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Transformer failures are currently a major issue due to the widespread use of electronic transformers in 

smart grid monitoring systems. To stimulate regular upkeep practices, and raise grid reliability and 

efficiency, this work developed a sophisticated fault diagnosis approach for electronic current 

transformers (ECTs) utilizing analytics from big data. For efficient defect diagnosis in the ECT, the 

dynamic eagle perching optimized long-short term memory (DEPO-LSTM) technique is proposed. Fault 

sample datasets for ECTs are collected from big data to train the proposed approach. Min-max 

normalization is used in data preprocessing to remove noisy or redundant information. From the 

normalized data, important features are extracted using principal component analysis (PCA). Next, we 

apply the proposed technique in the framework for fault diagnosis, and the DEPO technique is used to 

improve the parameters of the LSTM. The simulations are carried out using the Matlab platform to assess 

the proposed DEPO-LSTM technique for ECT defect diagnostics. Based on the results, we deduced that 

our proposed approach outperformed other approaches presently in use for diagnosing ECT faults. The 

DEPO-LSTM algorithm is evaluated in terms of precision (97.15%), recall (97.42%), accuracy (96.23%), 

and F1-score (96.36%). 

Povzetek: Opisana je platforma za spletno spremljanje stanja tokovnih transformatorjev (ECT) na podlagi 

algoritmov velikih podatkov. Predlagana metoda DEPO-LSTM izboljšuje napovedi in diagnosticiranje 

napak.

1 Introduction 

Electric energy is the primary energy source in modern 

civilization, and as the social economy has grown, it has 

become increasingly associated with people's daily lives, 

along with manufacturing and construction [1]. Modern 

power systems must operate with the ability to generate 

and supply power reliably and consistently while 

maintaining the quality of the authorized power supply. A 

crucial component of core technology in the power system 

is the transformer. When a failure happens, people's 

productivity and quality of life are severely impacted and 

wasted [2]. 

The most expensive component of equipment in every 

power sector utility, the power transformer indirectly 

brightens every environment and provides all forms of 

real-world entertainment. Systems for wireless monitoring 

are generally selected for checking different industrial 

metrics from different places. For actual creation, the 

majority of organizations require monitoring various 

parameters, none of which can be physically observed [3]. 

An essential component of electrical distribution networks 

is the transformer, which is positioned at distinct locations 

across the network at varied voltage and power levels. The 

distribution transformer's maintenance and protection are 

crucial. Technicians constantly monitor the transformer 

environments, and all identified issues are accurately 

corrected. Distribution transformers can be used for a very 

long period if they are properly and continuously checked. 

In electrical power systems, economic considerations are 

crucial, and cost reduction is primarily associated with the 

production of dependable and high-quality power [4]. 

Distribution transformers are among the most costly and 

essential parts of electricity distribution 

networks.Distribution service transformer problems can be 

caused by a variety of factors, such as operating stresses, 

oil leaks, thermal overload stress, harmonics, and irregular 

loading.Transformers may experience a reduction in 

lifespan or failure if one or more of these situations 

persistently exceed the limitations of both their layout and 

operation.Strategies are proposed and outcomes are 

evaluated in the online condition monitoring.A distribution 

transformer's status was assessed using various standards, 

including transformer loading, humming sound, 

temperature, and oil level [5].The findings displayed were 

based on an extremely short time frame, making it difficult 

to determine the transformer's exact status. The wireless 

monitoring system evaluates distribution transformers' 

conditions in real time. Every 90 seconds, the system 
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stores data on a server, ensuring excellent dependability 

and rapid findings [6]. 

Monitoring transmission and distribution equipment 

includes measuring fundamental characteristics that affect 

the asset's ability to operate as designed. In traditional 

monitoring systems, sensors are integrated and data is 

collected to identify indicators of failure, alert users to 

anomalous level quantities, create trend curves, and 

correlate occurrences with servicing employees [7]. One 

significant advancement within the electrical power sector 

is the ability to remotely monitor transformers, which is 

intendedto ensure that these key substation assets operate 

both firmly and reliably. The use of online transformer 

monitoring will help the power utilities with the reliability 

and efficiency of the operation. They also reduce the length 

of the utilization cycle of transformers, help to detect faults 

earlier, and prevent their occurrence as well. It reduces 

communication costs caused by the need for on-site 

employees, thus also decreasing transportation costs [8]. 

