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The development of deep learning and artificial intelligence has made the large amount of data 

generated by various types of human actions of great analytical value. The continuous updating of 

recognition algorithms based on text and picture frames has also made the movement recognition in 

video of some research value. Currently, there are few studies on technical movement recognition in 

basketball. Based on this, this study tested the performance of the constructed target detection 

algorithm and movement recognition algorithm. Experiments were conducted using a self-compiled 

basketball movement recognition dataset containing 10,000 video clips from different competition and 

training scenarios, each lasting 10 seconds and with a resolution of 720p. The dataset was divided into 

training and test sets in an 8:2 ratio. The experimental setup included using PyTorch as the deep 

learning framework, leveraging an NVIDIA Tesla V100 GPU for computation. Key results 

demonstrated that the Single Shot Detector (SSD) algorithm achieved a maximum detection accuracy 

of 93.8%, outperforming Fast R-CNN and YOLO, which achieved 85.9% and 84.9%, respectively. 

Furthermore, the dual-resolution Three-Dimensional Convolutional Neural Network (3D-CNN) model 

achieved a recognition accuracy of 95.8% for basic basketball movements, significantly higher than 

the single-resolution 3D-CNN's 89.6%. These results highlight the effectiveness of combining SSD and 

3D-CNN for basketball movement recognition, offering a robust and efficient solution for real-time 

applications. 

Povzetek: Prispevek raziskuje kombinacijo algoritma za identifikacijo tarče SSD in arhitekture 

3D-CNN za prepoznavanje gibov v košarkarskem treningu.

1 Introduction 

In recent years, under the slogan of overall fitness, more 

and more people are participating in physical exercise [1]. 

Basketball is a simple sport that requires only a basketball 

to achieve a strong and healthy body. New mobile 

devices have made video-based messaging more and 

more common [2]. Basketball fans can watch all kinds of 

basketball games and instructional videos to learn and 

train their skills simply through mobile. Currently, 

various target detection algorithms and recognition 

algorithms based on text data and picture data have been 

developed and applied, but there is not much research on 

target detection and recognition algorithms for video 

forms [3-4]. The four phases of the classic target 

detection algorithm's operating procedure are image 

interception, pre-processing, feature extraction, and 

classification techniques. Given that the input data for the 

recognition of basketball training technique actions is a 

sequence of video frames, it is important to take both the 

representation of each action in space and its order within 

the series of video frames into account. 

In various video platforms, there are relatively fixed  

 

characters and single scenes in the dynamic videos 

related to basketball training technical actions. In light of 

the existing recognition and detection algorithms, the 

study makes an effort to recognize and identify technical 

moves in basketball technical motion videos. Although 

there are certain benefits for target identification and 

recognition in basketball professional action videos, one 

of the challenges in the study is still how to employ 

continuous picture frames with significant correlation 

properly [5]. Based on this, the study tries to combine the 

Single Shot Detector (SSD) with the Three-Dimensional 

Convolutional Neural Network (3D-CNN) architecture, 

so as to propose a dual-resolution 3D-CNN algorithm 

based on the recognition of training technical actions in 

basketball videos. The research method section firstly 

introduces the method of basketball video technical 

movement recognition based on SSD target detection and 

video frame generation method. The selection of 

basketball dataset is combined with SSD algorithm to 

crop the video picture and reduce the size of picture 

frames. After that, a 3D-CNN network-based action 

detection system for basketball instruction is introduced. 

For a 3D-CNN with two distinct resolution picture inputs 
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on the basketball professional action dataset 

independently, a dual-resolution 3D-CNN network 

architecture is suggested. The feature vectors extracted 

from the dual-resolution network are then feature fused 

for SVM classification experiments. 

2 Related works 

To extract information from target objects, a series of 

target detection algorithms and recognition algorithms 

have been advanced one after another [6]. To improve the 

accuracy of deep learning-based security detection 

techniques for threat detection, Steno et al. used the 

R-CNN structure for picture detection and localization of 

threat objects, and finally advanced a detection system 

based on an improved regional convolutional neural 

network. The detection system was tested and found to 

have an average detection accuracy of 0.27, faster 

processing time for the improved algorithm used, and a 

15% improvement in target localization speed [7]. By 

incorporating an enhanced convolutional module into 

YOLOv3, Guo et al. suggested an improved generic 

framework based on YOLOv3 with the goal of quickly 

and accurately detecting objects in high-resolution photos. 

