
https://doi.org/10.31449/inf.v48i16.6461 Informatica 48 (2024) 27–36 27

Software Test Data Management Based on Knowledge Graph

Li Gao*, Junlin Qiu, Guanhua Chen

Faculty of Computer and Software Engineering, Huaiyin Institute of Technology, Huai’an 223003, China

E-mail: gaoli_edu@outlook.com
*Corresponding Author

Keywords: knowledge graph, software testing, data management

Received: June 18, 2024

As software development models and methods mature, large-scale software systems emerge. However, a

critical challenge remains: the lack of a comprehensive software test data management model that

integrates basic data management with advanced knowledge reasoning. To address this issue, we

developed a software test data management model based on knowledge graphs, enabling intelligent

management and reasoning of software test data. The model incorporates an entity extraction model based

on a feed-forward neural network, a knowledge graph integration method based on graph databases, and

a knowledge reasoning submodule based on deep learning. To validate the effectiveness of our model, we

evaluated the performance of each component individually. Our deep learning-based entity extraction

model achieved an accuracy of 0.92, a recall of 0.88, and an F1 score of 0.90, significantly outperforming

traditional methods such as regular expressions and dictionary-based approaches. Utilizing Cypher for

graph database querying, our system provides accurate answers with a response time of 0.12 seconds,

outperforming SQL and SPARQL-based querying methods. Furthermore, our approach excels in

knowledge-based reasoning with an accuracy of 0.89 and site coverage of 0.81, surpassing both ontology-

based and graph-based reasoning methods. These results highlight the enhanced construction, querying,

and reasoning capabilities of our knowledge graph-based approach for managing software testing data.

Povzetek: Članek opisuje nov model za upravljanje testnih podatkov programske opreme, ki temelji na

grafu znanja. Omogoča inteligentno organizacijo, shranjevanje in razumevanje testnih podatkov s

pomočjo globokega učenja ter učinkovitejše iskanje in sklepanje v primerjavi s tradicionalnimi metodami.

1 Introduction
Software testing data management refers to the activities

of effective organization, storage, maintenance, and

utilization of these data, which aims to improve the

efficiency and quality of software testing and to reduce the

cost and risk of software testing [1]. These activities also

support the automation and intelligence of software testing

[2]. Software test data management, as an important part

of software testing, has been receiving attention from both

academia and industry. At present, there have been many

methods and tools for software test data management

proposed and developed, such as database-based methods,

XML-based methods, ontology-based methods, cloud-

based methods, etc., and the market share of these methods

this year is specifically shown in Figure 1. These methods

and tools address some of the challenges of software test

data management, such as data normalization,

consistency, traceability, reusability, security, etc. to some

extent [3].

Figure 1: Change in market share of methods and tools for software test data management.

4,3

2,5

3,5

4,5

2,4

4,4

1,8

2,8

2

2

3

5

0 1 2 3 4 5 6

Database-based approaches

XML-based approaches

Ontology-based approaches

Cloud Computing Based Approach

Rate

M
et
h
o
d
s

2021 2020 2019

mailto:gaoli_edu@outlook.com

28 Informatica 48 (2024) 27–36 L. Gao et al.

Figure 2: Comparison of approaches to software test data management.

Software testing data contains a lot of unstructured

data, and these unstructured data also have important

value in software testing, such as for test requirement

analysis, test case generation, test result evaluation, etc.

On the other hand, traditional tools often can only realize

data storage and query, but lack of semantic understanding

of data and reasoning ability, which can not meet the

intelligent needs of software testing, such as data-based

knowledge discovery, knowledge sharing, knowledge

application and so on. The comparison between traditional

methods of software testing data management and

intelligent methods based on knowledge graph is shown in

Figure 2 [4, 5].

2 Literature review
Software test data management plays a crucial role in

software engineering, which covers a wide range of

aspects from acquisition, processing, storage to migration,

protection and utilization. This makes the process of data

extraction, processing, storage, and migration time-

consuming and resource-intensive, as well as increasing

technical difficulty and complexity [6, 7]. Secondly, due

to the diverse sources of software testing data, such as

manually generated, automatically collected, and

externally imported, different data sources may have

different data standards, formats, contents, and qualities,

leading to data inconsistency, which brings difficulties

and risks to software testing [8, 9]. In addition, software

testing data may contain sensitive information, such as

users’ personal information, business secrets, etc., which,

if leaked or abused, may cause serious losses to users,

enterprises and even national security. Therefore, the

confidentiality, legality and security of data must be

ensured [10]. Finally, there are still some problems in

software testing data governance, such as the lack of

unified standards and methods, which leads to obstacles

and deficiencies in data management and utilization. In

order to solve these problems, According to Durst and

Zieba [11] suggests the need to optimize and improve the

data testing strategy, process, use cases, execution,

validation and summarization, and the use of professional

testing tools and techniques to assist the data testing

process. According to Ebert et al. [12] suggested the use

of generative AI techniques to generate large amounts of

synthetic data to address issues such as data volume,

efficiency, coverage, and privacy, and the use of methods

such as data analytics and machine learning to assess and

improve data quality. According to Ekanayake et al. [13]

