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In today's technological landscape, the ubiquitous use of mobile devices underscores their critical 

importance in facilitating daily tasks and enabling a wide array of functionalities, from communication 

to commerce and entertainment. However, this widespread adoption also brings significant concerns 

regarding security and privacy, especially with the proliferation of mobile applications capable of 

accessing sensitive data without explicit user consent. The Android operating system, renowned for its 

openness and extensive app ecosystem, faces substantial security challenges due to its susceptibility to 

malware attacks. Malicious software, covertly embedded within seemingly legitimate apps, poses serious 

threats such as data theft, unauthorized access, and device compromise. This study presents a 

comprehensive approach to malware detection on the Android platform, utilizing a dataset comprising 

4,464 instances, evenly divided between 2,533 labeled as "Malware" and 1,931 labeled as "Benign." The 

dataset, sourced from real-world Android applications, includes 328 extracted features to enhance 

detection accuracy. Five machine learning algorithms were evaluated to develop a robust malware 

detection system: Random Forest, Extra Trees, Logistic Regression, Gradient Boosting, and Support 

Vector Machine. The performance of these algorithms was rigorously assessed based on accuracy, 

precision, recall, F1-score, and ROC-AUC. The performance of these algorithms is rigorously evaluated 

and compared based on accuracy, precision, recall, and F1-score. The results reveal that the Logistic 

Regression algorithm achieved the highest accuracy at 97.31%, outperforming the other models. 

Specifically, Random Forest achieved 96.64%, Extra Trees 96.08%, Gradient Boosting 96.19%, and 

Support Vector Machine 96.75%. These findings suggest that Logistic Regression is particularly effective 

in identifying Android malware within this dataset, offering a reliable solution for enhancing mobile 

security. This research benchmarks these results against prior models utilizing different machine learning 

approaches and provides concrete insights into the most effective methodologies for mitigating Android 

malware threats. By advancing detection capabilities through sophisticated machine learning techniques, 

this study contributes to ongoing efforts to safeguard mobile device users from evolving cybersecurity 

threats, underscoring the critical role of data-driven models in enhancing the security and privacy of 

Android platforms. 

Povzetek: Študija uvaja model za zaznavanje zlonamerne programske opreme na Android platformi z 

uporabo mnogoterih algoritmov strojnega učenja - tako učinkovito zmanjšuje varnostna tveganja na 

mobilnih napravah. 

 

1 Introduction 
As technology advances, mobile devices are increasingly 

relied upon by users [1, 2]. The contemporary era is seeing 

a rapid proliferation of mobile devices and their associated 

apps, driven by their seamless functionality and ongoing 

improvements in smartphone technology [3]. Mobile 

phones have become omnipresent, enabling a multitude of 

daily tasks such as calling, web browsing, online banking, 

social networking, e-commerce, gaming, photography, 

and app usage [4-6]. Furthermore, the vast array of 

capabilities offered by mobile devices and the expanding 

range of user activities have raised significant concerns 

regarding device security and personal privacy [7, 8]. 

Mobile applications installed on a device can utilize 

various features and capabilities, such as the integrated  

 

GPS for location tracking, the camera, and the  

microphone. This extensive access to the device's 

hardware and sensors enables installed apps to collect data  

without the user's explicit consent or awareness [5]. 

According to a study by the International Association of 

Mobile Operators (GSMA), as of 2023, 5.6 billion people, 

constituting 69% of the global population, were 

subscribed to mobile services. Additionally, 58% of the 

world's population accesses mobile Internet via 

smartphones, totaling 4.7 billion users [9]. 

Several operating system platforms are accessible for 

mobile phones in the marketplace, such as Windows 

Mobile, iOS, and Android OS, the most prevalent mobile 

phone operating system [10-12]. Android OS is 

recognized for its high level of customization and open-
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source nature, supporting a wide range of devices, 

including smartphones, smartwatches, television sets, and 

projectors. This flexibility allows Android OS to adapt to 

diverse hardware platforms and form factors, boasting a 

repository of over 2.6 billion apps available on the Google 

Play Store by 2023 [5, 13]. However, the open-source 

framework of Android OS, combined with lax security 

vetting of marketplace applications, exposes Android 

devices to heightened vulnerability against malicious 

attacks [11]. Additionally, the absence of built-in tools 

within Android OS to preemptively detect malware in 

applications before installation leaves users unable to 

ascertain the presence of potentially harmful components 

[4, 6]. 

Malware refers to software designed to disrupt or 

impair computer or mobile applications, gather sensitive 

information, or carry out malicious activities [2, 4, 10]. It 

can be covertly packaged with legitimate applications, or 

its malicious functionalities can be concealed within an 

otherwise benign-looking app, posing potential threats to 

user data and device integrity [2, 4]. Malware's main 

objectives include impairing applications, stealing 

sensitive data like credit card details or login credentials, 

accessing personal information, and executing harmful 

actions [11, 12]. Cybercriminals have increasingly 

targeted the Android platform by embedding sophisticated 

malicious code in applications, challenging security 

providers to effectively detect and counter such threats 

[12, 14]. Furthermore, malicious applications often bypass 

existing security measures, leaving users unaware if an 

installed app might operate maliciously and engage in 

harmful activities undetected [5]. 

The conventional method for identifying malware is 

signature-based detection, where a unique identifier or 

signature is extracted from the application and compared 

with a database of known malware signatures [15]. 

