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Effective patient scheduling in hospitals is crucial for optimizing resource use and improving patient 

care. Traditional methods often struggle to balance patient preferences, hospital constraints, and 

varying patient loads. This study explores the III genetic algorithm without dominant sorting with 

variable length (VL-NSGA III) for dynamic patient scheduling and compares it with Particle Swarm 

Optimization (PSO), Multi-Objective Particle Swarm Optimization (MOPSO), Objective 

Decomposition Particle Swarm Optimization (ODPSO), and Genetic Algorithm without Dominant 

Sorting II with Best Fitness Evaluation (Nsga2bfe). The problem formulation considers dynamic patient 

arrivals and hospital constraints, requiring flexible solutions. VL-NSGA III generates high-quality non-

dominant solutions tailored to dynamic scheduling scenarios. The evaluation used simulator-based 

scoring over a 36-day period, with synthetic patient data simulating real hospital conditions. The 

simulation modeled a hospital with multiple departments, specializations, and rooms, considering 

factors such as room capacity, patient arrival rates, and service duration. Evaluation metrics included 

set coverage (C-metric) to assess dominance among solution sets, hypervolume (HV) to measure 

objective space coverage, and convergence to measure proximity to the true Pareto front. 

The study ran multiple simulation scenarios with varying patient arrival rates, service durations, and 

hospital capacities to test the algorithm's robustness and adaptability. The results showed that VL-

NSGA III excelled at generating non-dominated solutions with superior set coverage, achieving a value 

of 1 against PSO, MOPSO, ODPSO, and Nsga2bfe, indicating complete dominance. ODPSO achieved 

the highest hypervolume, closely followed by MOPSO and PSO. Notably, MOPSO demonstrated partial 

dominance over PSO with 0.7 coverage and over ODPSO with 0.8333. ODPSO showed partial 

dominance over PSO and MOPSO with coverage values of 0.6333 and 0.7333, respectively. Nsga2bfe 

exhibited partial dominance over VL-NSGA III with a coverage value of 0.03333 while fully dominating 

PSO and MOPSO. The dominant set coverage of VL-NSGA III highlighted its robustness and 

adaptability in dynamic patient scheduling scenarios, despite lower hypervolume values compared to 

ODPSO, MOPSO, and PSO. This underscores the importance of considering both set coverage and 

hypervolume metrics when evaluating algorithm performance for complex scheduling problems. 

Povzetek: Dinamičnega načrtovanje storitev pacientov v bolnišnicah je analizirano s pomočjo 

variabilne dolžine genetskega algoritma III brez dominacije (VL-NSGA III). Rezultati kažejo, da VL-

NSGA III omogoča učinkovito reševanje zapletenih optimizacijskih problemov s številnimi cilji v 

zdravstvenem okolju, kar pomembno izboljša načrtovanje glede na bolnišnične omejitve in preference 

pacientov. 

 

1 Introduction  
In the realm of healthcare management, the optimization 

of patient bed scheduling stands as a pivotal challenge, 

necessitating a delicate balance between operational 

efficiency and the paramount goal of enhancing patient 

care quality. This challenge is further complicated by the 

multifaceted objectives that healthcare facilities must 

navigate, including cost minimization, patient satisfaction 

maximization, and equitable resource distribution. As the 

field progresses, there is a growing recognition of the 

limitations of traditional single-objective optimization  

 

models, which, while adept at addressing specific 

operational issues, often fall short in capturing the full 

complexity of healthcare operations [1]. 

The shift towards multi-objective optimization 

(MOO) techniques represents a significant advancement 

in addressing the intricate balance of objectives within 

healthcare management, particularly in the context of 

patient bed scheduling. MOO algorithms, such as NSGA-

II, have been widely recognized for their utility in tackling 

a plethora of combinatorial optimization challenges within 

healthcare, including patient scheduling and resource 
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allocation [2]. However, as the number of objectives 

increases, the transition to many-objective optimization 

(MaOP) becomes essential, necessitating the development 

of advanced frameworks that can effectively manage the 

higher dimensionality of objectives and the inherent 

conflicts among them. 

Recent research has begun to explore the application 

of NSGA-III, an extension of the NSGA-II algorithm, 

which is specifically designed to handle many-objective 

problems. NSGA-III introduces the concept of reference 

points to facilitate the exploration of the Pareto-optimal 

front more comprehensively, thereby offering a more 

nuanced approach to decision-making in complex 

optimization scenarios [3]. This algorithm has shown 

promise in various domains, and its adaptation to 

healthcare optimization problems, particularly patient bed 

scheduling, is a burgeoning area of interest. 

In this article, we delve into the application of NSGA-

III for the Patient Admission Scheduling Problem (PASP), 

a dynamic and multi-objective combinatorial optimization 

problem that is NP-hard in nature [4]. We propose a 

simulation for dynamic patient scheduling that leverages 

NSGA-III's reference point-based approach to optimize 

patient admissions, hospital time locations, and achieve 

quality of service and cost objectives. Our study 

contributes to the literature by demonstrating the 

superiority of NSGA-III over other optimization 

algorithms in terms of set criticality and soft constraint 

values, thereby highlighting its potential as a valuable tool 

for addressing the complexities of PASP in a dynamic 

healthcare environment [5]. 

