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Seismic observation stations perform a vital part in monitoring and analyzing seismic activity for early 

warning and disaster preparedness. This paper investigates the integration of an IoT-based intelligent 

power supply management model to improve station reliability and effectiveness. Traditional systems often 

suffer from reliability issues and inadequate monitoring, impacting timely seismic data delivery during 

critical events. The study employs IoT sensors for real-time monitoring of voltage, current, battery status, 

and environmental conditions. Data are centralized for analysis, leveraging the SeismoGuard Ensemble 

classifier—a novel machine learning model combining Random Forest, SVM, and KNN models with a 

Logistic Regression meta-classifier. The novelty lies in its distinctive blend of Random Forest, SVM, KNN, 

and Logistic Regression improves predictive accuracy and robustness in power supply handling for 

seismic observation stations. This approach improves forecasting accuracy and robustness in preventing 

power failures, achieving high prediction measurements like accuracy (90%), precision (88%), recall 

(91%), and F1-score (89%). Implementation leads to enhanced data transmission throughput and packet 

delivery ratio, ensuring reduced downtime and increased resilience during seismic events. Integrating IoT 

technologies in power supply management offers substantial benefits, including enhanced reliability and 

operational continuity, vital for effective seismic monitoring and early warning systems. 

Povzetek: Raziskava izboljšuje zanesljivost seizmoloških opazovalnic z uporabo IoT za spremljanje 

napajanja in napovedovanje okvar z algoritmom SeismoGuard Ensemble, ki združuje algoritme 

naključnih gozdov, SVM in KNN.

1 Introduction 

Seismic observation stations are essential infrastructure 

used to observe and analyze seismic activity, playing a 

crucial role in providing early warnings and preparing for 

disasters [1]. These stations detect ground vibrations and 

seismic waves from earthquakes and volcanic activity, 

providing critical data for seismologists, emergency 

responders, and policymakers. However, the continuous 

operation of these stations relies heavily on reliable power 

supply management systems. Interruptions in power can 

severely disrupt real-time monitoring and data 

transmission during critical seismic events, underscoring 

the necessity for robust power management solutions [2]. 

Traditional power supply systems in seismic observation 

stations typically employ basic monitoring and control 

mechanisms [3]. These systems often rely on manual 

oversight and lack advanced monitoring capabilities, 

leading to inefficiencies and delayed responses to power 

disruptions. Moreover, their reactive maintenance 

approaches and limited scalability pose challenges in 

meeting the dynamic demands of seismic monitoring 

environments [4]. These shortcomings highlight the need  

 

for modernized, IoT-based intelligent power supply 

management systems. 

The rise of the Internet of Things (IoT) offers 

transformative potential in enhancing power supply 

management in seismic observation stations [5]. IoT 

enables the integration of advanced sensors and 

communication devices to monitor critical parameters 

such as voltage, current, battery status, and environmental 

conditions in real time. By leveraging IoT capabilities, 

stations can implement proactive monitoring, predictive 

maintenance, and adaptive responses to optimize power 

supply operations and ensure uninterrupted functionality 

during seismic events. 

An IoT-based intelligent power supply management 

system centralizes data from distributed sensors, 

facilitating comprehensive analysis and decision-making. 

Centralization enables operators to detect anomalies, 

predict potential failures, and implement preemptive 

measures to mitigate risks effectively. However, accurate 

classification and prediction of power failures remain 

pivotal challenges. Existing techniques often suffer from 
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limited predictive accuracy and struggle with the 

variability and difficulty of seismic monitoring data. 

To address these challenges, this paper introduces the 

SeismoGuard Ensemble classifier—a sophisticated 

machine-learning paradigm that blends the advantages of 

Random Forest, Support Vector Machine (SVM), K-

Nearest Neighbors (KNN), and Logistic Regression meta-

classifier through ensemble learning. This hybrid approach 

enhances prediction accuracy, robustness against outliers, 

and adaptability to dynamic environmental conditions in 

seismic observation stations. By integrating diverse 

learning strategies, the classifier improves forecasting 

precision and enables proactive management of power 

supply systems. 

This paper aims to contribute by proposing and evaluating 

an IoT-based intelligent power supply management system 

integrated with the SeismoGuard Ensemble classifier for 

seismic observation stations. The study assesses the 

system's effectiveness in enhancing reliability, optimizing 

resource allocation, and improving operational continuity. 

The findings hold implications for disaster preparedness, 

infrastructure resilience enhancement, and early warning 

systems deployment in seismic-prone regions. 

The organization of the paper is structured as follows: 

Section 2 investigates related work in IoT-based power 

supply management and classification techniques. Section 

3 provides the methodology employed, including the 

strategy and implementation of the IoT-based power 

supply management system integrated with the 

SeismoGuard Ensemble classifier. Section 4 presents 

experimental results and discussions on the system's 

functionality in seismic monitoring scenarios. Section 5 

summarizes crucial results, discusses constraints, and 

suggests upcoming investigations for seismic station 

power supply management. 

2 Related work 

The integration of IoT technologies with power supply 

management systems and seismic observation has been 

extensively explored in recent years. This section explores 

IoT applications in energy management and earthquake 

prediction, highlighting current strengths, limitations, and 

the call for advanced solutions. 

