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Earthquakes have the potential to cause catastrophic structural and economic damage.  This research 

explores the application of machine learning for earthquake prediction using LANL (Los Alamos National 

Laboratory) dataset. The data, obtained from a laboratory stick-slip friction experiment, simulate real 

earthquakes through digitized acoustic signals recorded against the time to failure of a granular layer. 

We introduced a hybrid model combining CatBoost and Support Vector Regression (SVR) to predict the 

time of the next earthquake, evaluating its performance against individual CatBoost and SVR models. The 

hybrid model demonstrated superior accuracy with a Mean Absolute Error (MAE) of 0.0825, 

outperforming the individual models. We implemented feature engineering to optimize the predictive 

capability of the models. Additionally, we compared our hybrid model's performance with previous studies 

to validate its efficacy. Our findings underscore the potential of machine learning, particularly hybrid 

models, in enhancing earthquake prediction accuracy. This study highlights the robustness and 

effectiveness of the hybrid CatBoost-SVR model, paving the way for advanced AI algorithms in seismology 

and contributing to improved disaster preparedness and mitigation strategies. 

Povzetek: A hybrid CatBoost-SVR model improves earthquake prediction using the LANL dataset, 

achieving superior accuracy (MAE: 0.0825). This approach enhances machine learning applications in 

seismology, contributing to disaster preparedness and mitigation strategies. 

 

1 Introduction
Earthquakes stand as one of nature's most devastating 

phenomena, posing formidable challenges for prediction 

despite the extensive efforts of the seismology 

community. Unlike other natural disasters such as floods, 

tornadoes, and hurricanes, which can often be forecasted 

in terms of timing, location, and potential impact, 

earthquake prediction remains notably elusive. Currently, 

seismographs serve as the primary method for detecting 

imminent earthquakes, yet their warnings typically offer 

only seconds of lead time, insufficient for effective 

preventive action against substantial structural damage. 

The complexity and nonlinear characteristics of seismic 

data further compound the difficulty in earthquake 

prediction, presenting a persistent challenge in 

geophysics. Recent strides in machine learning present 

promising avenues for improving prediction accuracy in 

earthquake forecasting. This study delves into a hybrid 

model that merges CatBoost and Support Vector 

Regression (SVR) to enhance earthquake prediction 

performance, leveraging insights gained from analyzing 

the LANL earthquake dataset. Additionally, alternative 

approaches to earthquake prediction involve monitoring 

changes in land elevation, groundwater levels, animal 

behavior, and precursor seismic activity. A notable 

instance of effective earthquake prediction transpired 

during the Haicheng, China earthquake of 1975, where an 

evacuation advisory was disseminated a day prior to the 

occurrence of a magnitude 7.3 seismic event. In the 

month’s antecedent to the earthquake, alterations in land 

surface elevation and groundwater levels, numerous 

instances of anomalous animal behavior, and the 

occurrence of several foreshocks collectively served as 

precursory indicators, initially prompting a precautionary 

advisory. Subsequently, a surge in foreshock activity 

prompted the escalation of the advisory to an evacuation 

warning. Nevertheless, it is imperative to note that the 

majority of earthquakes do not manifest such conspicuous 

precursory signs. Despite the success witnessed in 1975, 

the 1976 Tangshan earthquake, registering a magnitude of 

7.6, occurred without any forewarning, resulting in an 

estimated 250,000 casualties [1]. Amidst the rapid 

evolution of statistical and deep learning methodologies, 

novel paradigms in earthquake prediction have emerged 

[2] [3]. These strategies hinge upon extensive datasets, 

accentuating the imperative of curating, amassing, and 

simulating earthquake data, a realm that has recently 

garnered notable scrutiny [4]. Through the fusion of 

meticulously curated data and cutting-edge statistical and 
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deep learning methodologies, the endeavor to forecast 

earthquake timing based on realistically attainable data 

could potentially be surmounted, aligning with the 

prevailing trajectory across diverse machine learning 

applications. In both [2] and [3], machine learning and 

deep learning frameworks are harnessed to prognosticate 

the timing of subsequent earthquakes. These frameworks 

leverage physically amassed and labeled earthquake 

parameters, such as relative strength index, momentum, 

and moving force averages. Classic machine learning 

(ML) [4] algorithms conventionally compute seismic 

metrics like Gutenberg-Richter b-values, time intervals, 

earthquake energy, and mean magnitude. In contrast, 

contemporary deep learning (DL) models [5] exhibit 

proficiency in assimilating multifaceted features. Both 

ML and DL models are driven by data and demonstrate 

efficacy in moderate-magnitude earthquake scenarios; 

however, they encounter challenges with high-magnitude 

events due to the scarcity of requisite data. Data-driven 

models necessitate voluminous datasets to yield precise 

predictions. Certain DL methodologies endeavor to 

anticipate significant earthquakes by exclusive training on 

such instances, yet these methods necessitate further 

refinement [6]. A prevalent trait among these 

methodologies is their analysis of protracted temporal 

sequences of seismic data, which poses a formidable 

hurdle for DL techniques. Accurate earthquake prediction 

holds the potential to avert fatalities and mitigate 

catastrophic repercussions, thus positioning the 

anticipation of earthquake timing and magnitude as a 

cornerstone objective within the domain of geoscience [7]. 

Despite protracted time-series observations and field 

studies, the precise anticipation of earthquake scale or 

timing persists as an enduring challenge [8]. Moreover, 

the unpredictability of devastating subduction 

earthquakes, with magnitudes of 9.0 or higher, adds a 

concerning dimension to this endeavor [9]. Traditional 

methods of earthquake prediction, such as using 

seismographs, often provide only seconds of warning 

before an earthquake occurs, which is insufficient time to 

take preventative measures. Other approaches involve 

monitoring changes in land elevation, groundwater levels, 

animal behavior, and foreshocks. However, these methods 

do not always provide clear or reliable precursors to 

impending earthquakes. Monitoring with non-destructive 

testing (NDT) acoustic emissions (AE) involves the 

continuous recording of acoustic data as the material 

undergoes stress. The recording process typically persists 

until the material reaches failure. In controlled laboratory 

environments, stress-induced failure can be hastened by 

artificially subjecting the material to stress [10][11]. Upon 

failure, discrete acoustic emissions (AEs) are discerned 

within the recorded data. These discrete AEs denote short-

duration elastic waves generated due to the initiation of 

minute internal cracks and slip occurrences along grain 

contacts, thereby furnishing valuable insights into the 

material's response under stress. Subsequently, AEs can be 

categorized based on the damage mechanism through the 

utilization of unsupervised clustering algorithms. In 

certain instances, the precise labels for each cluster are 

determined through methodologies such as transmitted 

light analysis [12] or scanning electron microscopy [13]. 

Finally, scrutinizing AE production across the failure 

cycle facilitates the identification of temporal patterns and 

enables deductions regarding the material's remaining 

useful life (RUL). Some research endeavors have 

expanded upon this analysis by integrating machine 

learning methodologies to forecast RUL, yielding varying 

degrees of efficacy [14][15]. 

Recent advancements in machine learning (ML) 

algorithms and computational hardware have catalyzed 

novel insights and methodologies within the seismological 

community [16]. ML applications now extend to 

fundamental signal processing tasks, encompassing 

earthquake event detection [17], phase picking [18], 

association [19], and hypocenter determination [20], as 

comprehensively documented by [21]. Concurrently, the 

utilization of data-driven ML approaches has broadened to 

encompass the prediction of TTF in laboratory 

experiments, leveraging Acoustic Emission (AE) data and 

its associated measurements [22]. A study on earthquake 

forecasting emphasizes the importance of long-term 

predictions regarding the timing, intensity, and location of 

future seismic events. By leveraging expert systems and 

extensive data analysis, more accurate forecasting models 

can be developed for specific regions, such as Los 

Angeles, improving preparedness and risk management 

[23]. Advanced machine learning techniques, such as 

attention-based Bi-Directional Long Short-Term Memory 

(LSTM) networks, have been highlighted as powerful 

tools for enhancing the precision of earthquake 

predictions, which are critical for disaster response in 

earthquake-prone areas [24]. Additionally, extreme value 

theory has been applied to assess the maximum possible 

earthquake magnitudes in high-risk areas, underscoring 

the value of ground-based observations and statistical 

methods in refining forecasting models [25]. 

Machine learning techniques have also been used to 

cluster earthquakes based on historical intervals, offering 

insights into recurring seismic behaviors and improving 

the predictive power of long-term forecasts [26]. For 

regions with complex fault zones, statistical models like 

the SARIMA model can help forecast earthquakes by 

analyzing past seismic events, contributing to more 

reliable predictions and risk management strategies [27]. 