On the COCO dataset, the algorithm's performance was 

evaluated, and and the modified algorithm's precision 

outperformed the standard YOLOv3 by 2.8%. In another 

dataset, the average accuracy of the improved algorithm 

was even 3% higher than that of the traditional YOLOv3 

algorithm [8]. To solve the position uncertainty problem 

of massively diverse targets in target detection algorithms, 

Wang et al. advanced an attention detection algorithm. 

The algorithm increased the semantic information of the 

feature map by adding attention branches to the 

traditional detection network to obtain better detection 

results. The results showed that the algorithm had good 

detection performance on different datasets. Compared 

with detection algorithms such as SSD and FPN, the 

algorithm had lower computational cost and faster 

computing speed [9]. A traffic target detection method 

using LIDAR at roadside was investigated by Zhang et al. 

A three-stage pipeline-based GC network, a new 

clustering algorithm, and a CNN-based classifier were 

advanced. Finally, the performance of the GC network 

was tested based on point clouds collected in real urban 

traffic scenes. The detection accuracy and computational 

speed of the GC network were much better [10]. To 

address the performance deficiency of RGB-based salient 

object detection algorithms in dealing with complex 

scenes, Liang et al. investigated the RGB-D model and 

RGB-T SOD model and advanced a new unified 

framework for connecting the above two models. The 

results surfaced that the advanced framework could solve 

the cross-model complementarity problem [11]. 

Chen et al. advanced a two-stage deep learning approach 

aimed at accurate and fast scanning of CBCT pictures in 

clinical settings. Picture localization was performed by 

using a 3D R-CNN model, and then localized targets 

were identified and detected. Experimental data showed 

that the advanced algorithmic model could accurately 

perform target recognition and localization [12]. Zhu et al. 

used 3D-CNN in DeepFake detection and advanced a 

lightweight 3D CNN for DeepFake detection. 3D neural 

networks were used to fuse spatial features in the 

temporal dimension and extract spatial model features 

from the input frames. A comparison study of the 

advanced algorithm and other algorithms for DeepFake 

detection demonstrated the feasibility and advantages of 

the advanced algorithm [13]. Milecki et al. advanced a 

deep learning method to be applied to microbubble 

ultrasound acquisition with high concentration, aiming to 

recover dense vascular networks by dealing with the 

interference of multiple microbubbles. The paper focused 

on the reconstruction of the vascular network by tracking 

microbubbles using a 3D-CNN. The accuracy of this 

network model up to 81% [14]. In order to make human 

emotion recognition with better results, Hajarolasvadi and 

Demirel advanced a multi-modal approach using 

3D-CNN to accomplish the modeling of human emotions 

through a modal reference system. The constructed modal 

reference system had a better recognition capability [15]. 

 

 
Table 1: Summary table of related work 

Study Algorithm Dataset Detection accuracy 

Steno et al. R-CNN Custom Increased by 15% 

Guo et al. Enhanced YOLOv3 COCO An increase of 2.8% 

Wang et al. Attention Network Multiple Up to 74.8% 

Zhang et al. GC Network Urban traffic Up to 80% or more 

Liang et al. MIA-DPD RGB-D/RGB-T Up to 90% or more 

Chen et al. 3D R-CNN CBCT 0.89 + / - 0.64 mm 

Zhu et al. 3D-CNN DeepFake datasets 
Superior to other DeepFake detection 

methods 

Milecki et al. 3D-CNN 
Microbubble 

ultrasound 
Up to 81% 

Hajarolasvadi and 

Demirel 
Multimodal 3D-CNN 

RML/SAVEE/eNT

ERFACE'05 

The detection accuracy of all three data sets 

exceeds 0.8 
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Many target detection algorithms have progressed 

recently, and numerous target detection algorithm types 

have found widespread use in numerous sectors. Deep 

learning-based recognition algorithms of different types 

have also been researched and used appropriately. 

However, existing state-of-the-art (SOTA) algorithms 

have limitations in recognizing technical movements in 

basketball videos. Traditional R-CNN-based algorithms 

struggle with real-time processing due to their multi-stage 

nature, and YOLO tends to lose accuracy with smaller or 

overlapping targets. Attention-based networks, while 

effective, often incur higher computational costs. The 

proposed dual-resolution 3D-CNN method addresses 

these limitations by combining SSD's efficient target 

detection with 3D-CNN's ability to capture 

spatiotemporal features from video frames. The 

dual-resolution approach enhances recognition accuracy 

by processing both original and cropped frames, 

effectively mitigating issues related to small target 

detection and improving the robustness of the model. 