Hossein Motlagh et al. [6] provide a comprehensive review 

of IoT applications in the sector of energy, emphasizing its 

role in enhancing energy efficacy, raising the proportion of 

energy from renewable sources, and lessening the effects 

on the environment. They discuss various IoT-based 

frameworks and their impact on energy systems, 

particularly within the environment of smart grids. The 

authors also investigate enabling technology like data 

evaluation systems and cloud computing, alongside 

challenges like privacy and security, proposing blockchain 

as a potential solution. Their survey offers valuable 

insights for policymakers and energy managers on 

optimizing energy systems through IoT integration. 

Expanding on distributed energy systems, Sadeeq and 

Zeebaree [7] examine the role of distributed energy system 

(DES) architectures in managing renewable energy 

sources and addressing the volatility of energy prices. 

Their study highlights the importance of end-user 

participation in intelligent energy management and the 

provision of auxiliary services to support grid operators. 

By delivering robust planning, constraint control, and 

scheduling, distributed systems can enhance system 

reliability and demand response. Their literature and 

policy analysis underscores the need for effective energy 

management system aggregators to navigate the 

challenges and opportunities within smart grid 

technologies. 

Pawar and Tarun Kumar [8] focus on an IoT-based 

Intelligent Smart Energy Management System (ISEMS) 

designed for the economical use of sustainable energy 

without limiting power consumption. Their proposed 

system employs planning ahead of time and precise power 

supply predictions using an SVM regression model based 

on PSO. This approach operates more accurately than 

other forecasting methods, demonstrating its effectiveness 

through various user-end configurations. The integration 

of IoT for monitoring enhances features that are important 

and comfortable for users, showcasing the potential of 

intelligent systems for managing energy in optimizing 

renewable energy use. 

Ahmad and Zhang [9] explore the deployment of IoT in 

networks and systems for intelligent energy use, 

discussing its uses in transmission, energy production, 

incorporating renewable energy sources, load 

requirements management, and supply of energy. Their 

study highlights the advantages of IoT-enabled smart grids 

in terms of enhanced monitoring, control, and automation. 

They categorize IoT applications into business, smart 

energy systems, data transmission networks, and power 

generation, providing a detailed analysis of each area. The 

authors emphasize the significant growth in the IoT energy 

market and its potential to transform smart energy systems 

through innovative solutions. 

In the realm of energy harvesting, Zeadally et al. [10] 

review design architectures for energy harvesting in IoT 

applications. They discuss various energy harvesting 

techniques and their suitability for IoT-based energy 

management systems. The study identifies key challenges 

in developing efficient energy harvesting solutions, such 

as ensuring continuous and reliable energy delivery. By 

leveraging sustainability assets that are either naturally or 

artificially attainable, IoT systems can reduce reliance on 

batteries and enhance sustainability, making them long-

lasting and cost-effective. 

Abdalzaher et al. [11] investigate the application of 

machine learning and IoT and seismic early alerting 

mechanisms for smart cities. Their research highlights the 
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integration of IoT sensors with sophisticated ML 

techniques to improve the accuracy and timeliness of 

earthquake predictions. The proposed system employs IoT 

for real-time data collection and ML for interpretation of 

data, offering a robust framework for risk reduction and 

disaster handling. This combination of technologies 

enhances the system's capability to provide reliable early 

warnings, contributing to the safety and preparedness of 

urban populations. 

Mia et al. [12] propose an IoT-integrated belief rule-based 

approach for earthquake prediction. Their system 

aggregates data from sensors monitoring animal behavior, 

and environmental, and chemical changes to predict 

earthquakes. The belief rule-based system uses knowledge 

representation criteria such as the degree of belief, rule 

weight, and attribute weight to analyze the data. Their 

results show that the belief rule-based system with IoT 

integration offers better prediction accuracy compared to 

expert and fuzzy-based systems, demonstrating its 

potential to enhance earthquake preparedness. 

Falanga et al. [13] introduce a significantly improved IoT-

focused framework for finding seismic events, applied to 

Volcanoes Vesuvius and Colima. Their framework utilizes 

semantic web technologies to encourage lexical and 

linguistic compatibility in IoT ecosystems, improving the 

quality of the data through ontology annotation. The 

system collects, processes, and stores seismic data in a 

knowledge base using the Volcano Event Ontology (VEO). 

The classification module detects different seismic events, 

providing timely and accurate information crucial for 

tracking volcano dynamics and responding to explosive 

crises. 

Tehseen et al. [14] present a structure for earthquake 

forecasting using federated learning (FL), which addresses 

issues related to data privacy, transmission latency, and 

processing capacity. Their novel FL framework aggregates 

local data models to generate a global model, ensuring data 

security and heterogeneity. The proposed system 

demonstrates superior performance in earthquake 

prediction accuracy compared to traditional ML models. 

The FL framework is validated using regional seismic 

data, showing its potential to enhance earthquake early 

warning systems through improved efficiency and 

reliability. 

Sharma et al. [15] discuss an IoT-based disaster 

management framework that leverages interconnected 

devices for real-time monitoring and response. Their study 

highlights the importance of IoT in catastrophe control, 

providing examples of promptly alert systems for the 

discovery of fire and earthquakes. The proposed 

framework enhances coordination among emergency 

response teams, improving situational awareness and 

disaster management effectiveness. By integrating IoT 

technologies, the framework aims to save the structures of 

smart cities and reduce the hazards of disasters. Table 1 

shows the summary of Related Works on IoT and Seismic 

Observation Systems. 