emphasized the importance of establishing data

governance connotations, elements, models, and

frameworks to standardize aspects of data definition,

classification, labeling, measurement, monitoring, and

evaluation, and to develop data strategies, rules, standards,

and processes for effective data management and

utilization.In recent years, the construction of knowledge

graphs has also made progress, specifically, According to

Falát et al. [14] analyzed and sorted out the construction

techniques of knowledge graphs and their combination

with deep learning; According to Farooq [15] introduced

common knowledge graph embedding models and

analyzed the prospects of their application in interpretable

prediction; These literatures provide valuable references

and insights for the theory and application of knowledge

graphs.

Knowledge graph has significant advantages in

software testing data management. First, it can provide a

unified structured representation of structured, semi-

structured and unstructured software testing data, and

construct a knowledge graph by extracting entities,

attributes and relationships to achieve data normalization,

consistency and reusability [16, 17]. Secondly,

Knowledge Graph can provide semantic annotation and

commentary for software testing data, and enhance the

semantic information of the data by using knowledge

resources such as ontology, lexicon, rules, etc., so as to

realize the semanticization, comprehensibility and

traceability of the data. In addition, Knowledge Graph can

also mine implicit knowledge from data, such as

correlation, anomalies, and data evolution through graph

algorithms, machine learning, logical reasoning, and other

techniques to achieve intelligence, predictability and

optimization of data. The structure of knowledge graph is

shown in Figure 3 [18, 19].

Traditional

Methods

Intelligent

approaches

combining

Intelligent

Processing

Ontology-based

Cloud-based

xml based

CNN

Feedforward

neural networks

Graph database

Software

testing process

data

 Semi-

structured data

Unstructured

data

Structured data

Unprocessable

Unprocessable

Knowledge

Discovery

Knowledge

Sharing

Knowledge

Application

Software Test Data Management Based on Knowledge Graph Informatica 48 (2024) 27–36 29

Figure 3: Structure of the knowledge graph.

At present, the research on software test data

management based on knowledge graph is still in a blank

state. This paper aims to fill this research gap and explore

the application value and realization method of knowledge

graph in software test data management [20]. The main

research content includes designing and realizing a

general software test data management knowledge graph

model, defining entities, attributes and relationships as

well as corresponding ontologies and rules [21]; proposing

and realizing the knowledge extraction and knowledge

integration process of extracting entities, attributes and

relationships from different sources and types of software

test data, and integrating them into the knowledge graph

[22]; and finally designing and realizing a knowledge

integration process that utilizes the knowledge graph’s

data and knowledge in the Knowledge Graph to design

and implement the knowledge query and knowledge

reasoning process that provides intelligent support for

various aspects of software testing requirement analysis,

test case generation, and test result evaluation [23, 24].

To address the challenges in software testing data

management, various approaches have been proposed, as

summarized in Table 1. Traditional data management

relies on manual data handling and basic data storage and

retrieval, which are familiar to practitioners and easy to

implement but suffer from inconsistent data handling and

require significant manual effort [11]. Rule-based data

processing provides reliable data extraction for structured

data and is easy to define rules but lacks flexibility for

unstructured data and limited reasoning capabilities [12].

Dictionary-based data processing is suitable for known

entities and offers fast data retrieval but results in

incomplete data representation and no semantic

enrichment [13].

Recent advances include the use of generative AI

techniques for synthetic data generation and

augmentation, which addresses data scarcity and enhances

data diversity but is limited to data generation and lacks a

data management framework [14]. Data analytics and

machine learning offer automated insights and scalable

processing but do not provide an integrated data

management solution or semantic linking [15]. Data

governance frameworks standardize data definitions and

provide data classification and labeling, ensuring

consistent data handling and enhancing data

trustworthiness but do not offer a unified data

management approach or integration with intelligent

systems [16].

Software

Test Data

Test

Requirements

Test

Objectives

Test

Objects

Test

Environme

nt

Test

Strategy

Test CasePriority Use Case

Number

Background

Test Script
Script

Description

Script

Number

Script

Name

Script

Code

30 Informatica 48 (2024) 27–36 L. Gao et al.

Table 1: Comparison of state-of-the-art methods in software testing data management.