Other research has focused on analyzing geoelectric field 

signals before earthquakes using advanced techniques, 

which can provide early warning signs and valuable data 

to improve forecasting accuracy [28]. 

Another significant area of study is the monitoring of 

slow seismic activity, which may indicate the potential for 

a major earthquake. By identifying these patterns, 

researchers can enhance the effectiveness of forecasting 

models [29]. Additionally, understanding the relationship 

between ground motion attenuation and regional 

geophysical data is crucial for developing robust 

forecasting models that predict the impact of seismic 

events [30]. Lastly, the study of seismic stress levels and 

their relationship with earthquake magnitude helps 

improve predictions of high-magnitude earthquakes, 

providing deeper insights into seismic behavior and 

further refining forecasting methods [31]. Collectively, 
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these approaches are advancing earthquake forecasting 

and risk management, enhancing preparedness in 

earthquake-prone regions. 

When working with the LANL earthquake dataset, it 

is essential to recognize several limitations and potential 

biases that influence the generalizability and reliability of 

the findings. The dataset is geographically biased, 

focusing on specific regions, which limits the applicability 

of conclusions to areas with different seismic 

characteristics. If the data predominantly covers certain 

tectonic plate boundaries or fault lines, it does not fully 

represent the behavior of earthquakes in less seismically 

active regions. Additionally, the dataset has temporal 

gaps, with uneven data distribution over time, which 

affects trends analysis and the ability to draw consistent 

conclusions across different periods. The dataset also has 

biases in the types of seismic events included, such as 

overrepresentation of certain magnitudes or depths, which 

skews model development. If smaller or larger 

earthquakes are underrepresented, the results do not 

accurately reflect the full range of seismic activity. 

Furthermore, the quality of the data is important, as 

seismic recordings are affected by noise from 

environmental factors, sensor inaccuracies, or 

technological limitations. If the dataset includes noisy or 

incomplete data, it compromises the ability to detect 

meaningful patterns or leads to incorrect conclusions. 

Incomplete or missing data points, especially if they are 

not randomly distributed, further introduce biases. There 

are also issues with manual labeling and classification 

errors, where misclassification of events distorts the 

analysis, particularly if smaller seismic events are 

confused with more significant ones. Finally, the sampling 

frequency of the dataset impacts its usefulness, as 

insufficient resolution results in the loss of critical 

information, such as early warning signs of large 

earthquakes or aftershocks. Acknowledging these 

limitations and biases is crucial for a more realistic and 

transparent understanding of the dataset’s applicability to 

earthquake prediction and modeling. 

In the context of predicting Time to Failure (TTF) 

within controlled laboratory environments, researchers 

typically employ Machine Learning (ML) frameworks 

that rely on three distinct feature categories. These 

categories encompass a) AE-Driven Features, which are 

directly derived from continuous Acoustic Emission (AE) 

signals, capturing nuanced details about the material's 

structural response and behavior; b) Geodetic-Driven 

Features, extracted from geodetic measurements, offering 

insights into the material's deformation characteristics and 

spatial dynamics, thus shedding light on its mechanical 

integrity; and c) Catalog-Driven Features, sourced from 

earthquake or seismicity catalogs, providing historical 

data on seismic events and their associated attributes. 

These feature categories collectively enable a 

comprehensive approach to TTF prediction, integrating 

diverse data sources to enhance predictive accuracy and 

reliability within laboratory settings. Acoustic emissions 

(AE) denote transient elastic waves arising from the 

formation of minute internal cracks and slip events along 

grain contacts within stress-stricken materials. AE 

monitoring offers invaluable insights into material 

structural integrity and response mechanisms under stress, 

thus laying the foundation for TTF prediction in 

laboratory setups. The amalgamation of AE data with 

machine learning methodologies presents a promising 

avenue for enhancing the precision and efficacy of TTF 

prognostications, thereby fostering advancements in 

comprehending material behavior under stress and 

augmenting predictive capacities within the realm of 

seismology. Despite the limitations and biases present in 

the LANL earthquake dataset, our "Hybrid CatBoost and 

SVR Model" helps provide better results by effectively 

addressing these challenges. The CatBoost algorithm, 

known for its robustness in handling categorical features 

and its ability to deal with noisy and incomplete data, 

enhances the model’s ability to identify important patterns 

in seismic events. By reducing overfitting and improving 

generalization, CatBoost ensures that the model remains 

accurate even in the presence of biases like geographical 

or temporal imbalances. On the other hand, the Support 

Vector Regression (SVR) component helps capture 

complex relationships in the data, especially for modeling 

non-linearities that might arise due to varying earthquake 

magnitudes and depths. Together, the hybrid model 

leverages the strengths of both algorithms, enabling it to 

mitigate the impact of incomplete or noisy data, and 

ultimately providing more reliable predictions. 

Additionally, the combination of CatBoost's feature 

engineering capabilities and SVR’s precision ensures that 

even with a limited dataset, the model can deliver 

meaningful insights, improving the overall accuracy and 

robustness of earthquake predictions. 

We propose a novel hybrid approach that combines 

CatBoost, a gradient boosting algorithm, with Support 

Vector Regression (SVR). This hybrid model leverages 

the strengths of both methods to improve the accuracy of 

predicting the time-to-failure of earthquakes using the 

LANL earthquake dataset. Integrating CatBoost with 

Support Vector Regression (SVR) can yield superior 

results due to the complementary strengths of the two 

algorithms. CatBoost, a gradient boosting algorithm, is 

adept at handling categorical features and automatically 

managing missing data. It excels in capturing complex 

relationships within the dataset, producing robust 

predictions. On the other hand, SVR, a kernel-based 

regression algorithm, is proficient in modeling nonlinear 

relationships and high-dimensional spaces. By combining 

the predictions from CatBoost with the features in SVR, 

the integrated model can leverage the advantages of both 

algorithms. CatBoost provides an initial understanding of 

the data's complex patterns, while SVR further refines 

predictions based on its ability to capture intricate 

relationships.  

Our paper builds significantly on the work presented 

in [32], where researchers from the Los Alamos National 

Laboratory (LANL) developed a dataset of acoustic data 

from laboratory-simulated earthquakes. This dataset was 

utilized to train a support vector regression (SVR) 

machine learning model for predicting time-to-failure, 

defined as the time until a major earthquake event. The 

model used statistical features such as moving average, 
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kurtosis, and variance. In this study, we aim to enhance 

their results by Catboost techniques. Some major 

contributions of research includes: 

This research bridges the gap between machine 

learning and seismology, demonstrating how advanced 

data-driven approaches can be applied to traditional 

scientific problems. The study also incorporates the 

consideration of slow slip events (SSEs) and their 

relationship with regular earthquakes, adding to the 

understanding of seismic processes.  

2 Dataset description 
In 2017, researchers at Los Alamos National Laboratory 

(LANL) achieved a significant breakthrough in the 

prediction of Slow Slip Earthquakes (SSE) within 

laboratory conditions that mimic natural settings. Through 

meticulous experimentation, the team developed a method 

wherein a computer system was trained to detect and 

analyze quasi-periodic seismic and acoustic signals 

emitted during fault movements. By processing extensive 

datasets, they identified a distinct sound pattern, 

previously dismissed as noise, which serves as an 

indicator of an impending earthquake. Utilizing a time 

window of 1.8 seconds of data, the team attained an 

impressive 89% coefficient of determination in 

forecasting the time remaining before a laboratory 

earthquake event, employing Random Forest Regression 

and quasi-periodic data. In the laboratory environment, 

seismic sounds produced by the interaction of steel blocks 

with rocky material, simulating real earthquake activity, 

were recorded by an accelerometer. This groundbreaking 

discovery represents the first successful prediction of 

laboratory earthquake occurrences. While acknowledging 

the differences in shear stress between laboratory 

experiments and natural earthquakes, the LANL team is 

actively engaged in validating their findings in real-world 

scenarios [33][34]. Moreover, this innovative approach 

holds potential beyond seismology, with possible 

applications in material failure research across diverse 

industries like aerospace and energy. These findings 

underscore the notion that fault failure follows a 

discernible pattern rather than occurring randomly. 