Table 1: Summary of related works on iot and seismic observation systems 

Author/Year Techniques/Methods 

Used 

Key Metrics Limitations and Gaps 

Hossein Motlagh et al. 

[6] 

IoT use cases in the 

energy sector, smart 

grids, data evaluation 

systems, blockchain 

Energy effectiveness 

enhancement, renewable 

energy share 

Confidentiality and 

safety concerns, lack of 

detailed execution tactics 

Sadeeq and Zeebaree [7] Distributed energy 

system (DES) 

architectures, planning, 

limitation handling 

System reliability and 

responsiveness 

Essential for effective 

energy management 

aggregators, constrained 

end-user engagement 

Pawar and Tarun Kumar 

[8] 

IoT-based Intelligent 

Smart Energy 

Management System 

(ISEMS), SVM 

regression, Particle 

Swarm Optimization 

Improved prediction 

precision 

Concentration on 

particular user 

configurations, 

generalizability problems 

Ahmad and Zhang [9] IoT in energy use 

networks, load 

management, smart grids 

Enhanced monitoring 

and control 

Lack of emphasis on 

incorporation difficulties, 

restricted concentration 

on real-time data 
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Zeadally et al. [10] Energy harvesting 

methods for IoT use cases 

Sustainability and 

economic viability 

Difficulties in consistent 

energy provision, 

inadequate scalability 

Abdalzaher et al. [11] IoT sensors integrated 

with machine learning for 

seismic early warning 

systems. 

Improved precision and 

timeliness of earthquake 

predictions 

Incorporation intricacy of 

IoT with machine 

learning, real-world 

applicability 

Mia et al. [12] Belief rule-based 

methodology combined 

with IoT 

Enhanced prediction 

accuracy 

Need on various data 

sources, possible biases 

in animal behavior data 

Falanga et al. [13] IoT framework utilizing 

semantic web 

technologies for seismic 

event discovery 

Improved data excellence 

and event classification 

Restricted applicability 

to non-volcanic seismic 

events, data annotation 

problems 

Tehseen et al. [14] Federated learning for 

earthquake forecast 

Improved accuracy in 

earthquake forecast 

Data model consolidation 

intricacy, restricted 

dataset diversity 

Sharma et al. [15] IoT-based disaster 

management framework, 

real-time tracking and 

response 

Enhanced situational 

awareness 

Restricted to particular 

disaster situations, 

difficulties in emergency 

coordination 

Despite the advancements in IoT-based energy 

management and earthquake prediction systems, existing 

techniques face several limitations. Many studies [6]-[15] 

report challenges such as inadequate predictive accuracy, 

sensitivity to environmental variations, and difficulties in 

handling large-scale data integration. Traditional machine 

learning models often struggle with the complexity and 

unpredictability of seismic data, resulting in suboptimal 

performance in real-world scenarios. 

To tackle these challenges, this paper proposes the 

SeismoGuard Ensemble classifier, integrating Random 

Forest, SVM, KNN, and Logistic Regression. It aims to 

enhance prediction accuracy and adaptability in seismic 

observation systems using IoT-based power supply 

management. 

3 Methodology 

3.1 Research design 

This study proposes the development and implementation 

of an IoT-based intelligent power supply management 

system designed to improve the reliability and 

effectiveness of seismic observation stations. The core of 

this approach is the SeismoGuard Ensemble classifier, an 

advanced machine learning model that integrates the 

predictive capabilities of Random Forest, Support Vector 

Machine (SVM), and K-Nearest Neighbors (KNN) models 

through a stacking method, combined with a Logistic 

Regression meta-classifier. This innovative system aims to 

predict power failures, thereby mitigating downtime and 

ensuring continuous operation during critical seismic 

events. 

The research design employs a mixed-methods approach, 

integrating quantitative data analysis with sophisticated 

machine-learning techniques. The design encompasses 

several key phases: gathering of data, preprocessing data, 

model development, system integration, and assessment of 

effectiveness. The quantitative aspect involves extensive 

data collection from various IoT sensors installed at 

seismic observation stations. These sensors monitor 

critical parameters such as voltage, current, battery status, 

and environmental conditions in real-time, providing a 

comprehensive dataset for analysis. 

In the data collection phase, IoT sensors are strategically 

placed at seismic observation stations to ensure 

comprehensive monitoring. These sensors perpetually log 

data that is then transmitted to a centralized database for 

storage and analysis. The data preprocessing phase 

involves cleaning the gathered information to eliminate 

anomalies and noise, ensuring the dataset's quality and 

reliability. Statistical techniques are applied to understand 

data distributions, trends, and relationships among 

variables, forming the basis for developing the predictive 

model. 

The heart of the proposed work lies in the development of 

the SeismoGuard Ensemble classifier. This classifier 
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combines multiple machine learning algorithms to 

improve prediction precision and resilience. The chosen 

models, Random Forest, SVM, and KNN, are known for 

their strengths in classification activities and their capacity 

to manage difficult, high-dimensional data. By stacking 

these models and integrating them with a Logistic 

Regression meta-classifier, their combined predictive 

power is leveraged. The training process involves dividing 

the dataset into training and testing subsets, employing 

cross-checking, and performing a grid search for 

improvement of hyperparameters to ensure the model's 

robustness and accuracy. 