Through a rigorous evaluation and comparison with 

traditional models, our findings underscore the efficacy of 

NSGA-III in managing the many-objective nature of 

PASP, offering a promising direction for future research 

in healthcare optimization. The integration of NSGA-III's 

reference point methodology into patient scheduling 

systems could significantly enhance the decision-making 

process, leading to more efficient and effective healthcare 

operations. 

2 Related works  
In the evolving landscape of healthcare management, the 

optimization of patient bed scheduling emerges as a 

critical concern, underlined by the need to balance 

operational efficiency with the paramount objective of 

patient care quality. The complexity of this challenge is 

further compounded when considering the multifaceted 

objectives that healthcare facilities strive to achieve, such 

as cost minimization, patient satisfaction maximization, 

and equitable resource distribution. This literature survey 

delves into the progression from traditional optimization 

approaches to multi-objective optimization (MOO) 

techniques, with a particular focus on the exploration and 

application of these methodologies within the realm of 

patient bed scheduling. The discussion extends to the 

realm of many-objective optimization (MaOPs), 

highlighting the current research gaps and underscoring 

the potential for future advancements. 

Historical approaches to optimizing hospital bed 

allocation primarily utilized single-objective optimization 

models, which, while effective in addressing specific 

problems, often neglect the complexity and multiple goals 

inherent in hospital operations. For instance, simulation-

optimization techniques have demonstrated potential for 

operational improvements in bed allocation [1], whereas 

the application of queuing theory provided a framework 

for managing bed allocation during the COVID-19 

pandemic, offering solutions to the sudden surge in 

demand for hospital resources [4]. Despite these 

advancements, such traditional methods frequently fall 

short in holistically addressing the nuanced demands of 

healthcare management, primarily due to their singular 

focus on optimizing a specific operational facet without 

considering the broader spectrum of objectives that 

healthcare facilities juggle. 

The transition towards MOO techniques represents a 

significant stride in addressing the intricate balance of 

objectives in healthcare management, particularly in 

patient bed scheduling. The adaptation of NSGA-II, a 

renowned MOO algorithm, showcases its utility across a 

plethora of combinatorial optimization challenges within 

healthcare, including patient scheduling and resource 

allocation [2]. Similarly, the deployment of evolutionary 

algorithms, like the Artificial Bee Colony (ABC) 

algorithm, for patient admission scheduling problems [6], 

epitomizes the adaptability and efficacy of MOO methods 

in navigating complex operational landscapes. These 

approaches exemplify the shift towards frameworks that 

accommodate multiple, often conflicting, objectives, 

thereby offering more nuanced and comprehensive 

solutions to healthcare optimization problems. 

The literature reveals a convergence of optimization 

techniques towards addressing specific healthcare 

scheduling problems. For instance, the allocation and 

scheduling of hospital beds during critical periods, such as 

epidemics, have been tackled using both queuing theory 

and simulation-based approaches, illustrating the sector's 

adaptability in crisis situations [4], [7]. Moreover, the 

utilization of simulation-optimization models extends to 

general bed management and elective patient admissions, 

emphasizing the technique's versatility across different 

contexts [1], [8]. 

Furthermore, evolutionary algorithms like NSGA-II 

and ABC have been applied not only in patient bed 

scheduling but also in broader resource allocation 

problems, underscoring their relevance across a range of 

healthcare optimization issues [1], [2], [6]. The 

exploration of these algorithms in various healthcare 

settings reveals their potential in addressing distinct but 

related challenges, from optimizing surgery schedules to 

ensure efficient bed usage [9] to enhancing patient 

admission strategies by considering inter-related resources 

like beds and operating rooms [10]. 

Despite the advancements in MOO, the exploration 

into many-objective optimization frameworks tailored for 

healthcare optimization, particularly patient bed 

scheduling, remains limited. MaOPs introduce a higher 

dimensionality of objectives, thereby exacerbating the 

challenge of achieving an optimal balance among 
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conflicting goals. The literature indicates a palpable gap in 

applying many-objective optimization frameworks, such 

as Mo4Ma, within the healthcare domain [11]. These 

frameworks, while promising in general optimization 

scenarios, have yet to be fully explored and adapted to the 

nuanced requirements and constraints of healthcare 

settings. A comparative evaluation between the methods 

in presented in Table 1. 

Table 1: Methodological comparison of patient bed scheduling optimization approaches in healthcare management 

Ref Objective 
Optimization 

Technique 

Application 

Context 
Key Findings 

Real time 

scheduling  
Limitations 

[1] 

Operational 

improvements in 

bed allocation 

Simulation-
Optimization 

General bed 
management 

Demonstrated potential for 
operational improvements 

× Limited to specific 

operational aspects, 

not holistic 

[2] 

Patient scheduling 

and resource 
allocation 

NSGA-II (MOO) 

Combinatorial 
optimization 

challenges in 

healthcare 

Showcased utility across 

various healthcare scenarios 

× Complexity 
increases with 

number of 

objectives 

[4] 

Bed allocation 

during COVID-19 

pandemic 

Queuing Theory 
Managing surge in 
hospital resources 

Provided solutions for sudden 
demand surge 

× Focused on specific 

pandemic-related 

scenarios 

[6] 
Patient admission 

scheduling 

Artificial Bee 
Colony (ABC) 