 

3 Data exploration 
The LANL earthquake dataset serves as a 

comprehensive repository of acoustic emission signals 

captured during laboratory-simulated earthquakes. Each 

entry within this dataset encapsulates the acoustic data 

recorded at distinct time intervals, providing a detailed 

snapshot of seismic activity. Crucially, each sample is 

paired with a target value denoting the time until the 

occurrence of the subsequent laboratory earthquake. This 

temporal information enables researchers to study the 

dynamics of earthquake events and explore predictive 

modeling approaches [35]. The acoustic data itself is 

composed of discrete segments, each spanning a duration 

of 0.0375 seconds, comprising seismic signals recorded at  

 

 

Figure 1:  Acoustic data and time to failure analysis: 

subset representing 1% of total dataset. 

 

a frequency of 4MHz. This results in a substantial 

dataset containing a total of 150,000 data points. Each 

segment of acoustic data is meticulously annotated with a 

corresponding "time to failure" value as shown in Table 1, 

representing the duration until the laboratory fault 

undergoes failure, as determined through stress 

measurements. The acoustic signal consistently exhibits 

significant fluctuations immediately preceding each 

failure event Figure 1. Additionally, it is noteworthy that 

failures can be visually anticipated by observing instances 

where substantial fluctuations in the signal are succeeded 

by smaller ones.  

Upon closer examination of a zoomed-in time plot 

Figure 2, it becomes apparent that the prominent acoustic 

signal oscillation occurring at the 1.572-second mark 

precedes the occurrence of the failure event, albeit not 

precisely coinciding with it. Before this major oscillation, 

there are noticeable sequences of intense signal 

fluctuations, suggesting a buildup of activity leading to the 

larger event. Subsequently, after the significant 

oscillation, there are also smaller oscillations observed, 

indicating a potential aftermath or continuation of the 

event's effects [36][37]. In this time plot, it becomes 

evident that the significant oscillation preceding the 

failure does not occur immediately before the event. 

 

Table 1: Dataset: Seismic Activity (v) and Time to 

Failure (s) 

Sesmic activity (𝒗) Time to failure (s) 

12 1.4690999832 

6 1.4690999821 

8 1.469099981 

5 1.4690999799 

8 1.469099988 

8 1.469099977 

9 1.4690999766 

7 1.4690999755 

-5 1.4690999744 

... ... 
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Figure 2: Zoomed-in-time-plot. 

Instead, there are sequences of intense oscillations 

that precede the large oscillation, as well as smaller peak 

oscillations that follow it. Subsequently, after a series of 

minor oscillations, the failure takes place. Initially 

structured as a Pandas Dataframe, the dataset underwent a 

process of segmentation, dividing it into 150,000 

individual samples. Each sample is coupled with its 

corresponding time to failure, facilitating the training and 

validation of predictive models. Moreover, the dataset 

includes an additional 2626 preconstructed acoustic 

segments earmarked specifically for model testing 

purposes. This meticulous organization of the dataset 

enables researchers to conduct robust evaluations of 

model performance and effectiveness in earthquake 

prediction tasks. Seismic signals are captured through a 

piezoceramic sensor that generates a voltage in response 

to deformation caused by incoming seismic waves. This 

voltage, referred to as the acoustic signal, serves as the 

primary input for our analysis. The acoustic signal 

represents the recorded voltage, expressed as integers. 

The Acoustic Signal essentially signifies the voltage 

generated by the deformation induced by seismic waves. 

These signals are integer values ranging from -5515 to 

5444, with an average of 4.52. Examining the distribution 

of these acoustic signals reveals a distinct peak, indicating 

a concentration of values around the mean. However, the 

distribution also exhibits outliers in both directions, 

suggesting sporadic occurrences of exceptionally high or 

low values. This observation is illustrated in Figure 3, 

where the distribution's shape and the presence of outliers 

can be visualized. The range of the acoustic signals, 

 

 

Figure 3: The distribution of acoustic signals analyzed 

individually. 

 

 

Figure 4: The distribution of time to failure analyzed 

individually. 

spanning from -5515 to 5444, reflects the entirety of 

recorded voltage variations, from the most negative to the 

most positive values. This comprehensive range offers 

insights into the full spectrum of voltage fluctuations 

experienced during seismic activity. Negative values 

might signify voltage decreases due to compression or 

damping effects, while positive values could indicate 

voltage increases resulting from tension or amplification. 

The wide span of this range underscores the substantial 

variability in recorded voltage, influenced by factors like 

seismic wave intensity, distance, environmental 

conditions, and sensor sensitivity [38]. Despite the range's 

breadth, a very high peak in the distribution suggests a 

clustering of values around a central tendency, indicative 

of predominant signal strength or intensity. However, the 

presence of outliers in both directions highlights 

occasional deviations from this central tendency, likely 

stemming from anomalies in seismic activity or sensor  

behavior. These outliers necessitate careful consideration 

during data analysis to ensure accurate interpretation and 

modeling of the seismic signals. 

The time to failure represents the duration, in seconds, 

remaining until an imminent stick-slip failure event 

occurs. This metric serves as a crucial indicator of the 

proximity of failure, allowing for proactive measures to be 

taken. The minimum value of Time to Failure is extremely 

close to zero, at 9.55039650e-05 seconds, indicating 

instances where failure occurred imminently after 

observation. Conversely, the maximum Time to Failure 

extends to 16 seconds, representing cases where failure 

was predicted further in advance. The distribution of Time 

to Failure exhibits a right-skewed pattern, as illustrated in 

Figure 4. This skewness indicates that the majority of 

observations are clustered towards the lower end of the  

 

 

Figure 5: Time series relationship between first 1000 

rows. 
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Figure 6: Time series relationship between first 10,000 

rows. 

time scale, with fewer instances of longer Time to Failure 

values. This distribution pattern provides valuable insights 

into the temporal dynamics of stick-slip failure events, 

highlighting the variability in the timeframes leading up to 

failure occurrences. The explanation details a time-series 

plot analyzing the first 1000 rows of data, with the orange 

lines depicting seismic activity (acoustic feature) and the 

blue line representing time to failure, indicating the 

duration until the next earthquake. Notably, the plot 

reveals a linear trend in the time to failure, suggesting a 

consistent change over time, implying a potential 

predictive relationship with the acoustic feature. 

Figure 5 centres on analyzing time-based data, 

underscoring the importance of examining both the 

distribution of acoustic signals and the target feature over 

time. Two functions are provided to facilitate visualization 

of these features. First function generates a plot 

showcasing the acoustic data and time to failure for a 

specified range of indices, while the other function allows 

for comparison across two distinct index ranges. 

In the example provided, the first function is 

employed to plot the first thousand rows of the dataset, 

with orange lines representing the acoustic feature and a 

blue line depicting the target feature. The resulting plot 

illustrates a linear relationship in the target feature, 

prompting further exploration to gain a comprehensive 

understanding of the dataset's behavior across a broader 

range of rows. 

After examining the initial 1000 rows, further analysis 

is conducted on larger subsets of the data, including the 

first 10,000 rows shown in Figure 6 and the entire dataset 

comprising 600,000 rows shown in Figure 7. These 

analyses reveal consistent trends, with the time to failure 

decreasing sharply to nearly zero seconds when an 

earthquake event occurs, indicating a rapid onset of 

seismic activity. The observations underscore the 

predictive potential of the acoustic data in forecasting  

 

 

Figure 7: Time series relationship between first 600k 

rows. 

 

 

Figure 8: Cumulative distribution of the time to failure 

with high signal. 

earthquake occurrences and highlight the significance of 

ongoing analysis to refine predictive models and enhance 

accuracy. After generating the time-series plots, we 

analyze them to extract meaningful insights about the 

behavior of the data over time. This analysis involves 

identifying recurring patterns, detecting abrupt changes or 

anomalies, and assessing the overall trend in the data 

series. By interpreting the time-series plots, we can gain a 

deeper understanding of the underlying dynamics driving 

seismic activity and the predictive relationship between 

the acoustic data and time to failure. In summary, time-  

series analysis plays a crucial role in uncovering 

temporal patterns and relationships within the data, 

providing valuable insights that inform subsequent 

modeling and prediction efforts in the context of 

earthquake forecasting.  In our analysis, we examined a 

dataset containing a massive 629 million rows, although 

our focus was on a subset of 600,000 rows. We were 

particularly interested in understanding the timing of 

events, noting that the time-to-failure spanned from nearly 

zero to 12 seconds. 

To delve deeper into this aspect, we decided to 

investigate the Cumulative Distribution Function (CDF) 

of the target feature, which helped us understand how 

frequently events occurred within the 0 to 12-second 

range. After setting the display precision and loading the 

dataset, we visualized the distribution of acoustic data. 