Once developed, the SeismoGuard Ensemble classifier is 

integrated into the IoT-based power supply management 

system. The system architecture includes IoT sensors, data 

acquisition modules, and centralized processing units. This 

integration enables tracking power supply aspects in real-

time and environmental conditions, allowing for the 

detection of anomalies and potential failures. The 

predictive analytics powered by the SeismoGuard 

Ensemble classifier analyze the real-time data to predict 

power failures before they occur, enabling proactive 

management and mitigation strategies. 

The evaluation framework for the proposed system 

includes deploying it at selected seismic observation 

stations to test its functionality and performance under 

real-world conditions. Key performance metrics like 

accuracy, precision, recall, F1-score, data transmission 

throughput, and packet delivery ratio are used to assess the 

system's effectiveness.  

3.2 System architecture 

The proposed IoT-based intelligent power supply 

management system comprises several key components 

(Figure 1): 

IoT sensors and devices  

The system incorporates IoT sensors and devices 

strategically deployed at seismic observation stations. 

These devices continuously monitor various parameters in 

real-time, including voltage, current, battery status, and 

environmental circumstances, including temperature and 

humidity. The information gathered by these sensors is 

vital for assessing the power supply status and detecting 

anomalies that might indicate potential failures. 

The IoT sensors were calibrated according to manufacturer 

specifications to guarantee precise readings of voltage, 

current, and ecological conditions like temperature and 

humidity. Calibration entailed comparing sensor readings 

to preset values under controlled settings to adjust any 

deviations. Sensor placement at seismic monitoring 

locations was meticulously designed to maximize data 

quality while minimizing interference from environmental 

obstacles or electrical noise. To avoid sensor failure, 

redundant sensors were placed in important regions, and 

periodic service checks were performed to evaluate sensor 

health and recalibrate as needed. 

Data acquisition module 

The Data Acquisition Module plays a pivotal role in 

collecting data generated by the IoT sensors. Serving as an 

intermediary, it ensures accurate and efficient transmission 

of data to the next stage of the system. Maintaining data 

integrity and timely transfer to the centralized server is 

essential for enabling real-time monitoring and analysis. 

Centralized data processing unit  

Utilizing cloud computing resources, the Centralized Data 

Processing Unit manages the data collected from various 

seismic observation stations. It performs critical functions 

such as storing enormous volumes of data, analyzing it to 

recognize trends and patterns, and processing it to extract 

meaningful insights. Cloud computing capabilities 

facilitate scalability, flexibility, and efficient handling of 

large datasets, essential for robust system performance. 

SeismoGuard ensemble classifier  

The SeismoGuard Ensemble Classifier is a sophisticated 

machine-learning model specifically designed for the 

system. It analyzes processed data to predict potential 

power failures with high accuracy. Leveraging advanced 

machine learning techniques, the classifier identifies 

subtle indicators of power supply issues that may be 

overlooked by traditional methods. Its predictive 

capabilities enable proactive management of the power 

supply, reducing the risk of unexpected outages and 

enhancing overall system reliability. 

 

Figure 1: IoT-based intelligent power supply management 

system in seismic observation stations 
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Overall, the system architecture integrates IoT sensors, 

data acquisition modules, centralized data processing, and 

advanced machine learning to create an intelligent power 

supply management system. This holistic approach 

ensures real-time monitoring, efficient data handling, and 

accurate predictions, enhancing the reliability and 

resilience of power supply systems at seismic observation 

stations. 

3.3 Data collection 

Data collection within the system was systematically 

carried out across multiple seismic observation stations 

equipped with IoT sensors. These sensors were 

strategically deployed to ensure comprehensive 

monitoring of essential parameters critical for evaluating 

the health of the power supply infrastructure.  

At each seismic observation station, IoT sensors operated 

autonomously, continuously monitoring a range of 

parameters including voltage, current levels, battery health 

metrics, as well as ambient temperature and humidity 

conditions. This continuous monitoring provided real-time 

insights into the operational status of the power supply 

infrastructure, allowing for early detection of potential 

issues or anomalies. 

The gathered information underwent thorough validation 

and preprocessing procedures to verify accuracy and 

reliability. Validation processes were implemented to 

determine and deal with any outliers or inconsistencies in 

the data, thereby enhancing the quality of the datasets used 

for subsequent analysis. 

Once validated, the processed data were securely 

transmitted to the central server using reliable 

communication protocols. These protocols were chosen 

for their ability to guarantee effective and safe data 

transfer, safeguarding the integrity and confidentiality of 

the transmitted information throughout its journey to the 

central server. 

By leveraging IoT sensors and robust data transmission 

protocols, the system facilitated continuous and accurate 

data collection from multiple observation points. This 

robust data collection framework served as a crucial 

foundation for ongoing analysis and decision-making 

processes within the intelligent power supply management 

system, supporting proactive maintenance and operational 

efficiency. 

The structure of the collected dataset includes various 

parameters such as timestamp, voltage, current, battery 

status, temperature, humidity, and power failure events. 

The sample dataset is structured as shown in Table 2. 