The DEPO-LSTM technique is introduced to enhance the 

predictive accuracy and real-time fault detection in the 

ECT. 

This study’s remaining sections are as follows: Section 2: 

Related works; Section 3: Methods; Section 4: Results; 

and Section 5: Conclusion 

2 Related works  
Table 1 shown as summary of work below; 

 

Table 1: Summary of related work 

Reference Methods/Algorithm Merits Limitations 

[10] This research presents a 

unique integration of an 

Internet of Things (IoT) 

architecture with deep 

learning against cyber 

attacks for online monitoring 

of the power transformer 

status. 

 

Compared to earlier approaches 

in the literature, the new deep 

1D-CNN is more accurate with 

94.36 % in the ordinary 

situation and 92.58 % when 

considering cyber attacks, with 

±5% uncertainty. 

 

This paper is challenging the 

diagnosis of the transformer 

condition. 

 

[11] EL-CSO-NN algorithm is 

proposed in this paper 

Their study also supported the 

effectiveness of the proposed 

EL-CSO-NN model, which was 

useful in predicting transformer 

problems, improving its 

management, and reducing the 

impact of such problems. 

The DGA fault samples 

gathered via the online DGA 

monitor are typically 

restricted, resulting to the 

inadaptability of most AI 

algorithms due to their demand 

for huge training samples. 

 

[12] proposed the use of an 

enhanced density clustering 

algorithm coupled with an 

association algorithm 

Based on the results of the tests, 

it was possible to conclude that 

the use of the proposed approach 

could improve the efficiency of 

searching for sources of 

abnormally measured data in the 

online monitoring of 

transformers. 

anomaly detection methods for 

non-smooth characteristic- 

state quantities are required 

An anomaly detection 

approach for non-smooth 

characteristic state values is 

needed. 

 

[13] Power Transformer-

Transformer Neural Network 

For power transformer state 

control transformer and thermal 

fault detection, the PT-TNNet 

The proposed method is not 

beneficial for systems that 

require a speedy reaction. 
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(PT-TNNet) model based on 

data fusion is proposed 

method integrated data fusion 

with transformer neural network 

 

[14] Boosting learning and 

random forest methods was 

proposed in the research 

As a result, the one-click 

sequencing system worked well 

and reduced the time spent on 

each sequential action while 

increasing its effectiveness. 

less accurate condi- 

tional monitoring element 

less accuracy conditional 

monitoring element 

[15] ML techniques to analyze 

DGA data 

The proposed model combines 

the 

design of four ML classi ers 

and enhances diagnosis 

accuracy and trust between the 

transformer 

manufacturer and power utility. 

The suggested model integrates 

the design of four ML classifiers 

and improves the diagnosis 

accuracy and confidence 

between the transformer maker 

and power utility. 

 

On the other hand, 

understanding DGA samples 

isn't good enough for detecting 

early faults, and it mostly 

depends on how good the test 

engineers are at their jobs. 

 

[16] multimodal mutual neural 

network was presented in the 

paper 

The results show that the 

proposed method is better and 

more efficient than the 

comparison ways because it is 

more accurate and takes less 

time to fault diagnosis of 

the power transformer. 

 

The data from the power 

transformer will get mixed up 

with data from other modes, 

which will cause sensor 

devices to fail. 

 

[17] evaluation model based on 

CNN and GCA were 

introduced 

According to the study, their 

proposed model was more 

accurate, as well as provided 

higher identification results 

lacking of training samples 

[18] k-means clustering Proposed method to identify 

transformer condition anomalies 

using transformer power, 

current, and voltage data in their 

study 

the transformer’s current state 

in real time using the electrical 

data, making it beneficial to 

engineering applications 

The investigation demonstrated that the proposed 

approach could determine the transformer’s current state 

in real time using the electrical data, making it beneficial 

to engineering applications. 

3 Methods 

ECT fault sample dataset was first gathered. The data 

collected is preprocessed using min-max normalization 

technique to normalize it at this point. The next step is the 

PCA approach that helps to select the important features 

from the data. For the purpose of enhancing the ability of 
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the ECT regarding the fault detection and prediction in 

real-time, the DEPOLSTM approach is recommended. 