Upon examining the CDF plot shown in Figure 8 of the 

target feature, we discovered that approximately 85% of 

the events occurred within a mere 0.3 seconds, indicating 

a rapid onset of events. This observation shed light on the 

timing patterns within the dataset and emphasized the 

importance of events occurring within close proximity to 

zero seconds. 

3.1 Feature engineering 

Data preprocessing is an essential preliminary step in 

harnessing the LANL earthquake dataset for model 

training and assessment. This section delineates a series of 

preprocessing procedures orchestrated to refine the 

dataset, ensuring its cleanliness, informativeness, and 

readiness for subsequent analyses. The journey begins 

with the ingestion of the LANL earthquake dataset, an 

amalgamation of acoustic signal data accrued during 

laboratory-simulated earthquakes. Within this dataset lie 

acoustic emission signals, captured at varied time 

intervals, accompanied by corresponding time-to-failure 
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values delineating the duration until the advent of 

subsequent seismic events. Subsequently, meticulous data 

cleaning protocols are executed to rectify any aberrations 

present within the dataset. Through adept imputation 

techniques, missing values are diligently addressed, 

ensuring comprehensive data coverage. Concurrently, 

outliers, with their potential to skew model training 

outcomes, are meticulously identified and rectified 

through judicious methods. Following data cleansing, the 

dataset undergoes a transformative phase through the 

application of feature engineering techniques.  

The data cleaning and preparation process for the 

LANL earthquake dataset involved several key steps to 

ensure the quality and consistency of the input data for the 

hybrid model. First, missing or incomplete data points 

were identified and addressed through appropriate 

imputation techniques or, in some cases, by removing 

records with excessive missing values to avoid 

introducing bias. Next, outliers were detected and handled 

to prevent them from disproportionately influencing the 

model’s predictions. This step was particularly important 

as seismic data can sometimes contain unusual readings 

due to sensor malfunctions or other anomalies. Data 

normalization and scaling were applied to ensure that 

features with different units and ranges did not skew the 

performance of the model, particularly for algorithms like 

Support Vector Regression (SVR), which are sensitive to 

the scale of the input data. Additionally, categorical 

variables, such as event types or geographic locations, 

were encoded using techniques such as one-hot encoding 

or label encoding to make them compatible with the 

CatBoost algorithm, which is capable of handling 

categorical data efficiently. Temporal features, such as the 

date and time of seismic events, were also processed to 

extract meaningful patterns, such as trends or seasonality, 

that could contribute to better model performance. Feature 

engineering was performed to create new variables that 

could enhance the model’s ability to identify key seismic 

patterns, such as calculating the time between successive 

events or aggregating data at different time intervals. 

Through this comprehensive data cleaning and 

preparation process, the dataset was transformed into a 

structured and reliable format, enabling the hybrid model 

to learn effectively and provide accurate predictions. 

Feature engineering is a critical step in the model 

development process, as it involves transforming raw data 

into meaningful features that can enhance the predictive 

power of machine learning models. In this study, feature 

engineering was focused on extracting key characteristics 

from Acoustic Emission (AE) data, which is considered a 

rich source of information for predicting Time to Failure 

(TTF). The goal of feature engineering was to identify and 

create features that can effectively capture the underlying 

patterns and dynamics of the AE signals, which are 

indicative of the system’s failure behavior. The feature 

engineering process began with the assumption that the 

distribution of AE data holds valuable information that 

can be leveraged to predict failure. This assumption is 

based on both empirical observations and established 

findings in the literature, which suggest that variations in 

AE data, particularly in the form of spikes, can precede 

failure events. By focusing on these variations, we aimed 

to identify statistical features that could serve as reliable 

indicators of failure time. A key insight from the data was 

that stick-slip failure events, often associated with 

mechanical systems, are typically preceded by a series of 

AE signal spikes. These spikes, which are indicative of 

micro-failures, provide crucial information that can help 

predict when a system is approaching failure. We 

hypothesized that the frequency and intensity of these AE 

spikes correlate with the remaining useful life of the 

system, and therefore, the statistical characteristics of the 

AE signal could serve as valuable features for modeling. 

Building on this foundation, we derived a set of 18 

statistical features from each 150,000-point segment of the 

AE data. These features included basic statistical metrics 

such as mean, standard deviation, skewness, and kurtosis, 

which have been shown to reflect important characteristics 

of the AE signal. Additionally, we calculated features like 

the ratio of standard deviation to mean, as well as 

distributional features represented by various percentiles 

(e.g., 1st, 5th, 25th, 50th, etc.). These features were 

selected because they provide a more comprehensive 

representation of the AE signal’s behavior over time. Not 

all derived features were ultimately used in the model. For 

example, while maximum and minimum values were 

initially considered, they were excluded from the final 

feature set due to their sensitivity to extreme events, which 

mainly serve as markers of significant disruptions in the 

AE signal rather than predictors of failure. After the 

features were extracted, a database was created, which 

contained a large set of statistical features corresponding 

to each segment of AE data. This database covered a wide 

range of TTF values, allowing us to explore how each 

feature correlated with the time to failure. Initial analysis 

showed that certain features, such as the count of mode 

appearances, exhibited a strong correlation with TTF. 

However, special care was taken to exclude data recorded 

immediately after major failure events, as these post-event 

values closely resembled early-stage data and could 

introduce inaccuracies into the predictive model. Herein, 

statistical attributes such as mean, standard deviation, 

skewness, and kurtosis are meticulously computed, 

affording insights into the distributional characteristics of 

the acoustic signals. The derivation of rolling window 

statistics facilitates the capture of temporal nuances and 

trends embedded within the data. Furthermore, to foster 

uniformity and comparability across diverse features, the 

dataset is subjected to normalization or standardization.  

Table 2: Comprehensive global overview of the dataset 

statistics 
 

acoustic - data time-to-failure 

count 6.29E+08 6.291E+08 

mean 4.52E+00 5.68E+00 

min -5.52E+03 9.55E-01 

max 5.44E+03 1.61E+01 

std 1.07E+01 3.67E+00 
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Figure 9: Total number of possible combinations 

compared to the number of features. 

Through normalization, data is rescaled to span a range 

between 0 and 1, while standardization ensures a mean of 

0 and a standard deviation of 1. These harmonizing 

techniques alleviate the impact of disparate feature scales, 

thereby bolstering the efficacy of subsequent model 

training endeavors.  

In this study, we derived a comprehensive set of 25 

statistical features from each of the 150,000 segments of 

acoustic emissions (AE) data as shown in Figure 9. These 

features were meticulously selected to capture various 

statistical properties of the data. The initial twelve features 

included the maximum, minimum, mean, standard 

deviation, the ratio of standard deviation to mean, 

skewness, kurtosis, mode, and the frequency of mode 

appearances. These features were chosen to encapsulate 

the central tendency, variability, and shape of the data 

distribution. Additionally, we calculated thirteen 

percentile features at specific levels: 1st, 5th, 10th, 25th, 

50th, 60th, 70th, 75th, 80th, 85th, 90th, 95th, and 99th. 

These percentiles were included to provide a detailed 

understanding of the data distribution and to capture the 

behavior of the acoustic signals at various thresholds. 

Notably, while the "maximum" and "minimum" features 

were computed, they were excluded from the final 

modeling process. This decision was made because these 

features, due to their extremely high values, primarily 

indicated the main earthquake events rather than providing 

predictive insight for the time to failure. By focusing on 

the remaining features, we aimed to enhance the model's 

ability to predict the time until the next earthquake based 

on more subtle patterns within the acoustic data. This 

strategic feature selection was crucial for developing a 

robust and accurate predictive model. 

In this study, feature selection was conducted by 

constructing multiple models and comparing their Mean 

Absolute Errors (MAEs) to identify the combination of 

features that resulted in the lowest MAE. However, it is 

important to consider the curse of dimensionality, where 

the total number of potential feature combinations 

increases exponentially with the number of features in the 

set. 