Algorithm 

Complex 
operational 

landscapes 

Epitomized adaptability and 

efficacy of MOO methods 

× Requires fine-
tuning of algorithm 

parameters 

[7] 
Hospital bed 
allocation during 

critical periods 

Queuing Theory 
and Simulation-

Based Approaches 

Epidemics and 

crisis situations 

Illustrated adaptability in 

crisis 

× Context-specific, 
may not generalize 

well 

[8] 

General bed 
management and 

elective patient 

admissions 

Simulation-

Optimization 

Various healthcare 

contexts 

Emphasized versatility of 

technique 

× 
Potentially 

resource-intensive 

[9] 

Surgery schedule 
optimization for 

efficient bed 

usage 

Evolutionary 

Algorithms 
Surgery scheduling 

Enhanced efficiency in bed 

usage 

× 
Limited focus on 

inter-related 
resources 

[10] 

Patient admission 

strategies 

considering inter-
related resources 

Evolutionary 

Algorithms 

Admissions, beds, 
and operating 

rooms 

Improved admission 

strategies 

× 
Integration with 
real-time systems 

needed 

[11] 

Many-objective 

optimization in 

healthcare 

Mo4Ma Framework 

General 

optimization 

scenarios 

Promising in general 
scenarios 

× Computational 

complexity and 

resource intensity 

[12] 
Patient admission 

scheduling (PAS) 

ILP, Single 

Objective Meta-

Heuristic, Multi-

Objective Meta-
Heuristic (Pareto 

Front) 

Combinatorial 
optimization in 

healthcare 

Demonstrated superiority of 

multi-objective optimization 

with window incorporation 
over traditional models 

√ High 

computational 

demand for ILP, 
risk of local 

minima in single 

objective 
approaches 

The critical analysis of current literature uncovers 

significant gaps in the application of many-objective 

optimization to healthcare management challenges. One 

of the primary hurdles is the computational complexity 

and resource intensity associated with MaOPs, which can 

be prohibitive in real-world healthcare applications. 

Additionally, there is a notable deficiency in frameworks 

that integrate seamlessly with healthcare information 

systems, allowing for dynamic and real-time decision-

making based on fluctuating hospital needs and patient 

inflows.  

The challenge extends beyond computational and 

technical hurdles, encompassing the need for solutions 

that are not only effective and efficient but also ethically 

grounded and patient-centric. The development of 

optimization models that consider patient outcomes, 

equity in resource distribution, and ethical considerations 

in decision-making processes remains a vital frontier for 

research. 

The comprehensive review of existing literature 

reveals several critical gaps in the current state-of-the-art 

approaches to hospital patient scheduling, which our 

proposed VL-NSGA III algorithm aims to address: 

1. Limited Adaptability to Dynamic 

Environments: Most existing methods, such 

as those employing queuing theory (Hu et 

al., 2021) or fixed optimization models 

(Guido, 2024), struggle to adapt to the 

rapidly changing dynamics of hospital 

environments. These approaches often fail to 

account for sudden fluctuations in patient 

volumes, varying patient characteristics, and 

real-time changes in hospital resources. 

There is a clear need for an algorithm that 

can dynamically adjust to these changing 

conditions without compromising solution 

quality. 

2. Inadequate Handling of Many-Objective 

Problems: While multi-objective 

optimization techniques like NSGA-II have 

shown promise in handling multiple 

objectives (Verma et al., 2021), they often 

falter when dealing with many-objective 
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problems (more than 3 objectives). Hospital 

scheduling inherently involves numerous, 

often conflicting objectives, necessitating an 

approach capable of effectively managing 

this complexity without significant 

degradation in performance or solution 

quality. 

3. Insufficient Real-Time Constraint 

Management: Existing methods frequently 

fall short in accounting for real-time changes 

in hospital constraints and patient needs. 

Simulation-based approaches (Oliveira et 

al., 2020) and static optimization models 

struggle to incorporate dynamic constraints 

effectively, leading to suboptimal or 

infeasible solutions in rapidly changing 

hospital environments. 

4. Scalability Challenges: Many current 

algorithms face significant scalability issues 

when applied to large, complex hospital 

systems with multiple departments and 

specializations. This limitation hinders their 

practical application in real-world hospital 

settings, where the ability to handle large-

scale, complex scheduling problems is 

crucial. 

5. Imbalance Between Exploration and 

Exploitation: Existing optimization 

approaches often struggle to maintain an 

effective balance between exploring new 

solutions and exploiting known good 

solutions. This imbalance can lead to 

premature convergence or inability to escape 

local optima, resulting in suboptimal 

scheduling outcomes. 

6. Limited Integration of Patient Preferences 

and Medical Priorities: While some studies 

have considered patient preferences (Bolaji 

et al., 2022), there remains a gap in 

effectively integrating these preferences 

with medical priorities and hospital 

constraints in a dynamic, many-objective 

optimization framework. 

To address these gaps, we propose the Variable 

Length Non-Dominated Sorting Genetic Algorithm III 

(VL-NSGA III). This algorithm is specifically designed to 

handle dynamic, many-objective optimization problems in 

hospital scheduling. Its variable length encoding allows 

for adaptive problem representation, enabling it to adjust 

to changing patient loads and hospital conditions in real-

time. The algorithm's structure is tailored to efficiently 

manage many-objective problems, improving its ability to 

balance multiple, often conflicting, objectives inherent in 

hospital scheduling. Moreover, VL-NSGA III 

incorporates mechanisms for dynamic constraint handling 

and maintains a better balance between exploration and 

exploitation, potentially leading to more robust and 

practical scheduling solutions. 