This method offers a balance between accuracy and 

computational efficiency, making it more suitable for 

real-time applications compared to existing SOTA 

techniques. By leveraging the strengths of both SSD and 

3D-CNN, the proposed method provides a more effective 

solution for recognizing technical movements in 

basketball training videos. 

3 Basketball training technique 

movement recognition method 

combining SSD and 3D-CNN 

3.1 Movement recognition method and video 

frame generation method for basketball 

video technology based on SSD target 

detection 
The rise of the national fitness movement has led to a 

strong promotion of various sports. Basketball, among the 

most famous games among teenagers, provides health 

advantages such as stress reduction and physical body 

strengthening [17]. A series of top tournaments have also 

created amazing economic benefits. The constant 

upgrading of mobile devices coupled with the short-video 

industry's unabated fervor has made it possible for people 

to get first-hand basketball video information faster and 

more accurately. Many basketballs instructional videos 

and highlights have been loved and imitated by many 

viewers. Deep learning has achieved more research in the 

field of picture processing. This study tries to use deep 

learning to identify basketball basic movements in videos. 

By improving the traditional convolutional neural 

network, it can obtain the picture features and timing 

information of specific frames in basketball videos, so as 

to complete the recognition of basketball basic 

movements. 

Traditional target detection algorithms operate in a 

relatively simple process, generally consisting of four 

steps: picture interception, picture pre-processing, picture 

feature extraction and picture classification [18]. Target 

detection algorithms can be divided into region-based 

algorithms and regression-based algorithms. The study 

uses SSD to complete human target detection. SSD 

algorithm can be treated as region-based Faster 

Region-Convolutional Neural Network (Faster R-CNN) 

algorithm and regression-based You Only Look Once 

(YOLO). 
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Figure 1: Structure of Faster R-CNN model 

 

Figure 1 shows the overall architecture of the Faster 

R-CNN model. First, the input image is extracted by a 

series of convolutional layers. These feature maps are 

then fed into a Region Proposal Network (RPN) to 

generate a series of candidate regions (prediction boxes). 

Subsequently, the aforementioned candidate regions are 

clipped and resized, thereby facilitating the extraction of 

features through the convolutional layer. Finally, the 

regions are resized once more, this time for the purpose 

of classification and bounding box regression through the 

fully connected layer. Faster R-CNN uses this two-stage 

approach to balance detection accuracy and 

computational efficiency. 
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Figure 2: YOLO model structure diagram 

 

Figure 2 shows the structure of the YOLO model. Unlike 

Faster R-CNN, YOLO uses a single-stage approach. The 

input images are adjusted to a uniform size and then 

feature extraction is carried out through a series of 

convolutional layers. The YOLO model makes 

predictions directly on the feature map, generating class 

probabilities and bounding box coordinates. The final 

detection result is obtained by removing redundant 

prediction boxes through non-maximum suppression 

(NMS). The main advantage of the YOLO model is its 

fast detection speed, which is suitable for real-time 

applications. When using the YOLO algorithm for target 

detection, YOLO first resizes the input picture to the 

same size, then goes through a convolution operation, and 

finally obtains the optimal prediction range by 

non-extreme suppression (Figure 2). The YOLO model 

consists of 24 convolutional layers and 2 fully-connected 

layers. The first 22 ConvNets among them are in charge 

of collecting characteristics, while the final convolutional 

and feature maps are in charge of producing the 

prediction confidence scores and the coordinates of the 

prediction range. 
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Figure 3: Structure of SSD network model 

 

Figure 3 shows the structure of the SSD network model. 

The SSD model is detected on different scale feature 

maps generated by the underlying network, such as VGG 

or ResNet. Each feature map is responsible for detecting 

targets of different sizes, thus improving the detection 

accuracy of small targets. The SSD model simultaneously 

predicts the class probability and boundary box position 

of each candidate region, and its loss function includes 

positioning loss and classification loss. SSDs combine the 

benefits of multi-scale features and single-stage detection 

for both speed and precision. The SSD model's lost 

function is described in the training phase as follows: (1). 