 

 

3.1 Circuit for detecting electronic current 

transformers 

The fault categories and the structural features of ECTs 

were used to create a detecting circuit for ECT defect 

diagnostics. This allowed gathering different kinds of 

defect samples from ECTs efficiently. A single signal can 

detect certain ECT defects, while other faults need to be 

detected by several signals. The voltage and current 

characteristics on both the secondary and the primary sides 

of the transformer can be identified by placing several key 

detecting points. This will facilitate to obtain the general 

characteristics of the ECT and determine whether the 

transformer is operating as designed. The ECT's detection 

circuit's principal structure is displayed in Figure 1. 

The ECT is represented by CT in Figure 1. The current in 

the 𝐶, 𝐵, 𝐴 and phases is represented by  𝐼𝐶 ,  𝐼𝐵 , 𝑎𝑛𝑑 𝐼𝐴. 

The calculated current and voltage of metering units one 

and two are denoted by the current 𝐼𝑎 , 𝐼𝑐, and voltage 

𝑉𝑎 , 𝑉𝑐.𝐶𝑇1 𝑎𝑛𝑑 𝐶𝑇2have corresponding secondary side 

voltages of 𝑣𝑎 , 𝑎𝑛𝑑 𝑣𝑐. The impedance shift is measured 

when the ECT is short-circuited by applying a 1 𝐾𝐻𝑧 

signal and accumulating several signals. When a 

secondary short circuit occurs in CT, the defect is 

identified by many observed characteristics, and the 

network impedance changes based on the load. 

 

 

Figure 1: Principal diagram for ECT fault detection 

3.2 Data collection 

A single signal can identify defects on the primary side, 

while numerous signals are sometimes needed to identify 

defects on the secondary side. Seven critical parameters 

were collected as sample data for the primary and 

secondary ECT defects using the evaluation environment 

platforms.100 groups of data in ordinary operating mode 

and 100 groups of data in each of the 7 failure 

circumstances were gathered. After that, 20% of the 

dataset was used for testing, and 80% of the samples in 

each category were chosen at random for training. 

3.3 Min-Max normalization 

Min-max normalization is a technique for normalization 

that involves linearly transforming the initial data to 

provide value comparisons that are balanced between the 

before and after process data. This approach could utilize 

the subsequent Equation (1). 

𝑊𝑛𝑒𝑤 =
𝑊−min (𝑊)

max(𝑊)−min (𝑊)
                                        (1) 

𝑊- Old value 

𝑊𝑛𝑒𝑤- The new value derived from normalized outcomes 

min(𝑊)- The dataset's minimum value  

max(𝑊)- The dataset's maximum value 

3.4 PCA 

Principal Component Analysis is a data processing 

technique for unlabeled extraction of features. Features 

will be displayed on a newly created, smaller feature space. 

The features with the most essential data are the new 

features that were discovered from the PCA extraction 

findings. By optimizing data variance, the primary 

constituents are acquired. Data visualization is possible in 

a low-dimensional principal component space since the 

number of additional dimensions (features) is less than the 

number of initial attributes. Calculate the mean based on 

each attribute as follows,  

�̅�𝑖 =
1

𝑚
∑ 𝑤𝑗𝑖 ,   𝑗 = 1,2, … . . , 𝑚    𝑖 = 1,2, … . . , 𝑚𝑚

𝑗=1                                                            

(2) 

Where,  

𝑛 - Number of features,  

𝑤𝑗𝑖  - Data 𝑗-sample with 𝑖-feature,  

𝑚 - Number data of sample, and  

�̅�𝑖 - Data 𝑖-feature. 

Calculate Φ with the following Equation,  

Φ = [Φ𝑗𝑖] = [𝑤𝑗𝑖 − �̅�𝑖]                                      (3) 

Φ - Matrix of size 𝑚 × 𝑛. 
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Calculate the covariance matrix using the following 

Equation, 

𝐷 =
1

𝑚−1
Φ𝑆Φ                                                     (4) 

𝐷 - Matrix of size 𝑛 × 𝑛. 

Calculate the eigenvalues of the 𝐷 matrix by calculating 

the subsequent Equation. 

𝐷𝑒𝑡 (𝜆𝐽 − 𝐷) = 0                                              (5) 

𝐷 - Covariance matrix, and  

𝐽 - Identity matrix. 