Approach Key contributions Strengths Research gap addressed

Traditional data

management

Manual data handlingBasic data

storage and retrieval

Familiarity among

practitionersEase of

implementation

Inconsistent data

handlingManual effort

required

Rule-based data

processing
Rule-based data extraction

Reliable for structured

dataEasy to define rules

Inability to adapt to new

data sourcesLimited

reasoning capabilities

Dictionary-

based data

processing

Dictionary lookup for data

categorization

Suitable for known

entitiesFast data retrieval

Incomplete data

representationNo semantic

enrichment

Generative AI

techniques

Synthetic data generationData

augmentation

Addresses data

scarcityEnhances data

diversity

Limited to data

generationNo data

management framework

Data analytics

and machine

learning

Data quality

assessmentAutomated anomaly

detection

Automated insights

Scalable processing

No integrated data

management solutionNo

semantic linking

Data governance

frameworks

Standardization of data

definitionsData classification

and labeling

Consistent data

handlingEnhanced data

trustworthiness

No unified data

management approachNo

integration with intelligent

systems

Knowledge

graph-based

approach

(proposed)

Unified structured

representation of dataSemantic

annotation and

enrichmentIntelligent reasoning

Comprehensive data

managementSemantic

consistencyIntelligent

support

Unified data management

framework

Integration of data and

knowledgeIntelligent

reasoning

3 Knowledge graph-based software

test data management modeling
This chapter details our proposed and innovative

knowledge graph-based software testing data management

model [25]. The core idea of the model is to utilize the

powerful expression and reasoning ability of knowledge

graph to effectively organize, manage and apply all kinds

of data in the software testing process. Its principle is

mainly to transform all kinds of complex test data into

forms that are easy to understand and process by

constructing a knowledge graph containing software

testing related knowledge, so as to realize intelligent

management of test data [26, 27].

3.1 Modeling ideas

The model idea of this paper is to consider the process of

software test data management as a process of

constructing and applying a knowledge graph, i.e.,

extracting entities, attributes and relationships from

software test data, constructing a knowledge graph for

software test data management, and then utilizing the data

and knowledge in the knowledge graph to provide

intelligent support for software testing. The modeling idea

of this paper is based on the following facts:

Firstly, software testing data contains rich knowledge,

such as software testing requirements, use cases, results,

etc., which can be represented in the form of entities,

attributes and relationships, constituting a knowledge

graph for software testing data management. Secondly, the

knowledge graph of software testing data management can

be structured, semanticized and intelligently processed to

improve the quality and value of software testing data and

provide effective support for all aspects of software testing

[28]. Finally, the knowledge graph for software testing

data management can be constructed from multi-source

heterogeneous software testing data by knowledge

extraction and knowledge integration methods, and can be

intelligently applied by knowledge query and knowledge

reasoning methods [29, 30].

3.2 Modeling framework

In this paper, we propose a framework for a software test

data management model based on knowledge graph, as

shown in Figure 4. The framework includes three main

modules: knowledge graph construction module,

knowledge graph storage module and knowledge graph

application module [31].

The knowledge graph building module is the module

responsible for extracting and integrating entities,

attributes and relationships from software test data to build

a knowledge graph for software test data management.

Software Test Data Management Based on Knowledge Graph Informatica 48 (2024) 27–36 31

The module includes two submodules: entity extraction

submodule and knowledge graph integration submodule.

The entity extraction submodule is a submodule that

recognizes entities and their related attributes from

different types and sources of software testing data using

deep learning-based entity extraction methods [32]. The

knowledge graph integration submodule is a submodule

that utilizes a graph database-based knowledge graph

integration approach to integrate entities, attributes and

relationships extracted from software testing data into a

unified knowledge graph for software testing data

management [33].

Figure 4: Framework of the software test data

management model.

The Knowledge Graph Storage Module is the module

responsible for storing and managing the knowledge graph

of software test data management. The module uses a

graph database as a storage for the knowledge graph, and

utilizes the characteristics of a graph database, such as

nodes, edges, labels, and attributes, to represent the

entities, attributes, and relationships in the knowledge

graph for software test data management, as well as the

structure and semantics between them.

The Knowledge Graph Application Module is the

module responsible for providing intelligent support for

all aspects of software testing by utilizing the knowledge

graph of software testing data management. The module

consists of two submodules: the knowledge query

submodule and the knowledge reasoning submodule. The

knowledge query submodule is a submodule that utilizes

a query language for graphical databases, such as Cypher,

to query the data and knowledge in the knowledge graph

of software testing data management, and to achieve data

retrieval and analysis. The Knowledge Reasoning

submodule is a submodule that utilizes knowledge

reasoning techniques, such as rule-based knowledge

reasoning, graph-based knowledge reasoning, and

learning-based knowledge reasoning, to derive implicit

knowledge from the knowledge graph of software testing

data management, and to realize knowledge discovery and

application [34-36].

3.3 Modeling principles

The model principle of this paper is based on the technique

of knowledge graph, including knowledge extraction,

knowledge integration, knowledge query and knowledge

reasoning, to realize the construction and application of

knowledge graph for software testing data management.

The model schematic is specifically shown in Figure 5.