Table 2: Sample dataset structure 

Timestamp Voltage (V) Current (A) Battery 

Status 

Temperature 

(°C) 

Humidity 

(%) 

Power 

Failure 

(Binary, 0/1) 

2024-06-21 

08:00:00 

220 15 80% 25 50 0 

2024-06-21 

08:15:00 

218 16 78% 26 52 0 

2024-06-21 

08:30:00 

216 14 75% 27 54 0 

2024-06-21 

08:45:00 

215 13 73% 28 55 0 

2024-06-21 

09:00:00 

50 5 10% 29 56 1 

2024-06-21 

09:15:00 

210 11 68% 30 58 0 

2024-06-21 

09:30:00 

208 10 65% 31 60 0 

2024-06-21 

09:45:00 

206 9 63% 32 62 0 
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2024-06-21 

10:00:00 

204 8 60% 33 64 0 

For instance, a sample dataset may have entries like 

Timestamp: "2024-06-21 08:00:00", Voltage: "220V", 

Current: "15A", Battery Status: "80%", Temperature: 

"25°C", Humidity: "50%", and Power Failure: "0". Each 

data entry is recorded at regular intervals, typically every 

15 minutes, providing a granular view of the conditions 

affecting the power supply infrastructure. 

Each column in the dataset serves a specific purpose.  

• Timestamp: Date and time when the data was 

recorded. 

• Voltage (V): Voltage measured by the IoT 

sensors. 

• Current (A): Current measured by the IoT 

sensors. 

• Battery status: The remaining battery capacity 

of seismic observation stations, as measured by 

IoT sensors. 

• Temperature (°C): Ambient temperature 

recorded by IoT sensors. 

• Humidity (%): Ambient humidity recorded by 

IoT sensors. 

• Power failure (Binary, 0/1): Binary indicator 

where 1 denotes a power failure event and 0 

denotes normal operation. 

The data collection frequency is set to capture real-time 

conditions effectively, facilitating timely responses to any 

detected anomalies. Anomalies in voltage, current, battery 

status, and environmental conditions might indicate 

impending power failures. This comprehensive dataset 

serves as input for machine learning algorithms designed 

to predict power failures based on historical patterns and 

current sensor readings. The systematic approach to data 

collection and validation, combined with secure data 

transmission, ensures the integrity and usability of the 

data, allowing for the development of robust predictive 

models. This, in turn, supports the efficient management 

of power supply infrastructure through proactive 

maintenance and operational strategies. 

3.4 Data preprocessing 

Data preprocessing is a pivotal phase that optimizes the 

quality and usability of raw data collected from IoT 

sensors before it undergoes thorough analysis. The data 

was meticulously preprocessed to guarantee system 

consistency and reliability: 

Data cleaning 

Data cleaning involved rigorous procedures to handle 

noise, outliers, and missing values. Outliers, which are 

data points significantly different from others, were 

identified using statistical methods such as the 

interquartile range (IQR). The IQR method defines outliers 

as any data point x that lies outside the range: 

Q1 − 1.5 × IQR ≤ x ≤ Q3 + 1.5 × IQR                     
 

(1) 
 

Where the first and third quartiles are denoted by Q1 and 

Q3, and IQR=Q3−Q1. 

Once identified, outliers were either corrected based on 

domain knowledge or removed if deemed erroneous. 

Missing values were addressed through techniques such as 

mean imputation, where missing values were replaced 

with the mean of the available data, calculated as: 

𝐼𝑚𝑝𝑢𝑡𝑒𝑑 𝑉𝑎𝑙𝑢𝑒 =
1

𝑛
∑ 𝑥𝑖

𝑛

𝑖=1

 
   

(2) 

Alternatively, predictive models to estimate missing values 

based on other variables. 

Normalization 

Following data cleaning, normalization was employed to 

standardize the scale of different parameters across the 

dataset. A common normalization technique used was min-

max scaling, which scaled the data to a range between 0 

and 1. The min-max scaling formula is: 

𝑥 , =
𝑥 − min (𝑥)

max(𝑥) −  min (𝑥)
 

    (3) 

This technique guarantees that each feature makes a 

contribution equally to the examination and avoids 

attributes with bigger numerical ranges from dominating 

the analysis simply due to their scale. 

Feature extraction 

Feature extraction focused on identifying and selecting the 

most relevant features that significantly influence power 

supply reliability. Principal Component Analysis (PCA) 

was utilized as a technique for feature extraction, reducing 

the dataset's complexity while maintaining its crucial data. 

By figuring out the main elements that explain the 

maximum variance in the data, PCA helped in selecting a 

subset of features that provided the most insightful 

information about the power supply system's operational 

status and potential failure points. Mathematically, PCA 

finds the principal components through resolving the 

eigenvalue problem for the covariance matrix Σ: 
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Σv =  λ𝑣 
           (4) 

Where λ represents the eigenvalues and v represents the 

eigenvectors. The eigenvectors that match the highest 

eigenvalues form the principal components. 

Each of these preprocessing techniques—data cleaning, 

normalization through min-max scaling, and feature 

extraction via Principal Component Analysis—performs a 

crucial role in enhancing the quality, consistency, and 

interpretability of the data within the intelligent power 

supply management system. By preparing the data 

effectively, these techniques facilitated more accurate 

analysis and decision-making processes aimed at 

improving the reliability and efficiency of the power 

supply infrastructure. 