 

 ( ) ( ) ( )( )
1

, , , , , ,conf locL x c l g L x c L x l g
N

= +  (1) 

 

In Equation (1), ( ), , ,L x c l g  denotes the loss function, 

which mainly consists of the localization loss function 

and the classification loss function of each reference 

frame. ( ),confL x c  denotes the classification loss 

function. ( ), ,locL x l g  means the localization loss 

function. 
1

N
 and   denote the weights. 
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Equation (2) is the expression for the categorical loss 

function. P  denotes the category. ( )logP P

ij iX C  

denotes the probability of the true frame. 
0

iC  denotes 

the prediction frame. 
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         (3) 

Equation (3) is the expression of the prediction box. The 

budget probability that the detection category P  is 

outside the real box is the formula for the prediction box 
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probability.  

( )   ( )1, , ,
, , N k m m

loc i Pos ij L i jm cx cy w h
L x l g X smooth l g 

= −                (4) 

 

Equation (4) is the formula for the localization loss 

function. 
k

ijX  indicates the correctness of the forecasted 

value, and 0 is used to indicate a prediction failure and 1 

indicates a prediction success. 
m

il  denotes the prediction 

box in the localization loss function. 
m

jg  denotes the 

true box in the localization loss function. 

The input picture is subjected to feature extraction in the 

SSD model by VGG network and convolutional layer, 

and the prediction results are obtained by the extracted 

feature map. Since each detection target in the feature 

map corresponds to many default and prediction boxes, to 

acquire the confidence values and boundary coordinate 

points of their classification categories, the convolution 

must be applied to the targets of the prediction box's 

contents. 

 
A B

IoU
A B


=


              (5) 

The IOU value of the real panel and the forecast panel 

according to the SSD method is represented by equation 

(5). IOU is used as an index to evaluate the target 

detector, and by calculating the IOU value, the 

performance of the target detector can be evaluated. If the 

IOU value is greater than 0.5, the prediction sample is 

considered as a positive sample. A  denotes the true 

frame. B  denotes the prediction frame. 
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Equation (6) is the formula for calculating the scale of the 

prediction frame. m  is the quantity of feature maps, and 

 1,k m . kS  is the prediction frame of the 

corresponding feature map. minS  indicates the ratio of 

the minimum prediction frame to the size of the original 

picture, and is generally taken as 0.2. maxS  indicates the 

ratio of the maximum prediction frame to the size of the 

original picture, and is generally taken as 0.9. 
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Equation (7) is the formula for calculating the default box 

height. The above default box height can be obtained 

when the forecasted box size is kS  and the aspect ratio 

is 
1 1

1,2,3, ,
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 ra

k k rW S a=           (8) 

Equation (8) is the formula for calculating the default box 

width. When the aspect ratio of kS  is 1, an additional 

prediction box is generated. 

 
1k k kS S S +

 =          (9) 

Equation (9) represents the formula for the additional 

prediction frame. A central prediction box is generated 

after all prediction boxes are arranged in order, and its 

calculation method is shown in Equation (10). 
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Equation (10) indicates the coordinates of the central 

prediction frame. kF  denotes the feature map size. k  

denotes the quantity of feature layers. When using the 

SSD algorithm for target recognition, it is necessary to set 

the confidence threshold in advance to eliminate the 

boxes in which the recognition object is not in the box, 

making the whole algorithm process operation simpler. 

Besides, it is also necessary to use the NMS operation to 

eliminate the recurring boxes for the purpose of final 

screening and detection. The model is trained using the 

VOC dataset, and the coordinates of the picture frames 

returned by the model are obtained through OpenCV and 

cropped frames are produced. 

 

3.2 Design of a two-resolution 3D-CNN 

network-based activity recognition approach 

for basketball instruction 
Given that the input data for the recognition of basketball 

training technical actions generated by the human body is 

a series of frames, it is critical to take into account both 

the depiction of each movement in space and its order 

within the series of video frames [19]. The above study 

proposes a basketball video frame recognition method 

based on SSD algorithm, and this section focuses on 

3D-CNN-based video movement recognition algorithm, 

and further proposes a dual-resolution 3D-CNN structure 

based on original frames and cropped frames. The 

basketball technical movement recognition under this 

algorithm model is explored. 
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Figure 4: Flowchart of 3D-CNN algorithm design 

 