After that, calculate the subsequent equation to determine 

the eigenvectors 𝑤 that correspond to the eigenvalues 𝜆, 

(𝜆. 𝐽 − 𝐷)𝑤 = 0                                                  (6) 

Form matrix 𝑤′ using the associated eigenvectors after 

sorting the eigenvectors according to the eigenvalues, 

starting with the greatest. Calculate the 

principal components as follows. 

𝑃𝐶 = Φ𝑤′                                                            (7) 

3.5 Dynamic eagle perching optimized long-

short term memory (Depo-LSTM) 

The proposed DEPO-LSTM approach combines DEPO 

and LSTM networks to dynamically modify the 

parameters of the LSTM method. DEPO iteratively 

modifies the LSTM parameters to enhance the model's 

prediction and detecting capabilities in ECT. 

3.5.1 Dynamic eagle perching optimization 

(DEPO) 

The inspiration for the DEPO algorithm will be covered 

first in the following section. Then the exploration of the 

algorithm and mathematical formulation is provided. 

Inspiration: A large number of predatory birds that are 

members of the Accipitridae family are commonly referred 

to as eagles. Their average length is 

between30 −  31 𝑖𝑛𝑐ℎ𝑒𝑠, and their wingspan is 

between6 −  7 𝑓𝑒𝑒𝑡. They typically reside in the upper 

sky, and even during the reproductive season, the female 

and male engage in rather unusual courtship behavior. 

They fly at a great height. There, while doing an aerobic 

motion, they locked their clays together and fell, breaking 

apart just before they reached the earth. The five stages of 

a female's life cycle are hatching, fledgling, juvenile phase, 

and maturity. Typically, a female will hatch two to four 

eggs. 

They are members of a predatory class. Their typical food 

source consists of fish, aquatic organisms, and small 

animals. They hunt distinctively; they fly through the sky 

to a potentially high point, where they then look for their 

prey. After tracking it, they dive down to grab their prey. 

As previously stated, they live at higher altitudes, typically 

on top of cliffs, mountains, and long trees. They use a 

technique that was provided to them by nature to discover 

the highest place to go. Initially, they simply drop from a 

great height, look at the landscape, examine some 

locations, and identify which point is the highest position 

among those samples. As they get closer, they sample a 

few more points and make their opinions about the top spot 

even more apparent. They modify this technique 

iteratively to find the ideal place to reside. 

To find the BS, we will take advantage of this 

characteristic and use it in optimization. We will create a 

group of eagles in the algorithm to search for the best 

height to stay. Each of them will search for the ideal 

solution on their own. Subsequently, the method will select 

one BS from every eagle and contrast it with the already 

gathered BS. Iteratively, this procedure will continue until 

the method finds its BS, at which point no more 

advancements can be made. 

3.5.2  DEPO-LSTM model 

DEPO-LSTM is an effective approach to continuous 

online assessment of ECT conditions. The ECT modern 

technologies are incorporated into this system to enhance 

the reliability and precision of continuous real-time 

monitoring of ECT. Employing the concept of LSTM 

networks, DEPO-LSTM was able to process and forecast 

the sequence of the inputs. This suggests that the system 

can perform an effective evaluation of previous 

information in the context of ECT monitoring and at the 

same time, is capable of changing its predictions based on 

new information. The dynamic eagle perching 

demonstrates the capacity and percentage precision of the 

way to identify deviations or irregularities in ECT 

performance. 

Mathematical formulation: The perching behavior of an 

eagle is represented by the EPO algorithm. Similar to 

eagle, this technique also determines the solution's highest 

point or BS. The minima and maxima of a function have a 

special relationship in optimization; for example, for 

function 𝑒, min(𝑒) = max (−𝑒).The algorithm that works 

for all of its residents is defined by nature. Eagle has a very 

basic but distinctive method of covering ground. An eagle 

can reach its highest position in the sky by repeatedly 

looking around and repeating a similar process while it is 

flying at a high altitude. It does this by traveling toward the 

highest position and sampling a few locations along the 

way. The eagle explores the entire area at first by flying 

overhead, then it repeats this process multiple times until 
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it gets close to the ground, which is known as exploitation. 

For stochastic optimization methods, the transition from E-

E is crucial. In the EPO algorithm, this is expressed 

mathematically as below. 