3.5 SeismoGuard ensemble classifier 

Power failure prediction is a critical aspect of ensuring the 

continuous operation and reliability of seismic observation 

stations, which are essential for monitoring and analyzing 

seismic activity. The SeismoGuard Ensemble classifier 

represents an innovative strategy designed specifically to 

deal with the challenges of predicting power failures in this 

context. This section details the components and 

functionality of the SeismoGuard Ensemble classifier, 

emphasizing its role and effectiveness in enhancing 

prediction accuracy and robustness. 

The SeismoGuard Ensemble classifier integrates multiple 

machine-learning models into a unified framework 

tailored for power failure prediction. At its core, the 

ensemble classifier employs the following base classifiers: 

Random forest (RF): RF is selected because of its 

capacity to manage big volumes of data and robustness 

against noise. During training, it builds several decision 

trees and outputs the mean prediction (regression) or the 

mode of the classes (classification) for each tree. In the 

context of seismic observation stations, RF effectively 

captures complex relationships within the data, 

contributing to accurate predictions of potential power 

failures. The RF algorithm can be mathematically 

described as: 

�̂�𝑅𝐹 =
1

𝑁
∑ 𝑇𝑖(𝑥)

𝑁

𝑖=1

 

      
(5) 

 

where 𝑇𝑖(𝑥) denotes the prediction of the ith decision tree 

for the input 𝑥, and N is the total number of trees. 

 

Support vector machine (SVM): SVM is suitable for 

tasks involving higher dimensions data and is particularly 

efficient in separating classes by discovering the 

hyperplane that increases the margin between them. This 

capability makes SVM valuable in classifying seismic data 

patterns indicative of imminent power failures, thereby 

enhancing the ensemble's predictive performance. The 

decision function for SVM can be expressed as: 

 

𝑓(𝑥) = 𝑠𝑖𝑔𝑛(∑ 𝛼𝑖𝑦𝑖𝐾(𝑥𝑖 , 𝑥)

𝑙

𝑖=1

+ 𝑏) 
(6) 

where 𝛼𝑖 are the Lagrange multipliers, 𝑦𝑖  are the class 

labels, 𝐾(𝑥𝑖 , 𝑥) is the kernel function, and 𝑏 is the bias 

term. 

 

 

 

K-Nearest neighbors (KNN): KNN functions according 

to the idea of proximity-based learning, where new 

instances are classified based on the majority class of their 

nearest neighbors. This model is selected for its simplicity 

and effectiveness in pattern recognition, which is crucial in 

identifying recurring patterns in seismic data that precede 

power disruptions. The KNN prediction for a given 

instance 𝑥 is: 

�̂�𝐾𝑁𝑁 =
1

𝑘
∑ 𝑦𝑖

𝑘

𝑖=1

 

    
(7) 

where 𝑦𝑖  are the class labels of the k nearest neighbors. 

 

1. Logistic Regression Meta-Classifier: Serving 

as the meta-classifier, Logistic Regression (LR) integrates 

predictions from the base classifiers (RF, SVM, KNN) to 

produce a final prediction. LR is chosen for its ability to 

model the probability of a certain class, providing 

interpretable results and insights into the likelihood of 

power failures at seismic observation stations. The logistic 

regression model is defined as: 

𝑃(𝑦 = 1|𝑥) = 𝜎(𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2

+ ⋯ + 𝛽𝑝𝑥𝑝) 
(8) 

where 𝜎(𝑧) =  
1

1+𝑒−𝑧 is the sigmoid function, and 𝛽𝑖 are the 

regression coefficients. 

The ensemble classifier follows a stacking approach, 

where predictions from the base classifiers are aggregated 

and processed by the meta-classifier to generate a 

consolidated prediction. This ensemble methodology 

leverages the complementary strengths of each model, 

effectively mitigating individual model weaknesses and 

enhancing overall prediction accuracy. The stacking 

process can be mathematically represented as: 

�̂�𝐸𝑛𝑠𝑒𝑚𝑏𝑙𝑒 = 𝜎(∑ 𝑤𝑖�̂�𝑖

𝑛

𝑖=1

) 
(9) 

where �̂�𝑖 are the predictions from the base classifiers, 𝑤𝑖  

are the weights assigned to each classifier, and 𝜎 is the 

sigmoid function used by the logistic regression meta-

classifier. 

The SeismoGuard Ensemble classifier is implemented and 

validated using real-world data collected from seismic 

observation stations equipped with IoT sensors. The 
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dataset includes continuous measurements of critical 

parameters such as voltage, current, battery health, 

temperature, and humidity. During implementation, the 

dataset is divided into training and testing subsets, with the 

training subset utilized to train the individual base 

classifiers and the ensemble classifier. Figure 2 

demonstrates the flow diagram of the SeismoGuard 

Ensemble classifier. 

 

Figure 2: Flow diagram of seismoguard ensemble 

classifier 

By integrating diverse machine learning models within a 

unified framework, the classifier enhances the operational 

continuity of these stations during critical seismic events. 

Its robust performance in predicting power failures ensures 

timely and efficient management of resources, 

contributing to improved disaster preparedness and early 

warning systems. Algorithm 1 shows the SeismoGuard 

Ensemble classifier. 