By addressing these identified gaps, our proposed 

VL-NSGA III algorithm aims to advance the state-of-the-

art in hospital patient scheduling, offering a more 

adaptive, scalable, and comprehensive approach to this 

complex problem. 

In conclusion, the literature survey underscores the 

critical need for advancements in optimization techniques, 

particularly in the realm of many-objective optimization, 

to address the complex and evolving challenges of patient 

bed scheduling in healthcare. The incorporation of criteria 

for handling many-objective optimization challenges, 

specifically the selection from the Pareto front, is a 

significant gap that requires further exploration. Future 

research should focus on developing frameworks that not 

only manage the increasing number of objectives but also 

integrate seamlessly with healthcare systems, ensuring 

that optimization solutions are both effective and ethically 

sound, ultimately enhancing the quality of patient care. 

3 Methodology  

3.1 Problem formulation  

The problem of bed patient scheduling in hospitals 

involves assigning hospital beds to incoming patients in a 

manner that optimally balances the preferences of the 

patients and the constraints imposed by the hospital's 

resources and regulations. This problem is complex due to 

the variability in patient needs, preferences, and the 

dynamic nature of hospital operations. The objective is to 

create a scheduling system that maximizes patient 

satisfaction while adhering to the constraints of hospital 

rooms. This problem is formulated as a many-objective 

optimization problem where the objectives are soft 

constraints subject to the hard constraints derived from the 

restrictions in the hospital. 

Given a sequence of patients {𝑃1, 𝑃2, … , 𝑃𝑛} with 

individual preference sets {𝑆1, 𝑆2, … , 𝑆𝑛} and a set of 

hospital rooms {𝑅1, 𝑅2, … , 𝑅𝑚} each with specific 

restrictions {𝐶1, 𝐶2, … , 𝐶𝑚}, the goal is to develop a 

scheduling system that assigns each patient 𝑃𝑖  to a room 

𝑅𝑗 at a time 𝑡𝑘 such that the hard constraints are satisfied 

while optimizing the soft constraints. 

Let 𝑥𝑖𝑗𝑘  be a binary decision variable where 𝑥𝑖𝑗𝑘 = 1 

if patient 𝑃𝑖  is assigned to room 𝑅𝑗 at time 𝑡𝑘, and 𝑥𝑖𝑗𝑘 =

0 otherwise. The objective functions are as follows: 

 

1. Maximizing patient satisfaction: 

Maximize∑ 

𝑛

𝑖=1

∑ 

𝑚

𝑗=1

∑ 

𝑇

𝑘=1

𝑥𝑖𝑗𝑘 ⋅ 𝑆𝑖𝑗  (1) 

Where 𝑆𝑖𝑗  represents the satisfaction score of patients 

𝑃𝑖  being assigned to room 𝑅𝑗. 

 

2. Minimizing waiting time: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒∑  

𝑛

𝑖=1

𝑊𝑖 ⋅ (1 −∑  

𝑚

𝑗=1

 ∑  

𝑇

𝑘=1

 𝑥𝑖𝑗𝑘) (2) 

Where 𝑊𝑖 is the waiting time of patient 𝑃𝑖 . 
 

3. Maximizing room utilization: 
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𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒∑  

𝑚

𝑗=1

∑  𝑛
𝑖=1  ∑  𝑇

𝑘=1   𝑥𝑖𝑗𝑘

𝐶𝑗
 (3) 

Where 𝐶𝑗 is the capacity of room 𝑅𝑗. 

 

 

 

 

4. Minimizing staff workload: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒∑  

𝑆

𝑠=1

(∑  

𝑛

𝑖=1

 ∑  

𝑚

𝑗=1

 ∑  

𝑇

𝑘=1

  𝑥𝑖𝑗𝑘 ⋅ 𝐿𝑖𝑗𝑠)

2

 (4) 

Where 𝐿𝑖𝑗𝑠 is the workload impact of patient 𝑃𝑖  in 

room 𝑅𝑗 on staff member 𝑠. 

 

5. Minimizing transfers: 

Minimize∑ 

𝑛

𝑖=1

𝑇𝑖 (5) 

where 𝑇𝑖  is the number of transfers patient 𝑃𝑖  
undergoes. 

 

6. Ensuring equity: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒∑  

𝐺

𝑔=1

(
𝑁𝑔

𝑁
−
𝐵𝑔

𝐵
)
2

 (6) 

Where 𝑁𝑔 is the number of patients in group 𝑔,𝑁 is 

the total number of patients, 𝐵𝑔 is the number of beds 

assigned to group 𝑔, and 𝐵 is the total number of beds. 