The flowchart of the dual-resolution 3D-CNN algorithm 

based on original frames and cropped frames is shown in 

Figure 4. From Figure 4, firstly, the original frames are 

extracted from the given basketball video set. The SSD 

algorithm is used to perform basketball training action 

target detection and extract the video crop frames. The 

original frames and cropped frames are processed 

separately using 3D-CNNs of different sizes for feature 

fusion operation and finally the target classification is 

performed using support vector machine. In general, 

convolutional networks use different dimensional 

convolutional kernels depending on different data 

dimensions. For simple text data, a 1D convolutional 

kernel can be used. For two-dimensional data such as 

pictures, a 2D convolutional kernel is required. In this 

study, 3D convolutional kernels are used for the 

recognition of basketball videos. The 3D-CNN is an 

extension of the traditional CNN model, which adds a 

temporal dimension to the 2D convolutional kernel for 

processing picture data to form a 3D convolutional kernel. 

The 3D-CNN usually uses a set video preprocessing 

sequence to extract consecutive frames from the video, 

and the extracted video frames are used as a set of data 

for model training. 
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Figure 5: 2D and 3D convolutional operation maps 

 

The basic principle of 3D convolution operation is the 

same as that of 2D convolution, which requires a 

weight-sharing method to extract some type of features 

from the stacked video frames (Figure 5). To get better 

feature representation, 3D convolution kernels are often 

used to obtain more types of features by increasing the 

convolution kernel types or changing the convolution 

kernel weights. 

The quantity of convolution layers and fully 

convolutional layers must be decreased to hasten the 

training of the 3D-CNN. Since too few convolutional 

network layers and fully connected layers can lead to 

poor network model performance, the study attempts to 

experiment by changing the resolution of the data without 



Combining the SSD Target Identification Algorithm With the… Informatica 48 (2024) 155–168  161 

changing the network model performance. 
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Figure 6: 3D-CNN framework with different data resolutions 

 

Figure 6 shows the dual-resolution 3D-CNN framework, 

which processes both original and cropped frames. First, 

the video frame is detected by the SSD algorithm to 

generate a clipped frame. Then, the original frame and the 

cropped frame are extracted through different 3D-CNN 

networks respectively. These features are then fused to 

combine the global information of the original frame with 

the local details of the cropped frame, thus improving the 

accuracy of action recognition. The dual-resolution 

method makes use of the complementary advantages of 

different resolution data, and enhances the robustness of 

the model while maintaining high recognition accuracy. 

This work builds a dual-resolution model and, to improve 

the model training effect, initializes the weights to mix 

the temporal information and the spatial convolution of 

image frames. The study leverages ImageNet's 2D feature 

weights for weight initialization for the 3D convolution. 
2

3
D

D

t

W
W

T
=           (11) 

Equation (11) is the expression for the mean initialization. 
2DW  denotes the weight matrix. T  denotes the timing 

information. 
3D

tW  denotes the initialized value obtained 

by dividing all values in 2DW  by the timing information, 

whose purpose is to extract similar pictures from 

consecutive frames by 3D convolution. 

3 2

1

T D D

t tW W= =       (12) 

Equation (12) is the constraint of the formula for 

calculating the proportional scaling initialization. The 

proportional scaling initialization is a general expression 

for the mean initialization. Dividing the weight matrix 
2DW  by a random constant yields a different 

initialization value 
3D

tW , and any combination of 

constants can be used when 2DW  and 
3D

tW  satisfy the 

constraints in Equation (12). 

( )3 2

10, 1D D T

t t t t tW W  ==  =   (13) 

Eq. (13) is one of the combinations of arbitrary constants. 

Where,  denotes the constant. In addition to this, the 

study also uses negative weight initialization to obtain the 

initialized value
3D

tW . 

3 2

2 1
, 1

1
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D D

t t t
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W W

t T
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 

 − 
=   = = 

     

  (14) 

Equation (14) is the formula for the initialization of 

negative weights. The sub-matrix 3D

tW   is obtained by 

dividing the weight matrix 2DW . t  denotes the 

specific constant. The initialized value 
3D

tW  is obtained 

when 1t =  is larger than the initialized value obtained 

by other methods. 

To classify and recognize fused features, feature fusion of 

the extracted feature vectors is first required. When the 

extracted feature vectors have the same dimensionality, 

they can be fused at the corresponding positions in the 

dual-resolution model. For some subtle feature 

differences, they can be filled by panning. Based on this, 

the study combines the findings from the two extracted 

features to perform feature fusion. 

, , , ,

a b

i j d i j dY X X= +       (15) 

Equation (15) is the calculation formula for feature fusion. 