𝑘𝑠𝑐𝑎𝑙𝑒 = 𝑘𝑠𝑐𝑎𝑙𝑒 ∗ 𝑒𝑡𝑎                                          (8) 

The scaling variable 𝑘𝑠𝑐𝑎𝑙𝑒  is anticipated to decrease 

recurrently as it moves from E-E. Meanwhile, 𝑒𝑡𝑎 is the 

shrinking constant  0 < 𝑒𝑡𝑎 < 1 can be derived using the 

final value resolution as a basis. 

𝑒𝑡𝑎 = (
𝑟𝑒𝑠

𝑘𝑠𝑐𝑎𝑙𝑒
)
1/𝑠𝑡

                                                (9) 

Where 0 < 𝑟𝑒𝑠 < 𝑘𝑠𝑐𝑎𝑙𝑒  is limited to a range of 0 to 1, 

𝑠𝑡represents the maximum number of iterations, and 𝑟𝑒𝑠 

represents a resolution range. If 𝑒𝑡𝑎 > 1, then the region 

of exploration will grow with every run and we will not be 

able to fulfill our intended goal of E-E. To attain optimality 

more quickly, we shall utilize a cluster of eagles. To make 

the process simpler, these will collectively search the SS. 

𝐾 =

[
 
 
 
 
 
 
𝐾1,1 𝐾1,2 𝐾1,3 ⋯ 𝐾1,𝑛

𝐾2,1 𝐾2,2 𝐾2,3 ⋯ 𝐾2,𝑛

𝐾3,1

𝐾4,1

⋮
𝐾𝑚,1

𝐾3,2

𝐾4,2

⋮
𝐾𝑚,2

𝐾3,3 ⋯ 𝐾3,𝑛

𝐾4,3 ⋯ 𝐾4,𝑛

⋮
𝐾𝑚,3

⋮
⋯

⋮
𝐾𝑚,𝑛]

 
 
 
 
 
 

      (10) 

Where 𝑛 is the number of sizes in the SS and 𝑚 is the 

number of particles we utilize in it. To comprehend the 

erratic movement of particles, or eagles, in SS, assume a 

particle at location 𝑘 that is free to move in all directions 

at random. At every iteration, a random number called ∆𝑓 

is given to its current location, indicating that 𝑘 +

∆𝑘.Consequently, we have: 

𝐾 = 𝐾 + ∆𝐾                                                     (11) 

∆𝐾 =

[
 
 
 
 
 
 
𝐴1,1 𝐴1,2 𝐴1,3 ⋯ 𝐴1,𝑛

𝐴2,1 𝐴2,2 𝐴2,3 ⋯ 𝐴2,𝑛

𝐴3,1

𝐴4,1

⋮
𝐴𝑚,1

𝐴3,2

𝐴4,2

⋮
𝐴𝑚,2

𝐴3,3 ⋯ 𝐴3,𝑛

𝐴4,3 ⋯ 𝐴4,𝑛

⋮
𝐴𝑚,3

⋮
⋯

⋮
𝐴𝑚,𝑛]

 
 
 
 
 
 

    (12) 

𝐴 ∈ (0,1) - Random values.  

For every component in 𝐾, we have, 

𝐾𝑗,𝑖 = 𝐾𝑗,𝑖 + ∆𝐾𝑗,𝑖                                          (13) 

Where 𝑖 denotes the 𝑖𝑡ℎ size of the corresponding place and 

𝑗 denotes the 𝑗𝑡ℎ particle.  

Given that eagles live in the upper atmosphere, some of 

their samples are searching for the highest point on Earth. 

They determine who came in first by analyzing their sets 

of samples. We will use our technique to reproduce that 

outcome, passing the 𝐾𝑗,𝑖 to the function we wish to reduce. 

𝑍𝑗,𝑖 = 𝑒(𝐾𝑗,𝑖)                                                      (14) 

Equation (14) demonstrates how every particle's position 

is assessed.  