The constraints are expressed as follows: 

 

1 Room capacity: 

∑ 

𝑛

𝑖=1

∑ 

𝑇

𝑘=1

𝑥𝑖𝑗𝑘 ≤ 𝐶𝑗 ∀𝑗 (7) 

  

2 Patient requirements: 

𝑥𝑖𝑗𝑘 = 0 

if patient𝑃𝑖 does not meet the requirements of  

room𝑅𝑗at time𝑡𝑘  

 

(8) 

3 Medical priority: 

∑ 

𝑚

𝑗=1

∑ 

𝑇

𝑘=1

𝑥𝑖𝑗𝑘 = 1if𝑃𝑖 has high medical priority (9) 

  

4 Temporal constraints: 

𝑥𝑖𝑗𝑘 ⋅ 𝑥𝑖𝑗𝑙 = 0∀𝑖, 𝑗,  if 𝑘 ≠ 𝑙 (10) 

 

Ensuring that a patient is assigned to only one room 

at any given time. 

To solve this many-objective optimization problem, 

advanced optimization techniques such as multi-objective 

evolutionary algorithms (MOEAs) or Pareto-based 

optimization methods can be employed. These methods 

can efficiently handle the trade-offs between conflicting 

objectives and provide a set of optimal solutions (Pareto 

front) from which the hospital administration can choose 

based on their priorities. 

3.2 Simulator  

The simulator, depicted in Figure 2, is designed to 

evaluate the dynamic scheduling of patients in a hospital 

environment. This system manages the flow of newly 

arrived patients and their allocation to hospital rooms 

through a sophisticated scheduling and optimization 

process. 

Newly arrived patients are first fed into the scheduler, 

which is responsible for receiving a solution from the 

solution selection block and integrating it into the list of 

non-confirmed patients. This list includes patients who 

have not yet been confirmed for specific scheduling slots. 

The non-confirmed patients list serves two primary 

functions: it feeds non-confirmed patients into a new call 

of the optimization algorithm and provides patients whose 

scheduled day is within less than 𝐷 days to the confirmed 

patients list through a sub-block named Confirm. 

The core of the optimization process is the Variable 

Length Non-Dominated Sorting Genetic Algorithm (VL-

NSGA III). This algorithm operates on different lengths of 

solutions due to the fluctuating number of patients, 

adapting dynamically to the changing patient load. The 

following assumptions are inherent in the simulation 

model: 

1. Hospital Structure: The hospital comprises a set 

of departments 𝐷, each specializing in various 

fields 𝑆, and containing a set of rooms 𝑅. 

2. Room Capacity: Each room within a department 

can accommodate a pre-defined number of 

patients simultaneously. 

3. Patient Arrival Rate: Patients arrive at the 

hospital at a specific rate, and each patient 

requires a certain number of nights within a 

preferred department and specialization. 

4. Service Duration: Each patient is served within a 

specified number of nights. 

5. Dynamic Solution Space: The optimization 

problem is dynamic, with the solution space 

changing in length due to the varying number of 

patients on different days. This affects the 

allocation of patients from the non-confirmed 

list. 

6. Time-Dependent Optimization Outcome: The 

outcome of the optimization process at time 𝑡 is 

denoted as 𝑃𝐹𝑡, indicating a time-dependent 

Pareto Front. 

In this system, the scheduler integrates inputs from 

new patient arrivals and manages them through the VL-

NSGA III optimization algorithm to generate a Pareto 

Front of optimal scheduling solutions. These solutions are 

then selected and applied, ensuring that patients are 

allocated rooms in a manner that balances their 

preferences and the hospital's capacity constraints. The 

confirmed patients list is continually updated, and the 
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process iterates to accommodate dynamic changes in 

patient load and hospital resources. This simulation model 

provides a robust framework for evaluating the efficacy of 

the dynamic scheduling system in a hospital environment. 

3.3 Evaluation  

In this section, we outline the evaluation methodology 

employed to assess the performance of the proposed 

Variable Length Non-Dominated Sorting Genetic 

Algorithm III (VL-NSGA III) for dynamic scheduling of 

patients in a hospital environment. The evaluation focuses 

on comparing VL-NSGA III against several well-

established Multi-Objective Optimization (MOO) 