Figure 5 shows a process of concept recognition and

diagram construction. First of all, the input is "test data",

after "encoder" processing to get "sentence vector". The

sentence vector then interacts with the graph vector via a

multilayer perceptron (MLP) to generate a feasibility

score. At the same time, "sentence vectors" are also used

for "concept recognition" and further converted into nodes

in "graph construction". Finally, in the process of graph

construction, a "pattern graph" is created using

pathfinding methods. Convolutional neural networks

(CNNs) may play a role in some aspects of this process.

Figure 5: Model schematic.

In our pursuit to automate entity extraction and

knowledge integration for the creation of a structured

knowledge graph, we have developed a sophisticated deep

learning-based approach. This methodology leverages the

strengths of both Convolutional Neural Networks (CNNs)

and Recurrent Neural Networks, specifically Long Short-

Term Memory (LSTM) networks, to process and analyze

textual data with the aim of extracting entities and their

relationships from text. The architecture of our entity

extraction model is meticulously designed, starting with

text preprocessing to clean and tokenize the data, followed

by the conversion of words into dense vector

representations through word embeddings. CNNs are then

applied to capture local features within sentences, with Bi-

LSTM layers subsequently employed to understand the

long-range dependencies within the text. To ensure

consistent entity tagging, we incorporate a Conditional

Random Field (CRF) layer. The training process involves

preparing labeled data, initializing the model with pre-

Knowledge graph building module

Knowledge graph storage module

Knowledge Graph Application Module

Integration

Submodule

Entity

Extraction

Graph database

Knowledge

32 Informatica 48 (2024) 27–36 L. Gao et al.

trained embeddings, and iteratively refining the model

through mini-batch training, loss calculation, and

backpropagation. Model evaluation is conducted using

precision, recall, and F1-score metrics, with

hyperparameter tuning to optimize performance. Post-

entity extraction, we proceed with knowledge integration,

which includes entity linking to the knowledge graph,

relationship extraction, and graph construction. This

integrated approach not only yields high accuracy in entity

recognition but also facilitates the construction of a

comprehensive and informative knowledge graph tailored

for software testing data management.

3.3.1 Entity extraction submodule

In this paper, a deep learning based entity extraction

approach is used to automatically extract entities and their

related attributes from software test data using feed

forward neural network models. It is based on the principle

of setting D as software test data, E as entity, A as

attribute, R as relationship, M as entity extraction model,

T as data type, S as data source, O as output, F as feature,

C as context, L as semantics, P as attention mechanism, B

as bidirectional recurrent neural network, X as

convolutional neural network, and Z as pre-trained

language model, and then it can be expressed by Equation

1 [37].

()

() () () ()

() if T() .

() { () if T() .

() if T()

() () (())

() ()

() () (())

B

X

Z

B

X

Z

O M D

M D E D A D R D

M D D Structuring

M D M D D Semi structured

M D D Unstructured

M D F D P C D

M D F D X

M D F D Z L D

=

=

=

= = −

=

=

=

=

 (1)

3.3.2 Knowledge integration submodule

In this paper, we adopt a knowledge graph integration

method based on graphical databases, which utilizes the

characteristics of graphical databases to store and manage

the knowledge graph for software test data management.

For storing entities, this paper uses a graph database node

to represent entities, each node contains a unique identifier

(ID), one or more labels, and one or more Property-Value

Pairs. For storing relationships, this paper uses edges from

a graph database to represent relationships, where each

edge contains a unique identifier (ID), a Type, and one or

more Property-Value Pairs. In this paper, we use Cypher

as the query language, which is a pattern-matching based

query language for graph databases that can easily

represent query patterns for graph structures, as well as

operations such as filtering and aggregation of query

results [38].

3.3.3 Knowledge reasoning submodule

CNN-based knowledge inference submodule is another

important component in the application of knowledge

graph-based software test data management model, and its

main function is to reason out the unknown data based on

the existing data in the knowledge graph, so as to

complement and extend the knowledge graph. The basic

principle of CNN-based knowledge inference submodule

is as follows:

For example, for the entity “Selenium” and the

relationship “support”, it can be shown in Equation 2.

 0.2, 0.5, 0.7, 0.1

 0.3, 0.4, 0.6, 0.2

Selenium

support

= −

= − −
 (2)

For example, for the triad (Selenium, support,

Automation Testing), the reasonableness can be calculated

using a score function as shown in Equation 3:

()

()

, ,

score Selenium support AutomationTesting

f Selenium support AutomationTesting= + −
 (3)

Where f is a nonlinear activation function such as

sigmoid or tanh for mapping the score to a fixed interval

such as [0, 1] or [-1, 1]. The model parameters can be

optimized with a loss function as shown in Equation 4 for

the known triad (Selenium, Support, Automation Testing)

and the unknown triad (Selenium, Support, Unit Testing).