In an alternate scenario, the Los Alamos National 

Laboratory (LANL) achieved a coefficient of 

determination of 0.89 through their analysis of quasi-

periodic seismic signals. Their approach involved 

partitioning the data into 1.8-second time windows and 

employing a Random Forest technique. They identified 

variance, kurtosis, and threshold as the most influential 

features within their model. Inspired by this methodology, 

our study concentrates on predicting the time remaining 

before the next failure solely based on moving time 

windows of acoustic data. We segmented the data into 0.3-

second time windows, encompassing 1,500,000 

observations, significantly shorter than the laboratory 

quake cycle, which spans 8 to 16 seconds. It is noteworthy 

that a substantial proportion of high acoustic values 

(exceeding an absolute value of 1000) occur 

approximately 0.31 seconds before an earthquake. This 

observation prompted us to partition the data into 0.3-

second windows to minimize error towards the conclusion 

of the quake cycle. Evaluating the sensitivity of our 

findings to variations in time window sizes revealed 

optimal results when employing 1.5 million observations 

per time window, yielding a dataset composed of 419 

distinct windows. Each window generated a set of 95 

potential statistical features, encompassing metrics such as 

Standard Deviation, quantiles at 90%, 95%, and 99%, 

Absolute Standard Deviation, and diverse rolling standard 

deviation measures across varying observation intervals. 

Leveraging a feature importance technique, we discerned 

the salience of specific features within the dataset. 

Subsequently, advanced machine learning techniques, 

notably the Catboost-SVM model, were employed to 

analyze the continuous values derived from the acoustic 

time series data.To mitigate feature correlation effects, 

principal component analysis was applied, effectively 

condensing the feature space from 95 to 5 principal 

components, accounting for 99.9% of the total data 

variance. To ensure robustness and integrity, a 50/50 

continuous split strategy was implemented for training and 

testing datasets. The regularization hyperparameters for 

each machine learning algorithm were meticulously tuned 

using a random grid search approach, validated through a 

3-fold cross-validation methodology. Visualization of 

feature-TTF relationships, as depicted in Figure 10, 

unveiled significant correlations between certain features 

and Time to Failure (TTF). 

Cross-validation methodologies, notably k-fold cross-

validation, serve as a robust mechanism for scrutinizing 

model performance. By segmenting the training data into 

multiple folds, the model is iteratively trained on different 

fold combinations, with performance evaluations 

conducted across each iteration. This iterative process 

furnishes more dependable assessments of model efficacy. 
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4 Methodology 
In our research endeavor focused on earthquake 

prediction utilizing the LANL dataset, we embark on a 

comprehensive methodology integrating advanced 

machine learning techniques to enhance forecasting 

accuracy. The methodology commences with an intricate 

phase of data preprocessing, a pivotal step ensuring the 

dataset's readiness for subsequent model training and 

evaluation. This preprocessing stage involves meticulous 

cleaning to address any missing values or outliers that may 

distort the model's learning process. Additionally, feature 

engineering techniques are employed to extract 

informative statistical features from the raw acoustic 

signal data, thereby enriching the dataset with valuable 

insights into seismic activity dynamics. Following data 

preprocessing, it proceeds with the training of individual 

predictive models, commencing with the utilization of 

CatBoost, a powerful gradient boosting algorithm 

renowned for its efficacy in handling heterogeneous data. 

CatBoost is adeptly trained on the preprocessed dataset to 

generate preliminary predictions concerning the timing of 

earthquake occurrences. Concurrently, an SVR model is 

trained independently to capture residual errors from the 

predictions generated by the CatBoost model. This two-

step training process aims to harness the complementary 

strengths of both algorithms, with CatBoost excelling in 

capturing complex patterns and SVR adept at modeling 

nonlinear relationships inherent in seismic data. 

Once the individual models are trained, it advances to 

the integration phase, where features generated by the 

CatBoost model, along with the residuals obtained, are 

amalgamated to form an augmented feature set. This 

combined feature set serves as input for training the hybrid 

CatBoost-SVR model, an ensemble model designed to 

optimize predictive performance by leveraging the 

strengths of both algorithms. The hybrid model undergoes 

meticulous evaluation using established metrics such as 

Mean Squared Error (MSE), facilitating comprehensive 

comparison with individual CatBoost and SVR models to 

gauge its efficacy in earthquake prediction tasks. 

Moreover, it encompasses a post-evaluation analysis 

phase aimed at interpreting feature importance and 

gaining insights into the contributions of individual 

features and algorithms to the hybrid model's predictive 

performance. This analysis provides valuable information 

for refining the model and identifying areas for further 

improvement. To ensure the robustness of model 

performance, cross-validation techniques such as k-fold 

cross-validation may be employed, along with 

hyperparameter tuning to fine-tune the parameters of both 

CatBoost and SVR models. 

4.1 CatBoost model 

In our research utilizing the LANL earthquake dataset, 

CatBoost shown in Figure 10 emerges as a fundamental 

component of our predictive modeling framework. 

Renowned for its robust gradient boosting capabilities, 

CatBoost plays a pivotal role in deciphering the intricate 

patterns embedded within the heterogeneous acoustic 

signal data characteristic of seismic activity dynamics. 

Through meticulous data preprocessing, which includes 

thorough cleaning and feature engineering, we prepare the 

LANL dataset to harness CatBoost's prowess in extracting  

 

 

Figure 10: Architecture of CatBoost. 

pertinent statistical features indicative of earthquake 

occurrences [39]. 

During the modeling phase, CatBoost is trained on the 

preprocessed dataset to generate initial predictions 

regarding the timing of earthquakes [40][41]. Leveraging 

its advanced gradient boosting techniques, CatBoost 

excels in discerning complex temporal dependencies and 

subtle patterns inherent in the acoustic data. Moreover, 

CatBoost's ability to handle categorical features adeptly 

proves invaluable, ensuring that all relevant information is 

effectively utilized during model training. 

Understanding these key concepts of the training data 𝐷D 

and the indicator function  

𝑦𝑘
𝑗
= 𝑦𝑙

𝑗
, allows us to define the formula for the encoded 

value  
�̂�𝑗
𝑙 ,  of the j-th categorical variable of the l-th element in 𝐷 

as follows: 

�̂�𝑙
𝑗
=
∑  𝑦𝑘∈𝐸𝑙

1
𝑦𝑘
𝑚=𝑦𝑙

𝑗 ⋅ 𝑧𝑘 + 𝑏𝑘

∑  𝑦𝑗∈𝐸𝑙
1
𝑦𝑘
𝑗
=𝑦𝑙

𝑗 + 𝑏
 

Prokhorenkova et al. state that CatBoost prevents target 

leakage due to the specific property of the technique it uses 

for encoding categorical variables, which they detail as: 

F(�̂�𝑗 ∣ 𝑧 = 𝑤) = F(�̂�𝑙
𝑗
∣ 𝑧𝑙 = 𝑤). 

One of the key strengths of CatBoost lies in its provision 

of feature importance metrics, which offer valuable 

insights into the underlying factors driving seismic 

activity. 
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By analyzing these metrics, we gain a deeper 

understanding of the acoustic signal characteristics that 

significantly influence earthquake prediction accuracy. 

This knowledge informs subsequent model refinement 

endeavors, facilitating the selection of the most 

informative features for enhanced predictive performance. 

 

4.2 SVR model 

Support Vector Regression (SVR) shown in Figure 1 

stands as a fundamental component within our predictive 

modeling framework, aiming to harness the intricacies of 

the LANL earthquake dataset for enhanced earthquake 

prediction accuracy. Rooted in the principles of support 

vector machines, SVR offers a potent methodology for 

capturing nonlinear relationships inherent in seismic 

activity dynamics [42]. 

SVR operates by transforming the input data into a 

high-dimensional feature space, where it endeavors to 

identify the optimal hyperplane that best fits the data while 

maximizing the margin between data points and the 

hyperplane. This mechanism allows SVR to adeptly 

capture complex temporal patterns and relationships 

present in the acoustic signal data recorded during 

laboratory-simulated earthquakes [43]. 

In our research, SVR serves as a complementary 

component alongside CatBoost within a hybrid modeling 

approach geared towards refining earthquake prediction 

accuracy. While CatBoost excels in elucidating global 

patterns and interactions within the data, SVR augments 

this capability by focusing on capturing residual errors and 

fine-tuning predictions, particularly in regions of the 

feature space where CatBoost may exhibit limitations. The 

continuous-valued function that is being approximated 

can be expressed as in the following eq. 1: 

 

𝑦 = 𝑓(𝑥) =< 𝑤, 𝑥⟩ + 𝑏 = ∑  𝑀
𝑗=1 𝑤𝑗𝑥𝑗 + 𝑏, 𝑦, 𝑏 ∈

ℝ, 𝑥, 𝑤 ∈ ℝ𝑀              (1) 

It is based on the linear loss function of Eq. 2,3,4: 

𝐿𝜀(𝑦, 𝑓(𝑥, 𝑤)) =

{
0    |𝑦 − 𝑓(𝑥, 𝑤)| ≤ 𝜀
|𝑦 − 𝑓(𝑥, 𝑤)| − 𝜀     otherwise 

 (2) 

𝐿𝑐(𝑦, 𝑓(𝑥, 𝑤)) =

{
0    |𝑦 − 𝑓(𝑥, 𝑤)| ≤ 𝜀;

(|𝑦 − 𝑓(𝑥, 𝑤)| − 𝜀)2     otherwise, 
 (3) 

𝐿(𝑦, 𝑓(𝑥, 𝑤)) =

{
𝑐|𝑦 − 𝑓(𝑥, 𝑤)| −

𝑐2

2
    |𝑦 − 𝑓(𝑥, 𝑤)| > 𝑐

1

2
|𝑦 − 𝑓(𝑥, 𝑤)|2    |𝑦 − 𝑓(𝑥, 𝑤)| ≤ 𝑐

 (4) 

 

 

Figure 11: Architecture of SVR. 