Y  denotes the features of the input continuous technical 

action frames. i  and j  denote the spatial locations in 

the model. d  denotes the feature channel. 
aX  denotes 

the original frame of the technical action. 
bX  denotes 

the cropped frames of the technical action. The extracted 

features of all original frames and cropped frames are 

weighted and fused as the input of the support vector 

machine to complete the recognition and classification of 
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basketball basic movements by the whole model. 

In the experiment, the parameters of the final model 

3D-CNN are set as follows. The learning rate is set to 

0.0005, the batch size is 16, and the optimizer uses Adam. 

The training cycle is 100 times. Data enhancement 

techniques include inter-frame interpolation, frame 

rotation and frame scaling. These settings ensure that the 

model can effectively learn and recognize technical 

moves in basketball videos. 

 

4 Analysis of performance detection 

results of basketball training 

technique movement recognition 

algorithm combining SSD and 

3D-CNN 

4.1 Performance testing of basketball video 

technology movement recognition algorithm 

based on SSD target detection 
The experiments were conducted on a high-performance 

computing server equipped with an NVIDIA Tesla V100 

GPU (16GB of video memory), using the Ubuntu 18.04 

operating system and the Python 3.7 programming 

language. The model was developed and trained using the 

PyTorch 1.7.1 deep learning framework, combined with 

the CUDA 10.1 and cuDNN 7.6 libraries to take full 

advantage of the computing power of the GPU. In the 

experiment, NumPy 1.19.2 was used for numerical 

calculation, OpenCV 4.4.0 for image processing, and 

Matplotlib 3.3.2 for result visualization. The self-made 

basketball action recognition dataset was used as the 

experimental dataset in this study. The dataset contained 

10,000 video clips from different competition and 

training scenarios, each 10 seconds long and with a 

resolution of 720p. The data came from the public video 

of basketball games and training videos, and the whole 

dataset was divided into the training set and the test set 

according to the ratio of 8:2. To ensure the accuracy and 

validity of the data, it is necessary to preprocess the data. 

Frames were first extracted from each video at a frame 

rate of 30 frames per second. Then, frames containing 

basketball players were detected and clipped using an 

SSD algorithm to remove background noise. Finally, the 

pixel values of each frame were normalized to the [0,1] 

range. 
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Figure 7: Loss training graph of SSD 

 

The loss training graph of the SSD is shown in Figure 7. 

From Figure 7, the loss curve of the algorithm tended to 

decrease as the quantity of iterations increased. After 30 

cycles, both the training loss and the real loss began to 

stabilize. Among them, the training loss curve had a 

slight rise and fall during the iterations. 

 



Combining the SSD Target Identification Algorithm With the… Informatica 48 (2024) 155–168  163 

Actual accuracyTraining accuracy

0 10 20 30 40 50

Iteration

A
cc

u
ra

cy

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 

Figure 8: Detection accuracy of SSD 

 

From Figure 8, the SSD algorithm's training accuracy rate 

and actual prediction accuracy curves both exhibited an 

upward trend when iterations were added. When the 

iteration times were more than 30, both the training 

model's and the real model's accuracy rates started to 

converge. In contrast to the model performance curve of 

the real model, the training model's performance curve 

exhibited a significant upswing and downswing 

throughout the course of the iterations. 
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Figure 9: The effectiveness of several object detection methods on a basketball dataset 

 

Figure 9 displays the recognition accuracy of three 

various target detection methods on the basketball dataset. 

The three target identification methods were Fast R-CNN, 

YOLO, and SSD. The detection precision of all three 

methods for technical actions in the basketball video 

dataset grew with the amount of video frames in the 

dataset. When the quantity of video frames was 20, the 

three algorithms had the highest detection accuracy of 

85.9, 84.9, and 93.8, respectively. It showed that SSD had 

better detection results than the other two target detection 

algorithms. 

4.2 Performance testing of basketball 

training technique movement recognition 

algorithm based on dual-resolution 3D-CNN 
The performance of the dual-resolution 3D-CNN 

basketball training technique movement recognition 

algorithm was tested in this section, as stated in the 

introduction to the dual- 3D-CNN basketball training 

technique movement recognition system in subsection 3.2. 