The optimum answer among all the eagle places, shown by 

𝑍𝑚𝑖𝑛, represents the value we want to find by minimizing 

the specified function. Two additional variables, 

𝑍𝐵𝑒𝑠𝑡  𝑎𝑛𝑑 𝐾𝐵𝑒𝑠𝑡 , will be defined. The following is how 

𝑍𝐵𝑒𝑠𝑡  𝑎𝑛𝑑 𝐾𝐵𝑒𝑠𝑡  are anticipated to develop, 

𝑖𝑓: 𝑍𝑚𝑖𝑛 < 𝑍𝐵𝑒𝑠𝑡                                                 (15) 

𝑍𝐵𝑒𝑠𝑡 = 𝑒(𝐾𝑗,𝑖)                                                 (16) 

𝐾𝐵𝑒𝑠𝑡 = 𝐾𝑗,𝑖                                                       (17) 

The ideal solution for a specific function will eventually 

be found using this method's recursion. 

An alteration was presented that will accelerate the EPO's 

convergence. This change relates to the computation of 

𝑒𝑡𝑎.Particularly, the value of 𝑒𝑡𝑎 in each iteration will be 

changed, as demonstrated below. 

𝑒𝑡𝑎 = 𝑒𝑡𝑎𝑚𝑎𝑥 − 𝑠 ∗
𝑒𝑡𝑎𝑚𝑎𝑥−𝑒𝑡𝑎𝑚𝑖𝑛

𝑠𝑡
                   (18) 

Where,  

𝑒𝑡𝑎𝑚𝑖𝑛- Minimum value (ending value of 𝑒𝑡𝑎), and  

𝑒𝑡𝑎𝑚𝑎𝑥- Maximum value (starting value of 𝑒𝑡𝑎). 

As a result, the transformation will be more rapid and 

effective, and the dynamic method with different 𝑒𝑡𝑎 in 

Algorithm (1). 

 

Algorithm 1: DEPO-LSTM 

 

Procedure 
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    Initialize all the variables 

for < maximum number of iterations do 

Calculate ∆𝐾 using Formula. (12) 

   Calculate  𝐾 = 𝐾 + ∆𝐾     

 for < total number of particles position accessed > do 

           Implement 𝑍𝑗,𝑖 using Formula. (14) 

 end for 

Implement  𝑍𝑚𝑖𝑛  from using Formula. (14) 

compare 𝑍𝑚𝑖𝑛 with Formula. (15) 

 𝑖𝑓: 𝑍𝑚𝑖𝑛 < 𝑍𝐵𝑒𝑠𝑡  satisfies then 

 Implement Equ. (16) and Formula. (17) 

Repeat 𝑘𝑠𝑐𝑎𝑙𝑒  using Formula. (8) 

Calculate 𝑒𝑡𝑎 using Formula. (18) 

  End if 

End for 

End procedure 

 

The DEPO- LSTM cell is an effective structure using gate 

units to regulate the data flow, but it has the same outputs 

and inputs as a regular RNN cell. A present-time input of 

𝑤(𝑠) and an output of 𝑔(𝑠−1) from the prior moment 

determine the weight of the self-loop cell status that the FG 

uses to refresh the memory cell. 

𝐸𝑗
(𝑠)

= 𝜎(𝑎𝑗
𝐸 + ∑ 𝑉𝑗,𝑖

𝐸𝑤𝑖
(𝑠)

+ ∑ 𝑋𝑗,𝑖
𝐸 𝑔𝑖

(𝑠−1)
𝑖𝑖 )        (19) 

Where,  

𝜎 - Sigmoid function,  

𝑋𝐸- RWs of the FG,  

𝑉𝐸- IWs of the FG, and 

𝑎𝐸- Respective biases of the FG. 

The value that the FG sets in the range of 0 to 1. The data 

delivered into the memory cell is regulated by the IG. 

𝐽𝑖
(𝑠)

= 𝜎(𝑎𝑗
𝐽 + ∑ 𝑉𝑗,𝑖

𝐽 𝑤𝑖
(𝑠)

+ ∑ 𝑋𝑗,𝑖
𝐽 𝑔𝑖

(𝑠−1)
𝑖𝑖 )         (20) 

Where, 

𝑋𝐽- RWs of the IG,  

𝑉𝐽- IWs of the IG, and 

𝑎𝐽- Respective biases of the IG. 

Following that, the LSTM cell's internal condition is 

modified in the manner described below. 

𝑇𝑗
(𝑠)

= 𝐸𝑗
(𝑠)

𝑇𝑗
(𝑠−1)

+ 𝐽𝑗
(𝑠)

tanh (𝑎𝑗 + ∑ 𝑉𝑗,𝑖𝑤𝑖
(𝑠)

+𝑖

∑ 𝑋𝑗,𝑖𝑔𝑖
(𝑠−1)

𝑖 )                                                      (21) 

𝑋- RWs into the LSTM cell,  

𝑉- IWs into the LSTM cell, and 

𝑎- Respective biases into the LSTM cell. 