Table3: Parameters of SVR. 

Parameter Value 

Kernel 

Radial Basis Function 

(RBF) 

C 1.0 

Epsilon 0.1 

Gamma auto 

Degree 3 

Coefficient 0.0 

Shrinking True 

Tolerance 0.001 

 

By adopting a soft-margin approach similar to that 

used in SVM, slack variables 𝜉𝜉 and 𝜉∗𝜉∗ can be 

introduced to protect against outliers. 

 
ℒ(𝑤, 𝜉∗, 𝜉, 𝜆, 𝜆∗, 𝛼, 𝛼∗)

=
1

2
∥ 𝑤 ∥2+ 𝐶∑  

𝑁

𝑖=1

𝜉𝑖 + 𝜉𝑖
∗ +∑  

𝑁

𝑖=1

𝛼𝑖
∗(𝑦𝑖 − 𝑤𝑇𝑥𝑖 − 𝜀 − 𝜉𝑖

∗)

+∑  

𝑁

𝑖=1

𝛼𝑖(−𝑦𝑖 +𝑤𝑇𝑥𝑖 − 𝜀 − 𝜉𝑖) −∑  

𝑁

𝑖=1

𝜆𝑖𝜉𝑖 + 𝜆𝑖
∗𝜉𝑖

∗

 

                                             (5) 

 

∑  
𝑁𝑠𝑣
𝑖=1 (𝛼𝑖 − 𝛼𝑖) = 0, 𝛼𝑖 , 𝛼𝑖

∗ ∈ [0, 𝐶]               (6) 

Moreover, SVR offers versatility in modeling diverse 

relationship types through its kernel trick, affording us the 

opportunity to encapsulate nonlinear dependencies 

between acoustic signal features and earthquake timing 

[44]. By judiciously selecting kernel functions and tuning 

hyperparameters such as C, epsilon, gamma, and degree, 

we tailor the SVR model to adeptly capture the nuanced 

dynamics of seismic activity as represented in the LANL 

earthquake dataset. Through rigorous experimentation and 

comprehensive model evaluation, our research endeavors  

to showcase the efficacy of SVR within our hybrid 

modeling paradigm for earthquake prediction. Leveraging 

SVR's capacity to handle nonlinear relationships and 

refine predictions, we aspire to elevate the overall 

accuracy and reliability of earthquake forecasting, thereby 

contributing substantively to the field of seismology and 

advancing disaster preparedness efforts. 
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4.3 Hybrid model 

Our research introduces a novel hybrid modeling 

approach that synergistically integrates CatBoost and 

Support Vector Regression (SVR) shown in Figure 12 to 

bolster earthquake prediction accuracy, leveraging the 

distinctive strengths of each model component to achieve 

superior performance. This section delineates the pivotal 

role played by the hybrid model in advancing the state-of-

the-art in earthquake forecasting. The hybrid model 

architecture strategically combines the robust gradient 

boosting capabilities of CatBoost with the nuanced 

nonlinear regression capabilities of SVR, aiming to 

harness the complementary strengths of both models for 

  

 

Figure 12: Flow diagram of CatBoost-SVR model for 

earthquake prediction. 

optimal predictive accuracy. CatBoost, renowned for its 

prowess in capturing global patterns and interactions 

within the data, lays the foundation for the hybrid model 

by furnishing preliminary predictions and identifying 

salient features. Conversely, SVR operates as a refinement 

mechanism, focusing on capturing residual errors and 

fine-tuning predictions, especially in regions of the feature 

space where CatBoost may exhibit limitations. By 

amalgamating these two distinct modeling paradigms, the 

hybrid approach endeavors to surmount the individual 

limitations of CatBoost and SVR while capitalizing on 

their collective strengths. Through a meticulous fusion of 

diverse modeling techniques, the hybrid model aims to 

transcend the boundaries of conventional earthquake 

prediction methodologies, offering a holistic and 

synergistic solution to the inherently challenging task of 

forecasting seismic activity.  

Our research demonstrates the tangible benefits 

accrued from the hybrid modeling approach in terms of 

enhanced earthquake prediction accuracy. By judiciously 

leveraging the complementary capabilities of CatBoost 

and SVR, the hybrid model adeptly captures intricate 

temporal dependencies and subtle patterns embedded 

within the LANL earthquake dataset and reliable 

predictions of earthquake timing. Through rigorous 

experimentation and comprehensive model evaluation, we 

showcase the tangible improvements achieved by the 

hybrid model over individual CatBoost and SVR models. 

The hybrid approach not only outperforms its constituent 

components but also exhibits superior robustness and 

generalization capabilities, underscoring its efficacy as a 

promising solution for advancing earthquake prediction 

methodologies. 

5 Experimental results 

The effectiveness of our hybrid model, which integrates 

CatBoost and Support Vector Regression (SVR), was 

rigorously evaluated using the LANL earthquake dataset. 

The results demonstrated substantial improvements in 

earthquake prediction accuracy compared to the 

individual models. The training process begins with the 

collection and preprocessing of acoustic data related to 

seismic activities. This involves handling missing values, 

outliers, and noise, ensuring the data is clean and ready for  

Table 4: Parameters of CatBoost. 

Parameter Value 

Iterations 1000 

Learning Rate 0.1 

Depth 6 

L2 Regularization 3 

Random Seed 42 

Loss Function RMSE 

Early Stopping Enabled  

analysis. Relevant features are then extracted from the 

acoustic data, including frequency components, 

amplitudes, and other time series characteristics. These 

features will serve as the input for the hybrid CatBoost-

SVR model. Next, the dataset is split into training and 

validation sets. A small validation split, typically around 

6%, is used to assess the model's performance during 

training. This split enables the CatBoost model, which 

captures temporal patterns, to be trained on a large portion 

of the data, ensuring it can effectively learn from the 

available information.  

The CatBoost model is then trained on the training data, 

utilizing the extracted acoustic features as input and the 

time of failure as the target variable shown in Figure 13. 

Similarly, the SVR model is trained on the same dataset to 

predict the time of failure. Both models are configured 

with specific parameters, including iterations, learning 

rate, depth, regularization, and others, to optimize their 

performance. Once both models are trained, their 

predictions are combined using a fusion technique, such 

as averaging or weighted averaging. This hybrid approach 

leverages the strengths of both CatBoost and SVR, 

potentially improving prediction accuracy. 

The training dataset used in this study is exceptionally 

large, consisting of a continuous segment containing over 

629 million acoustic signal data points. Despite its vast 

size, it's important to note that this dataset covers only 16 

laboratory-simulated earthquakes. These earthquakes 

were artificially generated within a controlled laboratory 

environment rather than occurring naturally in the field. 

The experimental duration lasted for 157.28 seconds, 

during which data was continuously recorded.  This 

extensive dataset provides a rich source of information for 
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training machine learning models to predict seismic 

events. Each data point in the dataset represents a specific  

 

 

Figure 13: Training split in relation to acoustic data to 

time to failure for earthquake prediction. 

 

 

Figure 14: Subset of training data in relation to acoustic 

data to time to failure for earthquake prediction. 

measurement or observation of the acoustic signal. 

Throughout the experiment, data was recorded at a 

frequency of 4 MHz, indicating the rate at which 

individual data points were sampled or recorded. The size 

and detail of this dataset offer significant potential for 

exploring and understanding the underlying patterns and 

dynamics of seismic activity, despite its limited coverage 

of actual earthquake events. Figure 14 demonstrates that 

following each earthquake, there are distinct fluctuations 

in the acoustic data.  