The same criteria used in 3.1 were used to choose the 

dataset. 
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Figure 10: Loss map of dual-resolution 3D-CNN algorithm 

 

The loss map of the dual-resolution 3D-CNN algorithm is 

shown in Figure 10. In Figure 10, the loss curve of the 

dual-resolution 3D-CNN algorithm tended to decrease 

slowly as the quantity of iterations increased. While the 

quantity of iterations was 27, both the training loss and 

the actual loss of the model started to level off. 
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Figure 11: Accuracy test of dual-resolution 3D-CNN 

 

Figure 11 shows the recognition accuracy test of the 

dual-resolution 3D-CNN. In Figure 11, with the increase 

of the quantity of iterations, both the training and the 

actual recognition accuracy curves of the dual-resolution 

3D-CNN showed a slow upward trend. When the quantity 

of iterations was about 35, both the forecasted recognition 

accuracy of the training model and that in the actual 

situation started to level off. The prediction recognition 

accuracy curve of the training model had a high 

recognition accuracy at the beginning of the iteration, but 

it fluctuated as the model was iterated. On the contrary, 

the recognition accuracy curve of the actual model started 

with a relatively low recognition accuracy, but as the 

quantity of iterations increased, the recognition accuracy 

curve of the actual model was able to rise smoothly. 
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Figure 12: Recognition of 3D-CNN and dual-resolution 3D-CNN at different video frames 

 

Figure 12 shows the recognition accuracy of the 3D-CNN 

and the dual-resolution 3D-CNN at different video frames. 

From Figure 2, the recognition accuracy of both 3D-CNN 

and dual-resolution 3D-CNN for basketball technical 

movements tended to increase as the quantity of video 

frames increased. When the quantity of video frames was 

20, the two algorithm models had the highest recognition 

accuracy of basketball technical movements, 89.6 and 

95.8, respectively. Comparing the performance of the two 

3D-CNNs in the same dataset, it was clear that the 

dual-resolution 3D-CNN had better recognition 

performance. In the same number of video frames, the 

recognition accuracy of the dual-resolution 3D-CNN was 

higher than that of the traditional 3D-CNN. This showed 

that the advanced basketball training technique 

movement recognition algorithm model incorporating 

SSD and dual-resolution 3D-CNN had better movement 

recognition performance. 

To comprehensively evaluate the performance of the 

proposed dual-resolution 3D-CNN method, it was 

compared with several baseline models. These baseline 

models included Fast R-CNN, YOLO, and 

single-resolution 3D-CNN. Comparison metrics included 

Precision, Recall, F1-Score, and computational efficiency. 

Detailed comparison results are shown in Table 2. 

 

 
Table 2: Benchmark performance comparison results of different algorithms 

Model Precision (%) Recall (%) F1-Score (%) Inference time (ms/frame) 

Fast R-CNN 83.4 82.7 83.0 101 

YOLO 85.1 83.6 84.3 58 

Single-resolution 3D-CNN 88.7 88.3 88.5 77 

Dual-resolution 3D-CNN  94.5 94.1 94.3 85 

 

From Table 2, the dual-resolution 3D-CNN model was 

superior to the baseline model in various performance 

indexes. The accuracy rate, recall rate and F1-Score of 

this model were significantly higher than other models, 

94.5%, 94.1% and 94.3% respectively. In terms of 

computational efficiency, the dual-resolution 3D-CNN 

model had high computational efficiency while 

maintaining high accuracy, with a reasoning time of 85 

milliseconds per frame. 

To ensure the robustness of the results, the 

dual-resolution 3D-CNN model was cross-validated. In 

this study, a 50-fold cross-validation method was used to 

the whole dataset was randomly divided into five equal 

parts. In each fold verification process, four of them were 

selected as the training set and the remaining one as the 

test set, which was repeated five times to ensure that each 

subset was used for testing. This method could effectively 

evaluate the performance of the model under different 

data distributions and avoid overfitting and data bias. The 

cross-test results are shown in Table 3. 
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Table 3: Cross-validation results of dual-resolution 3D-CNN model 

Fold Precision (%) Recall (%) F1-Score (%) Inference time (ms/frame) 

1 94.3 93.9 94.1 80 

2 94.6 94.2 94.4 89 

3 94.7 94.4 94.2 85 

4 94.5 94.0 94.5 86 

5 94.8 94.5 94.6 85 

Average 94.6 94.2 94.4 85 

 

From the 50-fold cross-validation results in Table 3, the 

performance of the proposed dual-resolution 3D-CNN 

model was relatively consistent in different compromises, 

with an average accuracy rate of 94.6%, an average recall 

rate of 94.2%, and an average F1-Score of 94.4%. The 

inference time fluctuated slightly between the breaks, but 

remained around 85 milliseconds overall. These results 

showed that the proposed method had high robustness 

and reliability under different data distributions. 