()

, ,
0,

 , ,

Selenium support
gamma score

AutomationTestingloss max

score Selenium support UnitTesting

+
=

−

(4)

4 Evaluation and validation of

models
In this paper, two publicly available datasets are used to

evaluate the performance and effectiveness of the

knowledge graph-based software testing data management

model, namely (1) Software Testing Data Set. This dataset

contains data from software testing projects from 2006 to

2014, including test requirements, test cases, test results,

test defects, etc., with nine tables and about 100,000

records. This dataset can be used to construct a knowledge

graph for software testing data management, as well as

experiments for knowledge query and reasoning. (2)

Software Engineering Data Set: This dataset contains the

data of software engineering projects from 2010 to 2018,

including software requirements, software design,

software code, software defects, etc. This dataset can be

used for experiments of knowledge fusion and extension

with the knowledge graph of software test data

management.

The Software Testing Data Set, gathered from real-

world projects between 2006 and 2014, encompasses

approximately 100,000 records across nine tables,

detailing test requirements, cases, results, and defects,

along with additional contextual data. It's utilized to build

Software Test Data Management Based on Knowledge Graph Informatica 48 (2024) 27–36 33

a knowledge graph for testing data management and

supports research in knowledge query and reasoning.

Similarly, the Software Engineering Data Set, spanning

2010 to 2018, contains around 200,000 records in 12

tables, covering software requirements, design, code, and

defects, plus extra metadata. It facilitates knowledge

fusion and extends the testing data management

knowledge graph, aiding in integrating testing with

broader software engineering processes. Both datasets are

publicly accessible and have been pivotal in academic

research, ensuring the reproducibility of experimental

results. Researchers can access these datasets through the

provided links, adhering to the respective data usage

guidelines.

In this paper, the following evaluation metrics are

used to measure the performance and effectiveness of the

knowledge graph-based software test data management

model, which are accuracy of knowledge graph

construction, recall of knowledge graph construction, F1

value of knowledge graph construction, accuracy of

knowledge query, response time of knowledge query

Accuracy of knowledge reasoning, coverage of

knowledge reasoning [39].

In this paper, a deep learning-based entity extraction

method and a graph database-based knowledge graph

integration method are used to construct a knowledge

graph for software test data management from a software

test dataset. The experimental results are shown in Table

2.

Table 2: Experimental results of knowledge graph

construction.

Methodologies Accuracy
Recall

rate

F1

value

Deep learning based

approach
0.92 0.88 0.90

Regular expression

based approach
0.78 0.71 0.74

Dictionary-based

approach
0.68 0.63 0.65

As can be seen from Table 2, the deep learning-based

approach outperforms the other two rule-based

approaches in terms of accuracy, recall, and F1 value of

knowledge graph construction, indicating that the deep

learning-based approach can more effectively extract

entities, attributes, and relationships from software test

data and construct a more complete and accurate

knowledge graph [40].

In order to validate the capability of the system for

knowledge querying, this paper uses a graph database

based query language, such as Cypher, to retrieve relevant

answers from the knowledge graph of software test data

management. In this paper, 20 natural language questions

of different types and difficulty, involving entity queries,

relational queries, path queries, and aggregation queries,

are designed as a test set. In this paper, the accuracy and

response time of the knowledge queries are calculated

using the correct answers given manually as a reference.

The experimental results are shown in Table 2.

As can be seen from Table 3, the graph database-

based query language outperforms the other two relational

database-based query languages in terms of knowledge

query accuracy and response time, which indicates that the

graph database-based query language can retrieve the

relevant answers from the knowledge graph of software

test data management more efficiently, and improves the

efficiency and quality of the retrieval [41, 42].

In this paper, we have used a part of the data from the

software test dataset as a training set and another part of

the data as a test set for training knowledge-based

reasoning models and evaluating the effectiveness of

knowledge-based reasoning, respectively. In this paper,

the accuracy and coverage of knowledge reasoning is

calculated using the correct knowledge given manually as

a reference. This paper is also compared with ontology-

based knowledge reasoning and graph-based knowledge

reasoning, and the results are shown in Table 3.

Table 3: Experimental results of knowledge query.

Methodologies Accuracy
Response time

(seconds)

A query language based

on graph databases
0.95 0.12

Relational database

based SQL
0.85 0.23

SPARQL based on

relational databases
0.80 0.28

Table 4: Experimental results of knowledge-based

reasoning.

Methodologies Accuracy
Site

coverage

Deep learning based

approach
0.89 0.81

Ontology-based approach 0.75 0.68

A graph-based approach 0.69 0.62

As can be seen from Table 4, the deep learning-based

approach outperforms the other two rule-based

approaches in terms of accuracy and coverage of

knowledge inference, indicating that the deep learning-

based approach can be more effective in inference of

unknown knowledge from the knowledge graph of

software test data management, and in complementing and

expanding the knowledge graph [43].