The weight of cell output is controlled by the OG, 
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𝑃𝑗
(𝑠)

= 𝜎 (𝑎𝑗
𝑃 + ∑ 𝑉𝑗,𝑖

𝑃𝑤𝑖
(𝑠)

+ ∑ 𝑋𝑗,𝑖
𝑃 𝑔𝑖

(𝑠−1)
𝑖𝑖 )       (22) 

Where, 

𝑋𝑃- RWs of the OG,  

𝑉𝑃- IWs of the OG, and 

𝑎𝑃- Respective biases of the OG. 

Subsequently, the DEPO- LSTM cell's output is: 

𝑔𝑗
(𝑠)

= tanh(𝑇𝑗
(𝑠)) . 𝑃𝑗

(𝑠)
                                    (23) 

Long-term dependencies can be acquired by DEPO-

LSTMs using these gated units. 

4 Result  

The proposed DEPO-LSTM is evaluated through 

explorations that are performed on MatlabR2024a 

platform and the results of which are presented in the 

subsequent sections together with other relevant analysis. 

The efficiency of the proposed DEPO-LSTM method is 

confirmed using the original classification algorithms, 

such as GBDT [19], DT [19], and RF [19]. The 

effectiveness of ECT online monitoring should be 

measured using different metrics like recall, accuracy, 

precision, and F1-score. Table 2, displays the main 

parameters of DEPO. 

Table 2: Main parameters of DEPO 

Population size  50 

Maximum iteration 

number 

3000 

Initial temperature 50 

𝜼 0.05 

Nonlinear adjustment 

factor 

1.2 

Annealing factor 0.85 

 

The diagnostic outcomes of the proposed DEPO-LSTM 

method are displayed in Figure 2. It contrasts the expected 

and actual fault kinds. It provides a visual representation 

of the model's effectiveness, demonstrating how closely 

the expected values correspond to the actual fault 

incidents. This shows how accurate and dependable the 

model is at identifying faults. 

 

Figure 2: Fault diagnosis outcome of DEPO-LSTM 

The recall calculates the percentage of actual transformer 

issuesthat the system was capable of identifying, to show 

its capability to recognize all the events of interest and 

ensure completemonitoring, and timely maintenance. The 

recallrates of the conventional GBDT, DT, and RF 

approaches are 94.25%, 91.93%, and 92.69%, 

respectively, while our proposed DEPO-LSTM method's 

recallrate of 97.42%, which is higher than the proposed 

approach, is shown in Figure3. 

 

Figure 3: Result of recall 

The precision evaluates how well the transformer’s status 

is identified as being in its functioning state. It determines 

the ratio of true positive outcomes to the total of false 

positives and true positives. The precision values of the 

traditional GBDT, DT, and RF techniques are 94.25%, 

91.38%, and 92.53%, respectively, whereas the precision 

value of our proposed DEPO-LSTM method is 97.15%, 

which is displayed in Figure 4. 
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Figure 4: Output of precision 

The F1-score metric measures the equilibrium of precision 

and recall when measuring efficacy, which is critical for 

determining both the accuracy of identifying online 

conditions and the system’s dependability in real-time 

monitoring environments. In comparison to our proposed 

DEPO-LSTM strategy, traditional methods yield F1 scores 

for GBDT (94.25%), DT (91.65%), and RF (92.61%), 

whereas our proposed DEPO-LSTM method has a high F1 

score of 96.36%, as shown in Figure 5. 

 

Figure 5: Result of F1-score 

The accuracy represents the system's capacity to 

accurately determine the transformers' operating 

condition, guarantee the accuracy of real-time data, 

minimize false alarms, and improve predictive 

maintenance by precisely identifying anomalies and 

performance problems. Conventional approaches yield 

accuracy values for GBDT (93.18%), DT (89.83%), and 

RF (91.17%) compared to our proposed DEPO-LSTM 

strategy, which has a high accuracy value of 96.23%, as 

shown in Figure6. Table 3, shows the comparison results 

of DEPO-LSTM with traditional approaches. 