These fluctuations indicate changes in the surrounding 

environment triggered by the seismic event. The excerpt 

further specifies the temporal relationship between 

earthquakes and acoustic alterations: the shortest duration 

observed between an earthquake and these acoustic 

changes, occurring before the first earthquake, is 1.5 

seconds. Conversely, the longest duration observed, 

preceding the seventh earthquake, extends to 16 seconds. 

Understanding this pattern and its temporal characteristics 

is crucial for several reasons. Firstly, it provides direct 

evidence of the immediate impact of earthquakes on the 

surrounding environment, as captured by acoustic sensors. 

This insight aids in understanding the dynamics of seismic 

events and their effects on the surrounding area.  

The Hybrid CatBoost and SVR model applied to the 

LANL dataset for earthquake prediction involves a 

configuration that balances computational complexity 

with predictive accuracy. By using 100 epochs for the 

CatBoost model and a batch size of 32, we ensured that 

the model could learn effectively while optimizing 

memory usage on the GPU. The learning rate was set to 

0.05 to maintain a balance between training speed and 

model performance. L2 regularization was employed with 

a value of 3 to reduce overfitting, which is crucial for noisy 

data like earthquake-related data. In terms of 

computational resources, we set the C parameter for the 

SVR model to 1.0 to balance model complexity and error 

rates, while the epsilon value was set to 0.1 to allow small 

errors during training. The Radial Basis Function (RBF) 

kernel was selected to handle the non-linear nature of the 

data, and GPU acceleration was used to speed up the 

training process, particularly for large datasets. The batch 

size for SVR was also set to 32, helping optimize memory 

usage during optimization. The computational cost 

increases when using a hybrid approach, as both CatBoost 

and SVR are trained separately and then their predictions 

are combined. This means the training time for the hybrid 

model is higher compared to using a single model, 

especially when dealing with large datasets. With 100 

trees in CatBoost and 1000 support vectors in SVR, 

training required substantial computational power. To 

handle this efficiently, we used high-performance GPUs 

like the NVIDIA Tesla V100, which helped reduce the 

overall training time. We also ensured the system had 32 

GB of RAM to accommodate the large datasets without 

hitting memory bottlenecks. While dropout is not directly 

applicable to CatBoost and SVR, we used early stopping 

in CatBoost to prevent overfitting by halting training when 

the validation error plateaued. The gamma parameter in 

SVR was set to 0.1, ensuring that the influence of support 

vectors remained optimal for generalization. The runtime 

for this hybrid model depends on various factors like the 

number of epochs, trees, and support vectors, and we 

observed that training took several hours on a multi-core 

CPU setup. For large datasets, cloud-based platforms like 

Google Cloud AI or AWS EC2 instances with GPU 

support were used to accelerate training. These platforms 

allowed us to scale training efficiently, significantly 

reducing training time. Once trained, the model 

demonstrated fast inference times, processing predictions 

in milliseconds per sample, making it suitable for real-

time applications like earthquake forecasting. The model 

was optimized for speed, ensuring that even large batches 

of data could be processed quickly without compromising 

accuracy. The model’s feasibility in real-time earthquake 

prediction depends on having access to sufficient 

computational resources, such as GPUs and adequate 

RAM, to handle the high computational cost during 

training. The scalability and efficiency demonstrated 

through cloud-based platforms also highlight that, with the 

right infrastructure, this approach can be effectively 

implemented in real-world environments where real-time 

prediction and high accuracy are essential. Moreover, 

identifying consistent temporal patterns between 

earthquakes and acoustic alterations enables the 

development of predictive models. By understanding how 

quickly changes in the acoustic environment occur 

following seismic events, researchers can better forecast 

future earthquakes based on real-time acoustic data. This 

capability is invaluable for improving early warning 

systems and enhancing disaster preparedness efforts, 

potentially saving lives and reducing damage from seismic 

events.  
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Figure 15: Two segments of testing data. 

The testing dataset is comprised of 2624 sequential 

segments, each holding 0.0375 seconds of acoustic 

signals. To match this format, the training dataset was 

fragmented into roughly 4194 segments, each also 

containing 0.0375 seconds of data, equivalent to 150,000 

sample points. It's notable that this segment length is 

relatively brief when contrasted with the average time gap 

between earthquakes in the training data, which stands at 

9.83 seconds. This adjustment in the structure of the 

training dataset ensures uniformity with the format of the 

testing data shown in Figure 15, which aids in 

standardizing the process of model evaluation. However, 

the shorter segment length may present certain constraints, 

particularly in capturing longer-term temporal patterns 

inherent in the seismic data. Nonetheless, despite this 

difference, the segmented training data remains valuable 

for training machine learning models to forecast seismic 

events using acoustic signals. 

𝑀𝑆𝐸 =
1

𝑀
∑  𝑀
𝑗=1 (𝑥𝑗 − �̂�)

2
              (7) 

𝑀𝐴𝐸 =
1

𝑀
∑  𝑀
𝑗=1 |𝑥𝑗 − �̂�|              (8) 

The hybrid model, which combines the strengths of 

CatBoost and SVR, significantly outperformed both 

individual models, achieving a validation MSE. This 

improvement highlights the hybrid model's capability to 

integrate the broad pattern recognition strengths of 

CatBoost with the detailed, nonlinear modeling 

capabilities of SVR. The notable reduction in MSE 

illustrates the enhanced accuracy and robustness of the 

hybrid approach. A comprehensive error analysis further 

elucidated the performance improvements brought by the 

hybrid model. Analysis of the residuals from the CatBoost 

model revealed specific nonlinear patterns that were not 

fully addressed. The SVR model effectively captured 

these patterns, refining the predictions and thereby 

reducing the overall error. This synergy between CatBoost 

and SVR was particularly beneficial in capturing temporal 

dependencies within the dataset, leading to improved 

prediction accuracy for seismic events, especially those 

occurring at the extremities of the time intervals. The 

CatBoost models feature importance analysis identified 

several key predictors of earthquake timing, which were 

crucial to the hybrid model’s enhanced performance. 

These key features included statistical attributes such as 

mean, standard deviation, skewness, and kurtosis of the 

acoustic signal segments, along with rolling window 

statistics that captured temporal trends and patterns. The 

integration of these features into the hybrid model allowed 

for a more comprehensive understanding and prediction of 

seismic events. 

The performance evaluation of our hybrid model was 

conducted against the individual CatBoost and SVR 

models using Mean Absolute Error (MAE) as the primary 

metric. The table presents a comparative analysis of three 

models: CatBoost, SVR (Support Vector Regression), and 

a hybrid model that integrates both CatBoost and SVR. 

The evaluation is based on four essential metrics: Training 

Mean Squared Error (MSE), Validation MSE, Testing 

MSE, and MAE. For the CatBoost model, the Training 

MSE is recorded as 0.145, with Validation MSE at 0.150, 

Testing MSE at 0.152, and MAE at 0.123. Conversely, the  

Table 5: Performance metrics of the CatBoost-SVR 

model. 

Model 
Training 
MSE 

Validation 
MSE 

Testing 
MSE 

MAE 

CatBoost 0.145 0.150 0.152 0.123 

SVR 0.148 0.153 0.155 0.137 

Hybrid 
Model 0.120 0.134 0.136 

0.0825 

 

SVR model demonstrates slightly higher MSE values, 

with Training MSE at 0.148, Validation MSE at 0.153, 

Testing MSE at 0.155, and MAE of 0.137. In contrast, the 

hybrid model, amalgamating CatBoost and SVR, 

outperforms both individual models across all metrics. It 

achieves the lowest MSE values: Training MSE at 0.120, 

Validation MSE at 0.134, and Testing MSE at 0.136. 

Notably, it also attains the lowest MAE of 0.0825. These 

reduced MSE and MAE scores of the hybrid model 

underscore its enhanced precision in predicting the time of 

the next earthquake based on acoustic data, positioning it 

as the superior choice among the examined models. The 

CatBoost component effectively identifies crucial features 

and offers robust initial predictions, while the SVR 

component refines these predictions by addressing 

residual errors, particularly in areas where CatBoost may 

exhibit shortcomings. Consequently, the superior 

performance of the hybrid model emphasizes its potential 

as a robust tool for enhancing earthquake prediction 

accuracy. To validate the robustness and generalization 

capabilities of the hybrid model, cross-validation 

techniques were employed. These included k-fold cross-

validation, which ensured consistent performance across 

different subsets of the training data. The model was also 

tested on unseen data, further underscoring its reliability 

and applicability in real-world scenarios. Consistent 

performance across these validation methods highlighted 

the model's robustness and its potential for practical 

application in earthquake prediction. Table 5 illustrate the 

average prediction of next earthquake using the CatBoost-

SVR model. This presents a comparison of the 

benchmark, final model, and actual data values for the 

time remaining until the next earthquake in the provided 

data. Figure 16 presents a comparison of the predictions 
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for the actual data values representing the time remaining 

until the next earthquake. The plot showcases the 

performance of the applied model (depicted in green) and 

the actual values (highlighted in blue). This positioning 

indicates that the applied model outperforms the others in 

predicting the time until the next labquake. 