5 Discussion

5.1 Entity extraction and knowledge graph

construction

The proposed deep learning-based entity extraction

method outperforms the rule-based approaches, as shown

in Table 5. The deep learning approach achieves higher

accuracy, recall, and F1 value in constructing the

34 Informatica 48 (2024) 27–36 L. Gao et al.

knowledge graph, demonstrating its effectiveness in

extracting entities, attributes, and relationships from

software testing data.

Table 5: Comparison of entity extraction and knowledge

graph construction.

Method Accuracy
Recall

rate

F1

value

Deep Learning-

Based Approach
0.92 0.88 0.90

Regular

Expression-Based
0.78 0.71 0.74

Dictionary-Based 0.68 0.63 0.65

The superior performance of the deep learning-based

approach can be attributed to its ability to learn complex

patterns and relationships within the data, making it more

adaptable to variations in the input data.

5.2 Knowledge query and reasoning

The graph database-based query language demonstrates

superior performance over traditional relational database

query languages, as illustrated in Table 5. The graph

database approach achieves higher accuracy and faster

response times, which are critical for efficient and high-

quality retrieval of information from the knowledge graph.

Table 6: Comparison of knowledge query and reasoning.

Method Accuracy
Response time

(Seconds)

Graph database-

based
0.95 0.12

Relational database

(SQL)
0.85 0.23

SPARQL

(Relational DB)
0.80 0.28

The graph database-based query language leverages

the inherent structure of the knowledge graph, enabling

faster and more precise query execution. Additionally, the

deep learning-based approach to knowledge reasoning

outperforms both the ontology-based and graph-based

approaches, as shown in Table 6. The deep learning

method achieves higher accuracy and site coverage,

indicating its effectiveness in inferring unknown

knowledge and complementing the existing knowledge

graph.

Table 7: Comparison of knowledge reasoning.

Method Accuracy Site Coverage

Deep learning-based 0.89 0.81

Ontology-based 0.75 0.68

Method Accuracy Site Coverage

Graph-based 0.69 0.62

As shown in Table 7, the deep learning-based

approach benefits from its ability to learn from patterns

and relationships in the data, allowing it to make more

accurate inferences and expand the knowledge base.

5.3 Novelty and benefits of the proposed

method

The proposed knowledge graph-based software testing

data management model introduces a novel and beneficial

approach by offering comprehensive data management

through a unified structured representation, semantic

enrichment for enhanced data understanding, intelligent

support for inferring new knowledge and aiding decision-

making, and efficient querying via a graph database query

language, collectively addressing the prevalent challenges

in software testing data management and showcasing its

unique value.

6 Conclusion
This paper proposes a software testing data management

model based on knowledge graph, which can realize

intelligent management and reasoning of software testing

data. The model consists of three submodules, which are

feed-forward neural network-based entity extraction

module, graph database-based knowledge graph

integration module, and deep learning-based knowledge

inference module. The model provides a new idea and

method for software testing data management, which

helps to improve the efficiency and quality of software

testing.

Funding
The research is supported by Jiangsu Province

Industry-University-Research Cooperation Project,

Research and Development of a Smart Constitute Site

Safety Management System (No: BY20221107).

Conflict of interest: The authors state no conflict of

interest.

References
[1] Ahmad, T., Iqbal, J., Ashraf, A., Truscan, D., &

Porres, I. Model-based testing using UML activity

diagrams: A systematic mapping study. Computer

Science Review, 33, 98-112, 2019.

https://doi.org/10.1016/j.cosrev.2019.07.001.

[2] Alyahya, S. Collaborative crowdsourced software

testing. Electronics, 11(20), 3340, 2022.

https://doi.org/10.3390/electronics11203340.

[3] Anthony, B. Information flow analysis of a

knowledge mapping-based system for university

alumni collaboration: A practical approach. Journal of

the Knowledge Economy, 12(2), 756-787, 2021.

https://doi.org/10.1007/s13132-020-00643-3.

Software Test Data Management Based on Knowledge Graph Informatica 48 (2024) 27–36 35

[4] Ben Zayed, H. A., & Maashi, M. S. Optimizing the

software testing problem using search-based software

engineering techniques. Intelligent Automation and

Soft Computing, 29(1), 307-318, 2021.

https://doi.org/10.32604/iasc.2021.017239.

[5] Benhar, H., Idri, A., & Fernández-Alemán, J. L. A

systematic mapping study of data preparation in heart

disease knowledge discovery. Journal of Medical

Systems, 43, 1-17, 2019.

https://doi.org/10.1007/s10916-018-1134-z.

[6] Boopathi, M., Sujatha, R., Kumar, C. S.,

Narasimman, S., & Rajan, A. Markov approach for

quantifying the software code coverage using genetic

algorithm in software testing. International Journal of

Bio-Inspired Computation, 14(1), 27-45, 2019.

https://doi.org/10.1504/ijbic.2019.101152.