5 Discussion 

In this study, the proposed dual-resolution 3D-CNN 

method showed significant performance improvement in 

basketball movement recognition tasks. To fully 

understand its performance, it was compared with several 

SOTA methods mentioned in related work, including the 

threat object detection system based on improved R-CNN 

proposed by Steno et al. [7], the enhanced YOLOv3 

framework proposed by Guo et al. [8], and the attention 

detection algorithm proposed by Wang et al. [9]. First, 

the detection system based on the improved R-CNN 

proposed by Steno et al. performed better in accuracy, but 

its processing time was longer, reaching 101 milliseconds 

of inference time per frame. This was because R-CNN 

model required multi-stage processing, resulting in high 

computational complexity. In contrast, the dual-resolution 

3D-CNN method greatly improved computational 

efficiency by combining efficient object detection with 

the spatiotemporal feature extraction of 3D-CNN, while 

maintaining high accuracy, and the inference time per 

frame was only 85 milliseconds. Secondly, Guo et al. 's 

enhanced YOLOv3 framework performed well in object 

detection in high-resolution images, with a reasoning 

time of 58 milliseconds, which was the fastest among 

several methods. However, YOLO suffered from a 

certain loss of accuracy when dealing with small and 

overlapping targets. Through multi-scale feature 

extraction and fusion, the dual-resolution 3D-CNN 

method could better identify basketball actions in these 

complex scenes, and improve the accuracy rate and recall 

rate, reaching 94.5% and 94.2%, respectively. Finally, the 

attention detection algorithm proposed by Wang et al. 

improved the semantic information of feature graphs by 

adding attention branches, and showed good detection 

performance on different data sets. However, the 

increased attention mechanism led to higher 

computational costs. The dual-resolution 3D-CNN 

method, on the premise of keeping the model complexity 

moderate, improved the feature representation capability 

by fusing data of different resolutions, achieving a higher 

F1-Score and maintaining a higher computational 

efficiency. 

In summary, the proposed dual-resolution 3D-CNN 

method is superior to the existing SOTA method in many 

performance indexes in basketball movement recognition 

tasks by combining the advantages of SSD and 3D-CNN. 

Its significant performance improvements were not only 

reflected in traditional metrics such as accuracy and 

precision, but also in computational efficiency and model 

robustness, making it an effective solution for practical 

applications. Future research work can further optimize 

the computational efficiency of the model and reduce 

inference time, while exploring more data enhancement 

techniques and different neural network architectures to 

further improve the performance of the model. In addition, 

the method can be applied to other types of motion 

recognition tasks to verify its universality and 

adaptability. 

6 Conclusion 

The wave of artificial intelligence led by deep learning 

has not only promoted the development of numerous 

methods for detection systems and movement recognition, 

but also made the application of these algorithms closer 

and closer to daily life. As a sport loved by many young 

people, basketball has become a goal for many young 

people to learn and train its skill movements. The study 

combined SSD with 3D-CNN architecture, thus 

proposing a dual-resolution 3D-CNN-based algorithm, 

aiming to recognize various training skill actions in 

basketball videos. Firstly, an SSD target detection-based 

basketball video technical movement recognition method 

was advanced, and the video frames were extracted by 

this method. Then a dual-resolution 3D-CNN was 

constructed, aiming to accomplish the recognition of 

basketball video technical actions. Performance tests 

were conducted on the constructed algorithm model. The 

results found that the SSD had a good detection accuracy 

rate in both the training model and the actual model. The 

detection accuracies of Fast R-CNN, YOLO, and SSD 

algorithms in the same dataset were compared, and it was 

found that the detection accuracies of the other two 

algorithms were lower, while the detection accuracy of 

SSD algorithm was the highest at 93.8%. In addition, the 

recognition accuracy of the 3D-CNN and the 

dual-resolution 3D-CNN were also compared for 
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different video frames. The recognition rate of both 

models increased with the quantity of video frames 

increased, and at 20 video frames, the dual-resolution 

3D-CNN exhibited a higher recognition accuracy of 

95.8% for basketball fundamental actions. 
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