on both structural
and behavioral analysis, Journal of Systems and
Software, Volume 75, Issues 1-2, 15 February
2005, p. 69-87.

[9] B. Huston, The effects of design pattern application
on metric scores, Journal of Systems and Software,
Volume 58, Issue 3, 15 September 2001, p. 261-
269.

[10] D. K. Kim, R. France, S. Ghosh, A UML-based
language for specifying domain-specific patterns,
Journal of Visual Languages & Computing,
Volume 15, Issues 3-4, June-August 2004, p. 265-
289.

[11] H. Kim, C. Boldyre, A method to recover design
patterns using software product metrics, 6th
International Conference, ICSR-6, Austria, Lecture
Notes in Computer Science 1844, 2000, p. 318-335.

[12] K. A. Kontogiannis, R. DeMori, E. Merlo, M.
Galler, M. Bernstein, Pattern matching for clone
and concept detection, Automated Software
Engineering vol. 3, no. 1-2, July 1996, p. 77-108.

[13] G. E. Kramer, S. T. Pope, A cookbook for using the
model-view-controller user interface paradigm in
Smalltalk-80, Journal of Object-Oriented
Programming 1, August/September 1988, p. 26-49.

[14] C. Krämer, L. Prechelt, Design recovery by
automated search for structural design patterns in
object-oriented software, Proceedings of Working
Conference on Reverse Engineering, Monterey,
USA, IEEE CSPress, 1996.

476 Informatica 29 (2005) 469–476 M. Heričko et al.

[15] A. Lauder, S. Kent, Precise visual specification of
design patterns, ECOOP’98, Lecture Notes in
Computer Science 1445, 1998, p. 114-134.

[16] J. Mayrand, C. Leblanc, E. M. Merlo, Experiment
on the automatic detection of function clones in a
software system using metrics, Proceedings of the
1996 International Conference on Software
Maintenance, 1996, p. 244.

[17] W. B. McNatt, J. M. Bieman, Coupling of design
patterns: Common practices and their benefits,
Proceedings of the 25th Annual International
Computer Software and Applications Conference
(COMPSAC'01), 2001.

[18] D. J. Ram, M. Sreekanth, Reusable integrated
components of inter-related patterns for software
development, Proceedings of the Seventh Asia-
Pacific Software Engineering Conference
(APSEC'00), p. 364-371.

[19] D. Riehle, Composite design patterns, Proceedings
of OOPSLA'97, ACM, 1997, p.218-228.

[20] F. Shull, W. L. Melo, V. R. Basili, An inductive
method for discovering design patterns from object-
oriented software systems, Technical report,
University of Maryland, Computer Science
Department, College Park, MD, 20742 USA, 1996.

[21] L. Tahvildari, K. Kontogiannis, J. Mylopoulos ,
Quality-driven software re-engineering, Journal of
Systems and Software, Volume 66, Issue 3, 15 June
2003, p. 225-239.

[22] L. Tahvildari, K. Kontogiannis, On the role of
design patterns in quality-driven re-engineering,
Proceedings of the Sixth European Conference on
Software Maintenance and Reengineering
(CSMR'02).

[23] P. Wendorff, Assessment of design patterns during
software reengineering: Lessons learned from a
large commercial project, Proceedings of the Fifth
European Conference on Software Maintenance and
Reengineering (CSMR'01), 2001.