[7] Calvanese, D., Gal, A., Lanti, D., Montali, M., Mosca,

A., & Shraga, R. Conceptually grounded mapping

patterns for virtual knowledge graphs. Data &

Knowledge Engineering, 145, 102157, 2023.

https://doi.org/10.1016/j.datak.2023.102157.

[8] Chen, T., Zhang, S. J., Wang, Y., Chen, Z. B., & Jing,

W. F. Construction methods of knowledge mapping

for full service power data semantic search system.

Journal of Signal Processing Systems for Signal

Image and Video Technology, 93, 275-284, 2021.

https://doi.org/10.1007/s11265-020-01591-6.

[9] Cordeiro, M., Puig, F., & Ruiz-Fernández, L.

Realizing dynamic capabilities and organizational

knowledge in effective innovations: the capabilities

typological map. Journal of Knowledge Management,

27(10), 2581-2603, 2022.

https://doi.org/10.1108/jkm-02-2022-0080.

[10] Drave, I., Hillemacher, S., Greifenberg, T., Kriebel,

S., Kusmenko, E., Markthaler, M., Orth, P., Salman,

K. S., Richenhagen, J., & Rumpe, B. SMArDT

modeling for automotive software testing. Software-

Practice & Experience, 49(2), 301-328, 2019.

https://doi.org/10.1002/spe.2650.

[11] Durst, S., & Zieba, M. Mapping knowledge risks:

Towards a better understanding of knowledge

management. Knowledge Management Research &

Practice, 17(1), 1-13, 2019.

https://doi.org/10.1080/14778238.2018.1538603.

[12] Ebert, C., Bajaj, D., & Weyrich, M. Testing software

systems. IEEE Software, 39, 8-17, 2022. DOI:

10.1109/ms.2022.3166755.

[13] Eisty, N. U., & Carver, J. C. Testing research

software: A survey. Empirical Software Engineering,

27, 28, 2022. https://doi.org/10.1007/s10664-022-

10184-9.

[14] Ekanayake, E., Shen, G., & Kumaraswamy, M. M.

Mapping the knowledge domains of value

management: A bibliometric approach. Engineering

construction and Architectural Management, 26(3),

499-514, 2019. https://doi.org/10.1108/ecam-06-

2018-0252.

[15] Falát, L., Michalová, T., Madzík, P., & Marsíková, K.

Discovering trends and journeys in knowledge-based

human resource management: Big data smart

literature review based on machine learning approach.

IEEE Access, 11, 95567-95583, 2023.

https://doi.org/10.1109/access.2023.3296140.

[16] Farooq, R. Knowledge management and

performance: A bibliometric analysis based on

Scopus and WOS data (1988-2021). Journal of

Knowledge Management, 27(7), 1948-1991, 2023.

https://doi.org/10.1108/jkm-06-2022-0443.

[17] Foidl, H., & Felderer, M. Integrating software quality

models into risk-based testing. Software Quality

Journal, 26, 809-847, 2018.

https://doi.org/10.1007/s11219016-9345-3.

[18] Garousi, V., Bauer, S., & Felderer, M. NLP-assisted

software testing: A systematic mapping of the

literature. Information and Software Technology,

126, 106321, 2020.

https://doi.org/10.1016/j.infsof.2020.106321.

[19] Garousi, V., Felderer, M., Karapiçak, Ç., & Yilmaz,

U. Testing embedded software: A survey of the

literature. Information and Software Technology,

104, 1445, 2018.

https://doi.org/10.1016/j.infsof.2018.06.016.

[20] Garousi, V., Felderer, M., & Kiliçaslan, F. N. A

survey on software testability. Information and

Software Technology, 108, 35-64, 2019.

https://doi.org/10.1016/j. infsof.2018.12.003.

[21] Garousi, V., Felderer, M., Kuhrmann, M., Herkiloglu,

K., & Eldh, S. Exploring the industry’s challenges in

software testing: An empirical study. Journal of

Software-Evolution and Process, 32(8), e2251, 2020.

https://doi.org/10.1002/smr.2251.

[22] Garousi, V., & Küçük, B. Smells in software test

code: A survey of knowledge in industry and

academia. Journal of Systems and Software, 138, 52-

81, 2018. https://doi.org/10.1016/j.jss.2017.12.013.

[23] Garousi, V., Rainer, A., Lauvås, P., & Arcuri, A.

Software-testing education: A systematic literature

mapping. Journal of Systems and Software, 165,

110570, 2020.

https://doi.org/10.1016/j.jss.2020.110570.

[24] Ho, V. W., Harris, P. G., Kumar, R. K., & Velan, G.

M. Knowledge maps: A tool for online assessment

with automated feedback. Medical Education Online,

23(1), 1457394, 2018.

https://doi.org/10.1080/10872981.2018.1457394.

[25] Huang, T., & Fang, C. C. Optimization of software

test scheduling under development of modular

software systems. Symmetry-Basel, 15(1), 195, 2023.

https://doi.org/10.3390/ sym15010195.