Algorithm 1: SeismoGuard Ensemble classifier 

Input : IoT Sensors Collected Dataset 

Output : Power Failure Prediction 

Step 1 : Gathering and Preparing Data 

       data = collect_sensor_data() 

       cleaned_data = clean_data(data) 

       normalized_data = normalize_data(cleaned_data) 

       features = extract_features(normalized_data) 

Step 2 : Data Splitting 

       train_data, test_data = split_data(features, test_size=0.2) 

Step 3 : Training Base Classifiers 

       rf_model = train_random_forest(train_data) 

       svm_model = train_svm(train_data) 

       knn_model = train_knn(train_data) 

Step 4 : Stacking and Meta-Classification 

       train_predictions = { 

           'RF': rf_model.predict(train_data), 

           'SVM': svm_model.predict(train_data), 

           'KNN': knn_model.predict(train_data) 

       } 

       meta_model = train_logistic_regression(train_predictions) 

Step 5 : Prediction and Evaluation 

       test_predictions = { 

           'RF': rf_model.predict(test_data), 

           'SVM': svm_model.predict(test_data), 
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           'KNN': knn_model.predict(test_data) 

       } 

       final_predictions = meta_model.predict(test_predictions) 

       metrics = evaluate_performance(final_predictions, test_data) 

Algorithm 1 starts with data collection and preprocessing, 

involving cleaning, normalizing, and feature extraction 

from the raw sensor data. This processed data is then split 

into training and testing sets. Multiple base classifiers, 

including Random Forest, SVM, and KNN, are trained on 

the training data. Their predictions on the training set are 

used to train a meta-classifier, typically a logistic 

regression model. Finally, the trained base classifiers 

generate predictions on the test data, which are then 

combined and refined by the meta-classifier to produce the 

final power failure predictions, and the execution of these 

predictions is evaluated using accuracy, precision, recall, 

and f1-score metrics. 

Overall, the SeismoGuard Ensemble classifier stands as a 

pivotal tool in enhancing the reliability and efficiency of 

seismic observation stations through accurate power 

failure prediction. Its innovative approach underscores its 

potential to revolutionize how seismic data are monitored 

and analyzed, ensuring continuous operation and data 

integrity in the face of seismic events. 

1 Experimental results and 

discussions 

The experiments were conducted using the Java 

programming language and the Weka tool, a widely used 

machine learning software suite. The focus was on 

evaluating the performance of the proposed IoT-based 

intelligent power supply management system against the 

traditional threshold-based system and SeismoGuard 

Ensemble classifier against individual classifiers (Random 

Forest, SVM, KNN, and Logistic Regression) in predicting 

power failures at seismic observation stations. Data were 

collected from multiple seismic observation stations 

equipped with IoT sensors monitoring voltage, current, 

battery status, temperature, and humidity. The gathered 

data underwent rigorous preprocessing stages, including 

cleaning to handle outliers and values that are missing, 

normalization using min-max scaling, and feature 

extraction through PCA. To guarantee model robustness 

and generalization, 10-fold cross-validation was used in 

the assessment phase. The efficacy of each classifier was 

evaluated using accuracy, precision, recall, and F1-score. 

• Accuracy: Accuracy measures the proportion of 

correct results among all cases. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

(10) 

 

• Precision: Precision measures the proportion of 

true positives among predicted positives. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(11) 

 

• Recall: Recall measures the proportion of actual 

positives correctly identified. 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(12) 

 

F1-score: The F1-score balances precision and recall into 

a single evaluation metric for classifier performance. 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =  2 ∗  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

(13) 

 

Where: 

❖ TP = True Positives 

❖ TN = True Negatives 

❖ FP = False Positives 

❖ FN = False Negatives 

 

• Data Transmission Throughput (DTT): Data 

Transmission Throughput (DTT) represents the rate at 

which data is transmitted from IoT sensors to the 

centralized data processing unit. It is calculated using the 

formula: 

𝐷𝑇𝑇 =  
Total Data Transferred

Total Time
 

(14) 

 

Where: 

❖ Total Data Transferred is the quantity of data sent 

over a given period. 
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❖ Total Time is the duration of the data transmission 

period. 

 

• Packet Delivery Ratio (PDR): PDR measures 

successfully delivered data packets as a ratio of the total 

sent. It is computed using the formula: 

𝑃𝐷𝑅

=  
Number of Successfully Delivered Packets

Total Number of Packets Sent
∗  100 

 

                                                                   (15)  

Where: 

Number of successfully delivered packets: Packets 

received by the centralized unit. 

Total number of packets sent: Total number of packets 

transmitted by the IoT device. 

The traditional threshold-based system for power supply 

management relies on fixed thresholds for parameters such 

as voltage, current, and battery status, set based on 

historical data or manufacturer recommendations. It 

monitors real-time values with sensors and triggers alerts 

if thresholds are breached, initiating responses like 

notifying personnel or activating backups. However, it 

operates reactively, lacking the flexibility to adapt to 

dynamic environmental changes or unforeseen operational 

challenges in real time. Moreover, it lacks predictive 

capabilities, relying on reactive responses rather than 

preemptive strategies to address potential issues. 

The results are summarized in Table 3 and Table 4 below, 

which compare the performance metrics and efficiency 

measures of the proposed SeismoGuard Ensemble 

classifier with individual classifiers and the proposed IoT-

based intelligent power supply management system with 

the traditional threshold-based system. 