algorithms, including PSO, MOPSO, ODPOSO, and 

Nsga2bfe. The assessment is a simulator-based 

evaluation. For this stage, we utilized the simulator's data, 

which covered a total of 36 days. The data has a layout 

similar to that provided in the work of [34]. We contrasted 

NSGA-3, which incorporates numerous objective 

optimizations based on our created operators, with the 

following benchmarks: particle swarm optimization 

(PSO), multi-objective particle swarm optimization 

(MOPSO), and objective decomposition particle swarm 

optimization (ODPSO). The set coverage, hypervolume, 

and convergence curves were produced to facilitate a 

comprehensive comparison. To ensure a robust 

evaluation, the hospital environment is simulated with 

departments DD, each specializing in various fields SS, 

and containing a set of rooms RR. The simulation models 

real-world constraints such as room capacity, patient 

arrival rates, and service durations. Synthetic patient data 

is generated to mimic real hospital scenarios, including 

varying patient arrival rates, service duration 

requirements, and departmental preferences. VL-NSGA 

III, PSO, MOPSO, ODPOSO, and Nsga2bfe are 

implemented in the simulation framework. Each algorithm 

is tuned to its optimal parameters to ensure a fair 

comparison. The performance of the algorithms will be 

evaluated using the following metrics: Set Coverage (C-

metric), which assesses the dominance of one algorithm's 

solution set over another, with a higher set coverage value 

indicating superior performance in terms of generating 

non-dominated solutions; Hypervolume (HV), which 

measures the volume of the objective space covered by the 

Pareto front generated by each algorithm, with a higher 

hypervolume indicating b etter coverage of the objective 

space; and Convergence, which measures the degree to 

which the algorithm's solutions approach the true Pareto 

front. The evaluation process involves running multiple 

simulation scenarios to compare the performance of VL-

NSGA III with the other MOO algorithms. Each scenario 

includes different patient arrival rates, service durations, 

and hospital capacities to test the robustness and 

adaptability of the algorithms. The following steps are 

undertaken: initializing the hospital environment and 

patient data for the simulation, running each algorithm 

(VL-NSGA III, PSO, MOPSO, ODPOSO, Nsga2bfe) on 

the simulation environment multiple times to obtain a 

statistically significant set of results, collecting data on set 

coverage, hypervolume, convergence, and diversity for 

each run of the algorithms, and analyzing the collected 

data to compare the performance of the algorithms across 

the defined metrics. 

4 Experimental results and analysis 
The heatmap provided illustrates the set coverage among 

various Multi-Objective Optimization (MOO) methods, 

namely Nsga3, PSO, MOPSO, ODPOSO, and Nsga2bfe. 

Set coverage is a critical metric used in evaluating the 

performance of different MOO algorithms. It represents 

the proportion of solutions from one algorithm’s solution 

set that are dominated by solutions from another 

algorithm’s solution set. A higher value in the heatmap 

signifies a stronger performance in terms of dominance 

over other solution sets. Examining the heatmap reveals 

several insights into the relative performance of these 

algorithms. The first notable observation is the dominance 

of the Nsga3 method. Nsga3 consistently shows high 

coverage values, indicating it has superior performance 

over the other algorithms in the comparison. Specifically, 

Nsga3 dominates PSO, MOPSO, ODPOSO, and Nsga2bfe 

entirely, with set coverage values of 1 across these 

comparisons. This suggests that Nsga3 solutions are not 

dominated by any solutions from PSO, MOPSO, 

ODPOSO, or Nsga2bfe, highlighting its efficacy in 

producing optimal solutions in a multi-objective context. 

In contrast, Nsga3 does not dominate itself, which is 

expected since set coverage within the same algorithm is 

not a meaningful metric (value of 0). This absence of self-

dominance underscores the precision and focus of Nsga3 

in finding non-dominated solutions across different 

scenarios. Next, considering PSO, it demonstrates 

complete dominance over MOPSO and ODPOSO, with 

set coverage values of 1. This indicates that all solutions 

provided by MOPSO and ODPOSO are dominated by 

those from PSO. However, PSO does not dominate Nsga3 

or Nsga2bfe (values of 0), suggesting that while PSO is 

effective against certain methods, it does not reach the 

performance levels of Nsga3 or Nsga2bfe in generating 

non-dominated solutions. MOPSO's performance is 

mixed. It shows partial dominance over PSO with a 

coverage of 0.7, indicating that 70% of MOPSO’s 

solutions are not dominated by PSO’s solutions. 

Moreover, MOPSO exhibits a partial dominance over 

ODPOSO with a coverage of 0.8333, signifying that a 

substantial portion of MOPSO’s solutions are superior to 

those of ODPOSO. However, MOPSO does not dominate 

Nsga3 or Nsga2bfe (values of 0), demonstrating its limited 

effectiveness compared to these methods. ODPOSO, 

which stands for Objective Decomposition based variant 

of MOPSO, displays a partial dominance over both PSO 

and MOPSO with coverage values of 0.6333 and 0.7333, 

respectively. These values suggest that ODPOSO can 

outperform PSO and MOPSO to some extent. However, 

like MOPSO, ODPOSO does not dominate Nsga3 or 

Nsga2bfe, highlighting its relative inferiority when 

compared to these stronger algorithms. Nsga2bfe, an 

enhanced version of NSGA-II that includes the criteria of 

Best Fitness Estimation (BFE) which balances diversity 

and convergence, emerges as another strong contender. It 
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shows partial dominance over Nsga3 with a coverage 

value of 0.03333. Although this value is relatively small, 

it indicates that there are some scenarios where Nsga2bfe 

solutions are not dominated by Nsga3. Additionally, 

Nsga2bfe completely dominates PSO and MOPSO, with 

set coverage values of 1, underscoring its robust 

performance against these methods. However, Nsga2bfe 

does not dominate ODPOSO (value of 0), reflecting a 

limitation in its overall dominance. 

The bar chart in Figure 2 illustrating hypervolume 

values offers valuable insights into the performance of 

various Multi-Objective Optimization (MOO) methods: 

Nsga3, PSO, MOPSO, ODPOSO, and Nsga2bfe. 

Hypervolume measures the volume of the objective space 

dominated by a Pareto front, with higher values indicating 

better performance in covering the objective space. 

ODPOSO achieves the highest hypervolume, suggesting 

its effectiveness in covering a broad objective space. This 

finding aligns with the nature of ODPOSO (Objective 

Decomposition based variant of MOPSO), which 

decomposes complex objectives into simpler sub-

problems, resulting in extensive objective space coverage. 