[26] Huang, Y., Glänzel, W., & Zhang, L. Tracing the

development of mapping knowledge domains.

Scientometrics, 126, 6201-6224, 2021.

https://doi.org/10.1007/s11192-02003821-x.

[27] Idri, A., Benhar, H., Fernández-Alemán, J. L., &

Kadi, I. A systematic map of medical data

preprocessing in knowledge discovery. Computer

Methods and Programs in Biomedicine, 162, 69-85,

2018. https://doi.org/10.1016/j.cmpb.2018.05.007.

[28] Jung, P., Kang, S., & Lee, J. Automated code-based

test selection for software product line regression

testing. Journal of Systems and Software, 158,

36 Informatica 48 (2024) 27–36 L. Gao et al.

110419, 2019.

https://doi.org/10.1016/j.jss.2019.110419.

[29] Jung, P., Kang, S., & Lee, J. Efficient regression

testing of software product lines by reducing

redundant test executions. Applied Sciences-Basel,

10(23), 8686, 2020.

https://doi.org/10.3390/app10238686.

[30] Kaur, V. Knowledge-based dynamic capabilities: A

scientometric analysis of marriage between

knowledge management and dynamic capabilities.

Journal of Knowledge Management, 27(4), 919-952,

2023. https://doi.org/10.1108/jkm-02-2022-0112.

[31] Khan, M. U., Sherin, S., Lqbal, M. Z., & Zahid, R.

Landscaping systematic mapping studies in software

engineering: A tertiary study. Journal of Systems and

Software, 149, 396-436, 2019.

https://doi.org/10.1016/j.jss.2018.12.018.

[32] Laaber, C., Gall, H. C., & Leitner, P. Applying test

case prioritization to software microbenchmarks.

Empirical Software Engineering, 26(6), 133, 2021.

https://doi.org/10.1007/s10664-021-10037-x.

[33] Lee, J., Kang, S., & Keum, C. Architecture-Based

software testing. International Journal of Software

Engineering and Knowledge Engineering, 28(1), 57-

77, 2018.

https://doi.org/10.1142/s0218194018500031.

[34] Lee, J. H. Mapping local knowledge through spatial

text mining. Landscape and Ecological Engineering,

19(2), 243-255, 2023.

https://doi.org/10.1007/s11355-023-005411.

[35] De, R., & Nanda, I. Network/security threats and

countermeasures for cloud computing. Acta

Electronica Malaysia, 7(1), 1-3, 2022.

https://doi.org/10.26480/aem.01.2022.01.03

[36] Rachman, A., Kurniawan, M., Anam, C., Putra, R. E.,

Rozi, N.F., Sulistyowati, & Pakarbudi, A. Fast

development kangean island tourism website using

maf-inc model. Acta Informatica Malaysia, 7(2), 83-

91, 2023. https://doi.org/10.26480/aim.02.2023.83.91

[37] Liargkovas, G., Papadopoulou, A., Kotti, Z., &

Spinellis, D. Software engineering education

knowledge versus industrial needs. IEEE

Transactions on Education, 65(3), 419-427, 2022.

https://doi.org/10.1109/te.2021.3123889.

[38] Marculescu, B., Feldt, R., Torkar, R., & Poulding, S.

Transferring interactive search-based software testing

to industry. Journal of Systems and Software, 142,

156-170, 2018.

https://doi.org/10.1016/j.jss.2018.04.061.

[39] Menaouer, B., & Nada, M. The relationship between

knowledge mapping and the open innovation process:

The case of education system. AI Edam-Artificial

Intelligence for Engineering Design Analysis and

Manufacturing, 34(1), 17-29, 2020.

https://doi.org/10.1017/s0890060419000325.

[40] Peischl, B., Tazl, O. A., & Wotawa, F. Testing

anticipatory systems: A systematic mapping study on

the state of the art. Journal of Systems and Software,

192, 111387, 2022.

https://doi.org/10.1016/j.jss.2022.111387.

[41] Pellegrini, M. M., Ciampi, F., Marzi, G., & Orlando,

B. The relationship between knowledge management

and leadership: Mapping the field and providing

future research avenues. Journal of Knowledge

Management, 24(6), 1445-1492, 2020.

https://doi.org/10.1108/jkm-01-2020-0034.

[42] Odeh, A. Exploring AI innovations in automated

software source code generation: Progress, hurdles,

and future paths. Informatica, An International

Journal of Computing and Informatics, 48(8), 125-

136, 2024. https://doi.org/10.31449/inf.v48i8.5291.

[43] Sofian, H., Yunus, N. A. M., & Ahmad, R. Systematic

mapping: Artificial intelligence techniques in

software engineering. IEEE Access, 10, 51021-51040,

2022. https://doi.org/10.1109/access.2022.3174115.

https://doi.org/10.1108/jkm-01-2020-0034