 

Figure 6: Output of accuracy 

 

Table 3: Overall result comparison 

Methods Accura

cy (%) 

Precisi

on (%) 

 

Recall 

(%) 

 

F1-Score 

(%) 

 

GBDT 93.18% 94.25% 94.25% 94.25% 

DT 89.83% 91.38% 91.93% 91.65% 

RF 91.17% 92.53% 92.69% 92.61% 

DEPO-

LSTM 

[Proposed

] 

96.23% 97.15% 97.42% 96.36% 

 

 

Figure 7: ROC Curve 

Figure 7 shows a visual depiction of the model's 

performance over all thresholds is the ROC curve. The true 
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positive rate (TPR) and false positive rate (FPR) are 

computed at each threshold (practically, at predetermined 

intervals), and the TPR is then graphed over the FPR to 

create the ROC curve. In the event that all other thresholds 

are disregarded, a perfect model, which at some threshold 

has a TPR of 1.0 and an FPR of 0.0, can be represented by 

either a point at (0, 1) The ROC is a helpful metric for 

evaluating the performance of distinct models, provided 

that the dataset is fairly balanced. In general, the better 

model is the one with a larger area under the curve. The 

suggested model [DEPO-LSTM] shows ROC curve has 

highest accuracy with 0.95. 

5 Discussion 

DEPO-LSTM can use the advantage of operators for 

enhancing predictive maintenance, as proposed by 

increased accuracy. When applied with a proactive 

approach to analyzing any problems or the degradation of 

functionality in ECT, the system optimizes the potential 

issues of downtime and ineffectiveness. DEPO-LSTM real 

time analysis means any anomalies such as the above 

occurrences are immediately identified and one can 

promptly act or perform maintenance, thus preventing 

possible equipment breakdowns or disruption of power 

transfer. This DEPO-LSTM is a great advancement to 

monitoring technologies in ECT; when used for efficient 

ECT condition monitoring in industries and power 

transmission it provides the stability required for constant 

sensitivity while at the same time provides the flexibility 

of LSTM networks. The DEPO-LSTM algorithm is 

evaluated in terms of precision (97.15%), recall (97.42%), 

accuracy (96.23%), and F1-score (96.36%). In ROC curve 

figure shows the suggested method has highest accuracy, 

precision, Recall than the other existing methods. 

6 Conclusion 

Ensuring the dependable functioning of ECT is crucial 

when it comes to electrical power systems. In this research, 

a novel DEPO-LSTM technique was introduced for 

efficient problem diagnostics in the ECT.The efficacy of 

the proposedDEPO-LSTM technique is assessed in terms 

of precision (97.15%), recall (97.42%), accuracy 

(96.23%), and F1-score (96.36%). DEPO-LSTM models 

can be very complicated and computationally demanding. 

This may render real-time monitoring difficult, 

particularly in circumstances with low computing power 

or resource constraints. Future developments in DEPO-

LSTM models might concentrate on addressing 

complexity and improving viability for broad use in a 

variety of sectors, as well as maximizing computing 

effectiveness for real-time monitoring in environments 

with limited resources. In our future work of DEPO-LSTM 

model is to handle domains like sensor networks and the 

Internet of Things, which are sources of time-series data 

that DEPO-LSTM can collect, store, and process. Our next 

research will expand DEPO-LSTM to accommodate these 

data sources, which is feasible due to the adaptable and 

effective nature of the DEPO-LSTM model. By adding 

data collectors intended to gather data from additional 

devices that are present in the expanded domain, the 

primary changes in the data collection layer must be made. 

Additionally, a new set of aggregations should be built to 

extract the information for the consumers of data in this 

domain, based on the type of information contained in 

these data. 
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Appendix 
 

1D-CNN - One-dimensional convolutional neural 

network  

EL-CSO-NN - Ensemble learning based criss-cross-

optimized neural network  

DGA - Dissolved gas analysis  IoT - Internet of Things  

EML - Ensemble machine learning  OG – Output gate 

PT-TNNet -Power Transformer-Transformer Neural 

Network  

OIT - oil-immersed transformers  

CNN - Conventional neural networks  GCA - Gray clustering algorithms  

ML - Machine learning  BS - Best solution  

E-E - Exploration to exploitation  SS - Search space  

FG - Forget gate  RW - Recurrent weight  

IW - Input weight  IG – Input gate 

 