MOPSO and PSO also show strong performance in terms 

of hypervolume, indicating their ability to explore and 

cover the multi-objective space efficiently. Nsga3 and 

Nsga2bfe, while exhibiting lower hypervolume values, 

still maintain respectable performance levels. However, 

linking this hypervolume analysis with the set coverage 

analysis reveals a deeper understanding of the algorithms' 

overall performance. The set coverage heatmap indicated 

that Nsga3 is the most dominant method, completely 

dominating PSO, MOPSO, ODPOSO, and Nsga2bfe. This 

underscores Nsga3’s superior ability to generate non-

dominated solutions across different scenarios. Nsga2bfe 

also showed strong performance, particularly against PSO 

and MOPSO, by incorporating the Best Fitness Estimation 

(BFE) to balance diversity and convergence. 

The preference for more dominating solutions, as 

indicated by the set coverage, highlights that while 

hypervolume is an important metric, the ability to 

dominate other solution sets is often more critical in multi-

objective optimization. Despite ODPOSO’s higher 

hypervolume, Nsga3’s complete dominance over other 

methods makes it the preferred choice for generating high-

quality, non-dominated solutions. This dominance 

indicates that Nsga3 consistently finds solutions that are 

not only good but also superior to those found by other 

methods. 

Therefore, Nsga3 stands out as the preferred method 

due to its superior dominance in generating high-quality 

solutions, as evidenced by the set coverage analysis. This 

makes Nsga3 ideal for applications where the priority is 

on obtaining non-dominated solutions that outperform 

others. Although ODPOSO achieves the highest 

hypervolume, indicating extensive objective space 

coverage, the set coverage dominance of Nsga3 

demonstrates that it provides more valuable solutions in 

multi-objective optimization scenarios. Therefore, when 

choosing between these methods, the preference for more 

dominating solutions should guide the selection towards 

Nsga3. 

 

 
Figure 1: Set coverage heatmap among various multi-

objective optimization methods. 

 

The Figure 1 illustrates the set coverage among 

Nsga3, PSO, MOPSO, ODPOSO, and Nsga2bfe. Higher 

values indicate stronger performance in terms of 

dominance. Nsga3 demonstrates superior performance, 

entirely dominating PSO, MOPSO, ODPOSO, and 

Nsga2bfe. Nsga2bfe, which incorporates Best Fitness 

Estimation (BFE) for balancing diversity and 

convergence, also shows strong performance, particularly 

against PSO and MOPSO. ODPOSO, an Objective 

Decomposition based variant of MOPSO, along with PSO 

and MOPSO, show varying degrees of effectiveness but 

are generally outperformed by Nsga3 and Nsga2bfe. 

 

 
Figure 2: Hypervolume comparison among various 

multi-objective optimization 

 

This bar chart compares the hypervolume values achieved 

by Nsga3, PSO, MOPSO, ODPOSO, and Nsga2bfe. 

Hypervolume is a metric that measures the volume of the 

objective space dominated by a Pareto front. Higher 

values indicate better performance in covering the 

objective space. ODPOSO achieves the highest 

hypervolume, followed closely by MOPSO and PSO. 

Nsga3 and Nsga2bfe have lower hypervolume values in 

comparison, suggesting that while they excel in set 

coverage and dominance, their overall objective space 

coverage is somewhat less comprehensive than ODPOSO, 

MOPSO, and PSO. 
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5 Discussion 
Our study on the application of VL-NSGA III for dynamic 

patient scheduling in hospitals has yielded promising 

results that advance the state-of-the-art in this field. In this 

section, we compare our findings with those of related 

works, discuss the implications of our results, and 

elaborate on the novelty of our approach, incorporating the 

specific numerical metrics from our results analysis. 

Our study's results offer significant insights when 

compared to related works in the field of hospital patient 

scheduling: 

1. Algorithm Performance: Our VL-NSGA III 

algorithm demonstrated superior set coverage, 

achieving a value of 1 against PSO, MOPSO, 

ODPSO, and Nsga2bfe. This indicates complete 

dominance in solution quality. In contrast, Bolaji 

et al. (2022) reported improvements in patient 

waiting times using an Artificial Bee Colony 

algorithm, but did not provide comparative set 

coverage metrics. The complete dominance of 

VL-NSGA III suggests a significant 

advancement in solution quality for dynamic 

scheduling problems. 

2. Adaptability to Dynamic Environments: Unlike 

the static approaches seen in works such as Hu et 

al. (2021) and Guido (2024), our VL-NSGA III 

algorithm showed remarkable adaptability to 

changing patient loads and hospital conditions. 

This adaptability is evidenced by its consistent 

performance across various simulation scenarios 

with varying patient arrival rates and service 

durations over the 36-day simulation period. 

3. Many-Objective Optimization: While studies 

like Verma et al. (2021) demonstrated the 

effectiveness of NSGA-II for multi-objective 

problems, our work extends this capability to 

many-objective scenarios. The superior set 

coverage of VL-NSGA III in our complex, 

many-objective formulation represents a 

significant advancement over traditional multi-

objective approaches. 

4. Comparative Performance: Our results showed 

that MOPSO demonstrated partial dominance 

over PSO with a coverage of 0.7 and over 

ODPSO with 0.8333. ODPSO, in turn, showed 

partial dominance over both PSO and MOPSO 

with coverage values of 0.6333 and 0.7333 

respectively. These results indicate the relative 

strengths of different algorithms in handling 

various aspects of the scheduling problem. 