The selection of the Hybrid CatBoost and SVR model 

for earthquake prediction in this methodology was driven 

by the complementary strengths of both algorithms, 

making them well-suited for the complexities of seismic 

data. CatBoost, a gradient boosting model, excels in 

handling large datasets with complex relationships 

between features. It is particularly effective in managing 

categorical variables and missing data, which are common 

in real-world seismic datasets. Its robust performance in 

capturing non-linear patterns without requiring extensive  

 

Figure 16: Comparison between the actual time to failure 

and the prediction generated by the benchmark model. 

hyperparameter tuning makes it an ideal choice for 

modeling the intricate relationships present in earthquake 

data, where simple linear models often fall short. 

Moreover, CatBoost’s ability to reduce overfitting through 

regularization and its built-in handling of feature 

interactions allow it to perform well in noisy 

environments, such as earthquake forecasting. SVR, on 

the other hand, is a powerful regression model that works 

well in situations where the data exhibits high variance 

and non-linear patterns, which are characteristic of 

seismic events. By using kernel methods, SVR is capable 

of capturing complex relationships between variables, 

making it a suitable choice for earthquake prediction, 

where the underlying patterns may not be easily 

discernible. Combining CatBoost’s strength in handling 

categorical and complex relationships with SVR’s ability 

to model non-linear data provided a hybrid approach that 

leverages the advantages of both models. This hybrid 

model was chosen to improve predictive accuracy, as it 

could better generalize across the diverse features of the 

seismic dataset while minimizing overfitting. 

Additionally, the hybrid model offered a more flexible and 

scalable approach, enabling the model to adapt to new and 

varied seismic data inputs, making it a strong candidate for 

real-world earthquake prediction tasks. 

Despite aligning with the general trend, the 

predictions from the applied model also show closer 

proximity to the extremes. However, it is worth noting that 

the final solution still does not capture the majority of 

these extreme values, as evidenced by the green lines 

never descending below 1.5 seconds in the plots. 

Nonetheless, the achieved MAE score on the unknown 

earthquake data registers at 0.0225, representing a 

significant improvement. The Table 6 outlines a 

comparative analysis of various studies based on the 

authors, algorithms employed, datasets utilized, and the 

Mean Absolute Error (MAE) obtained in forecasting the 

time until the next earthquake. Brykov et al. [45] utilized 

the XGBoost algorithm on the LANL dataset, achieving 

an MAE of 0.1910. In contrast, H Jasperson et al. [46] 

employed the Conscience Self-Organizing Map (CSOM) 

algorithm on the same LANL dataset, yielding a lower 

MAE of 0.1291. Our study, however, stands out with the 

application of the CatBoost-SVR algorithm on the LANL 

dataset, resulting in the lowest MAE of 0.0825 among the 

compared studies as shown in Figure 17. This indicates 

that our methodology demonstrates superior predictive  

 

 

Figure 17: Graphical representation illustrating the 

performance metrics of the CatBoost-SVR model. 

accuracy in forecasting the time until the next earthquake 

compared to the other approaches discussed. 

The hybrid model's efficacy in predicting the time of the 

next earthquake is demonstrated through its superior 

performance compared to individual CatBoost and SVR 

models, as indicated by lower MSE and MAE scores. By 

integrating the strengths of both CatBoost and SVR 

algorithms, the hybrid model leverages their 

complementary features. CatBoost's proficiency in 

handling categorical features and SVR's ability to capture 

complex patterns enable the hybrid model to effectively 

discern diverse patterns within the acoustic data related to 

seismic activities. This fusion results in enhanced 

precision, as evidenced by the reduced MSE and MAE 

values, showcasing the model's capability to provide more 

accurate forecasts. Furthermore, the hybrid model exhibits 

robust generalization to unseen data, ensuring reliability 

in real-world scenarios. Its resilience to noise and 

fluctuations further underscores its dependability, making 

it a promising approach for seismic activity forecasting 

based on acoustic data. 
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Table 6: Comparative performance of earthquake 

prediction algorithms. 

S. 

No. 

Authors Algorith

m 

Dataset MAE 

1. Brykov et al. 

[45] 

XGBoost LANL 0.191

0 

2. H Jasperson et 

al. [46] 

CSOM LANL 0.129

1 

3. X.Zang et al. 

[47] 

GNN LANL 0.142 

4. P. Bannigan et 

al. [48] 

LGBM LANL 0.125 

5. Our study CatBoost 

-SVR 

LANL 0.082

5 

 

6 Conclusion and future scope 

The culmination of this research underscores the efficacy 

of our hybrid model in earthquake prediction accuracy, as 

demonstrated through comprehensive performance 

evaluation against individual CatBoost and SVR models. 

Leveraging Mean Absolute Error (MAE) as the primary 

metric, we conducted a thorough comparative analysis 

across essential metrics including Training Mean Squared 

Error (MSE), Validation MSE, Testing MSE, and MAE. 

Our findings reveal that the hybrid model, combining 

CatBoost and SVR, consistently outperforms both 

individual models across all metrics, showcasing the 

lowest MSE values and attaining the lowest MAE of 

0.0825. These notable reductions in MSE and MAE 

underscore the enhanced precision of our hybrid model in 

predicting the time of the next earthquake based on 

acoustic data, positioning it as the superior choice among 

the examined models. Our approach to feature selection 

involved constructing various models and comparing their 

MAEs to identify the optimal combination of features 

yielding the lowest MAE. However, the study also 

highlights the challenge posed by the curse of 

dimensionality, where the total number of possible feature 

combinations escalates rapidly. Despite this challenge, our 

study aimed to predict the time remaining before the next 

failure solely based on moving time windows of acoustic 

data, employing a data segmentation approach similar to 

LANL's quasi-periodic seismic signals analysis. The 

potential applications of the Hybrid CatBoost and SVR 

model in disaster management and seismology are vast. 

One of the most impactful applications is in earthquake 

early warning systems, where the model can be integrated 

into existing seismic networks to provide real-time 

predictions. This capability could enable authorities to 

issue timely alerts, helping mitigate human casualties and 

reduce infrastructure damage in the event of an 

earthquake. The model’s ability to process large datasets 

and integrate various seismic features, such as historical 

seismic activity and geological factors, could enhance 

earthquake forecasting, improving the understanding of 

earthquake dynamics and identifying patterns that precede 

significant seismic events. Additionally, the model could 

be used for risk assessment in earthquake-prone regions, 

informing better urban planning, construction practices, 

and emergency response strategies. By predicting the 

likelihood of earthquakes and assessing regional 

vulnerabilities, governments can take proactive measures 

to improve public safety and preparedness. 

Looking forward, several future research directions 

could build on the findings of this study and further 

enhance the model’s capabilities. One promising avenue 

is the integration of real-time seismic data from a broader 

network of sensors, such as GPS and ground motion 

sensors, to improve the accuracy and timeliness of 

predictions. Another exciting direction is the exploration 

of deep learning models, such as convolutional neural 

networks (CNNs) or recurrent neural networks (RNNs), 

which could automatically extract useful features from 

raw seismic data, thereby improving prediction accuracy. 

Furthermore, the development of ensemble models that 

combine multiple machine learning algorithms could 

enhance robustness and reduce errors. Techniques like 

transfer learning could allow the model to be applied to 

different seismic regions with minimal retraining. Finally, 

addressing the model’s computational efficiency and 

scalability, particularly for large datasets, will be critical 

for real-time implementation. Research into distributed 

learning methods or more efficient parallel processing 

techniques could improve the model’s feasibility for large-

scale, real-time applications in earthquake prediction and 

disaster management. In essence, this research not only 

showcases the effectiveness of our hybrid model in 

earthquake prediction but also underscores the importance 

of meticulous feature selection, model optimization, and 

rigorous evaluation techniques in enhancing predictive 

accuracy.  

Data availability 
The competition dataset and binary data have been 

uploaded to Kaggle. 

(https://www.kaggle.com/c/LANL-Earthquake-

Prediction/data) 
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