Table 3: Performance metrics comparison 

Classifier Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-

score 

(%) 

Random 

Forest 

85 82 87 84 

SVM 81 79 83 81 

KNN 78 75 80 77 

Logistic 

Regression 

79 76 81 78 

SeismoGuard 

Ensemble 

90 88 91 89 

 

Table 4: Efficiency measures comparison 

System Metric IoT-based 

intelligent power 

supply 

management 

system 

Traditional 

Threshold-

Based System 

Data Transmission 

Throughput 

150 Mbps 100 Mbps 

Packet Delivery 

Ratio (%) 

95% 85% 

 

Figure 3 visually depicts the comparison of performance 

metrics based on a line chart, illustrating the accuracy, 

precision, recall, and F1-score of each classifier. The bar 

chart provides a clear and comparative view of how each 

model performs across these metrics. 

 

Figure 3: Performance metrics comparison 

Figure 3 demonstrates that the proposed SeismoGuard 

Ensemble classifier outperforms individual classifiers in 

terms of accuracy, precision, recall, and F1 score. 

Specifically, the SeismoGuard Ensemble achieves an 

accuracy of 90%, which is significantly higher compared 

to Random Forest (85%), SVM (81%), KNN (78%), and 

Logistic Regression (79%). This improvement comes from 

the ensemble using multiple classifiers to reduce 

weaknesses and improve predictions. 
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Figures 4 and 5 visually present line charts comparing the 

efficiency measures between the proposed system and the 

traditional threshold-based system. The bar charts offer a 

clear and comparative view of key efficiency metrics such 

as data transmission throughput and packet delivery ratio. 

 

Figure 4: Throughput comparison 

 

Figure 5: Packet delivery ratio comparison 

In terms of efficiency measures (Figures 4 and 5), the 

proposed IoT-based intelligent power supply management 

system shows higher data transmission throughput (150 

Mbps) compared to the traditional threshold-based system 

(100 Mbps). This indicates that the integrated approach of 

IoT-based monitoring and predictive analytics not only 

enhances predictive accuracy but also ensures reliable data 

transmission critical for real-time monitoring during 

seismic events. Additionally, the packet delivery ratio is 

notably higher at 95% for the proposed system, 

demonstrating its superior reliability in delivering data 

compared to the 85% achieved by the traditional approach. 

The excellent output of the SeismoGuard Ensemble 

classifier is due to multiple elements. Firstly, its ensemble 

learning technique combines Random Forest, SVM, and 

KNN models with a Logistic Regression meta-classifier, 

leveraging their complementary strengths to enhance 

prediction accuracy. Secondly, the system effectively 

integrates diverse IoT sensor data—including voltage, 

current, battery status, and environmental conditions—

providing a comprehensive view of the power supply 

system's status and resilience. Continuous real-time 

monitoring enables prompt anomaly detection, facilitating 

proactive management of potential power failures. 

Overall, the experimental results validate the effectiveness 

of this integrated IoT-based intelligent power supply 

management system, particularly the SeismoGuard 

Ensemble classifier, in enhancing reliability and efficiency 

across seismic observation stations. 

4.1 Discussion 

The findings in Table 1 show that the SeismoGuard 

Ensemble classifier surpasses individual classifiers like 

Random Forest, SVM, KNN, and Logistic Regression on 

all important metrics. The ensemble's model mixture 

allows it to capture various trends in seismic data, with 

90% accuracy, 88% precision, 91% recall, and an F1-score 

of 89%. This combined strategy improves prediction 

accuracy by using each classifier's advantages, presenting 

a more balanced and dependable result than individual 

models such as KNN, which struggles because of 

sensitivity to noise and outliers, or Logistic Regression, 

which can underperform in nonlinear data situations. 

Environmental factors like power outages and 

transmission delays may have an impact on classifier 

efficiency. The SeismoGuard Ensemble's resilience stems 

from its flexibility to these factors, as opposed to simpler 

models such as KNN or Logistic Regression, which are 

more sensitive to data fluctuation and noise. However, 

under extreme circumstances, like serious network 

congestion or high-latency settings, the ensemble's 

computational intricacy can cause delays. Conventional 

models such as Random Forest may execute superior in 

such situations because of their fewer computational 

requirements, but they would compromise prediction 

precision. 

Despite its benefits, the SeismoGuard Ensemble has 

certain drawbacks. Its computational cost can be an issue 

in real-time applications, where rapid choices are critical. 

Furthermore, the ensemble may fail with sparse data or 

overfitting in cases where particular models dominate the 

voting procedure. Further enhancements could concentrate 

on enhancing the ensemble's effectiveness and 

investigating hybrid deep learning models to enhance 

flexibility, guaranteeing consistent effectiveness across 

various seismic circumstances. 
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5 Conclusion and future work 

In conclusion, this paper introduces an IoT-based 

intelligent power supply management system integrated 

with the SeismoGuard Ensemble classifier, showcasing its 

significant enhancements in reliability and efficiency for 

seismic observation stations. Through ensemble learning 

and real-time IoT sensor data integration, the system 

accurately forecasts and addresses potential power 

failures, ensuring uninterrupted operations and data 

integrity during seismic events. The experimental findings 

underscore superior performance metrics compared to 

conventional approaches, underscoring their effectiveness 

in bolstering disaster preparedness and operational 

resilience. Moving forward, future studies might examine 

the use of these methodologies in smart grid systems. By 

integrating predictive analytics and real-time monitoring 

into smart grids, similar benefits could be realized, 

optimizing energy distribution, enhancing grid stability, 

and promoting sustainable energy practices. 
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