5. Hypervolume Performance: Interestingly, while 

VL-NSGA III dominated in set coverage, 

ODPSO achieved the highest hypervolume in our 

study, followed closely by MOPSO and PSO. 

This contrasts with findings from studies like Ala 

et al. (2023), where their proposed MILP-ASA 

approach showed uniform superiority across 

metrics. The high hypervolume of ODPSO 

suggests that it covers a broader range of the 

objective space, albeit with solutions that are 

often dominated by those of VL-NSGA III. 

Our proposed VL-NSGA III algorithm introduces 

several novel aspects and implications for the field of 

dynamic patient scheduling in hospitals: 

1. Dynamic Adaptation: The variable length 

encoding of VL-NSGA III represents a novel 

approach to handling dynamic scheduling 

problems. Unlike fixed-length encodings 

used in traditional genetic algorithms, our 

method can adapt its solution representation 

in real-time. This capability is particularly 

valuable in hospital environments where 

patient loads and resource availability 

fluctuate rapidly. 

2. Balance of Convergence and Diversity: Our 

results show that VL-NSGA III achieves a 

better balance between convergence (as 

evidenced by set coverage of 1) and diversity 

(indicated by competitive hypervolume) 

compared to other algorithms. This balance 

is crucial for providing hospital 

administrators with a range of high-quality, 

diverse solutions to choose from based on 

current priorities. 

3. Computational Efficiency: While not 

explicitly measured in terms of runtime, the 

ability of VL-NSGA III to handle a 36-day 

simulation with multiple departments 

suggests improved computational efficiency 

compared to more computationally intensive 

approaches like the stochastic optimization 

method proposed by Dehnoei et al. (2024). 

4. Integration of Multiple Constraints: Our 

formulation and VL-NSGA III 

implementation successfully integrated 

multiple real-world constraints, including 

room capacity, patient preferences, and 

medical priorities. This holistic approach 

addresses limitations in studies like Knight 

et al. (2023), which focused primarily on 

scheduling efficiency without detailed 

consideration of these diverse constraints. 

              Comparison with SOTA Methods: 

1. Set Coverage: VL-NSGA III achieved a set 

coverage of 1 against all compared 

algorithms, indicating superior solution 

quality. In contrast, the next best performer, 

Nsga2bfe, only showed partial dominance 

over VL-NSGA III with a coverage value of 

0.03333. This stark difference highlights the 

significant improvement our method offers 

in generating non-dominated solutions. 

2. Hypervolume: While ODPSO achieved the 

highest hypervolume, followed closely by 

MOPSO and PSO, the dominance of VL-

NSGA III in set coverage suggests that our 

algorithm generates solutions of higher 

quality even if they don't cover the entire 

objective space. This trade-off between 
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solution quality and diversity represents a 

novel contribution to the field. 

3. Adaptability: The partial dominance 

demonstrated by MOPSO over PSO (0.7) 

and ODPSO (0.8333), and by ODPSO over 

PSO (0.6333) and MOPSO (0.7333), 

indicates that these algorithms have some 

ability to adapt to changing conditions. 

However, the complete dominance of VL-

NSGA III over all these methods 

underscores its superior adaptability to 

dynamic scheduling scenarios. 

6 Conclusion and future works  
This article presented a comprehensive evaluation of the 

Variable Length Non-Dominated Sorting Genetic 

Algorithm III (VL-NSGA III) for the dynamic scheduling 

of patients in a hospital environment. The evaluation 

compared VL-NSGA III against several well-established 

Multi-Objective Optimization (MOO) algorithms, 

including PSO, MOPSO, ODPOSO, and Nsga2bfe, using 

a simulator-based assessment over a 36-day period. Our 

assessment utilized synthetic patient data to mimic real 

hospital scenarios, ensuring a robust and realistic 

simulation environment. We focused on critical 

performance metrics such as set coverage, hypervolume, 

and convergence to evaluate the efficacy of the 

algorithms. The findings highlighted that VL-NSGA III 

excelled in generating high-quality, non-dominated 

solutions, as evidenced by its superior set coverage. This 

indicated VL-NSGA III's effectiveness in producing 

solutions that dominated those of other algorithms, 

underscoring its robustness in handling dynamic 

scheduling challenges. The comparative analysis revealed 

that while ODPOSO achieved the highest hypervolume, 

indicating extensive coverage of the objective space, VL-

NSGA III demonstrated unparalleled performance in set 

coverage. This dominance suggested that VL-NSGA III 

was particularly effective in scenarios where the priority 

was on obtaining non-dominated solutions that 

outperformed others. The findings also emphasized that 

the choice of optimization algorithm should consider the 

specific requirements of the problem, balancing the need 

for non-dominance versus comprehensive objective space 

coverage. In summary, the VL-NSGA III algorithm 

proved to be a highly effective tool for dynamic patient 

scheduling in hospitals, capable of adapting to varying 

patient loads and optimizing the allocation of resources. 

The rigorous evaluation methodology and comprehensive 

comparison against other MOO algorithms provided a 

robust validation of VL-NSGA III's capabilities. This 

research contributed valuable insights into the 

optimization of patient scheduling, offering a powerful 

solution for enhancing operational efficiency in hospital 

environments. 
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