However, this approach has a significant drawback: even 

slight modifications to the malware, such as changes in 

code lines, instructions, or keywords, can alter the 

signature sufficiently to evade detection by anti-malware 

software [15]. In addition to signature-based detection, 

machine learning offers two primary approaches for 

malware detection: supervised and unsupervised methods 

[16]. Furthermore, various techniques for analyzing and 

detecting Android malware fall into categories such as 

static, dynamic, or hybrid analysis [13, 14]. These 

methods aim to extract key feature sets used by machine 

learning algorithms for subsequent malware detection 

[14]. Nonetheless, a significant drawback of these 

approaches is their complexity and high computational 

demands, owing to their reliance on numerous features 

[13, 15]. 

Android malware poses a significant security risk by 

exploiting vulnerabilities in Android devices, potentially 

leading to financial losses and unauthorized access to 

sensitive personal information. As these malware attacks 

become more prevalent, there is an increasing demand for 

robust detection methods to protect users from these 

malicious threats [16, 17]. 

This study proposes an Android-based platform using 

machine learning models that employ various algorithms: 

Random Forest (RF), Extra Trees (ET), Logistic 

Regression (LR), Gradient Boosting (GB), and Support 

Vector Machine (SVM), for application malware 

detection. The objective is to determine which algorithm 

provides the best results in terms of accuracy, precision, 

recall, and F1-score. Additionally, the study compares its 

findings with a previously developed model in [18] 

utilizes the same dataset using different machine learning 

algorithms to determine which one has better accuracy 

classification report results. This research aims to 

determine the machine learning algorithm that produces 

the best classification results among those evaluated. 

Furthermore, it seeks to identify whether the developed 

model or previous models utilizing different machine 

learning algorithms demonstrate superior accuracy results. 

The paper is structured as follows: Section 2 reviews 

existing related works on models for detecting Android 

malware. Section 3 describes the developed machine 

learning model in detail. Section 4 provides an overview 

of the dataset used in this research. Section 5 presents the 

achieved classification results and a discussion of the 

compared algorithms. Section 6 introduces the 

classification results and discussion between the proposed 

model and a previous model. Conclusions and future work 

based on the findings of the study are revealed in Section 

7. 

2 Related work 
This section discusses the most recent studies on 

employing machine learning models for detecting 

malware on the Android platform. 

In [1], a method for detecting Android malware is 

introduced based on aggregating vulnerable features. This 

approach uses static analysis to link each API call with 

specific features, which are combined to determine their 

frequency. Several machine learning classifiers were 

tested, with RF showing the highest effectiveness, 

achieving an ROC-AUC score of 98.87%, particularly for 

obfuscated malware. The study also employs Non-

negative Matrix Factorization (NMF) to streamline the 

model, demonstrating its scalability by reducing the 

feature set by 75.9% while maintaining a strong ROC-

AUC score of 95.67%. Moreover, in [2]. The researchers 

propose a machine-learning approach using the SVM 

algorithm to detect Android malware. The study 

emphasizes static analysis of API calls made by Android 

apps. The dataset includes malicious and benign 

applications accessing system resources via Android API 

calls. Comparative analysis against other methods shows 

exceptional performance, achieving an overall accuracy of 

99.75% [2]. Furthermore, in [8], a static-based 

classification approach is introduced for Android malware 

detection using permissions and API calls. The study 

employs SVM, K-nearest neighbors (KNN), and Naive 

Bayes (NB) classifiers on the "CIC InvesAndMal2019" 

dataset. Results indicate that SVM achieves the highest 

average accuracy rate of 94%, followed by KNN at 93% 

and NB at 84%. 

The study [19] presents an effective method for feature 

extraction from Android APKs using static analysis. The 
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research utilizes diverse features such as API calls, intents, 

permissions, and command signatures. Extracting these 

features employs two well-known datasets, Drebin and 

Malgenome. Machine learning classifiers, including 

SVM, MVC, and RF, are trained on these features. 

Additionally, Principal Component Analysis (PCA) is 

used to optimize feature sets and train models. Results 

show that RF achieves % the highest accuracy of 96.27% 

with the Drebin permission feature combination. 

Meanwhile, SVM with PCA surpasses other classifiers, 

reaching a peak accuracy of 97.63% using the Malgenome 

permission combination [19].   Additionally, in [7], a novel 

approach for Android malware detection is proposed 

based on the coexistence of features. A new dataset is 

created, integrating co-occurring permissions and API 

calls at varying combination levels. The frequent pattern 

growth method extracts the most relevant coexisting 

features. Android APK samples from Drebin, Malgenome, 

and MalDroid2020 datasets were utilized to generate these 

new datasets. Using the Random Forest algorithm with 

coexisting permissions features, the approach achieves a 

maximum accuracy of 98%. Specifically, the Malgenome 

dataset outperforms the state-of-the-art accuracy of 87%, 

reaching 98%. Furthermore, compared to the state-of-the-

art 93% accuracy using the Drebin dataset, the proposed 

method achieves 95% accuracy [7]. 

In a recent study conducted by [5], the effectiveness of 

various machine-learning approaches for classifying 

Android malware using the Drebin dataset was evaluated. 

The researchers analyzed a dataset comprising 123,453 

benign and 5,560 malware applications sourced from 

Drebin. Their primary goal was to assess the performance 

of several classifiers and determine the key features 

influencing their decision-making. The study found that 

SVM achieved the highest accuracy, precision, and recall 

metrics among the classifiers tested, which included 

RidgeReg, RF, LassoReg, BNB, 1-ANN, and ANN. In 

contrast, RidgeReg was identified as the optimal choice 

due to its model complexity, optimization capabilities, and 

ability to fine-tune [5].  

In [20], the effectiveness of various machine-learning 

models for detecting Android malware is investigated. 

The study employs SMOTE normalization for numerical 

features and Principal Component Analysis (PCA) to 

enhance accuracy. A robust multi-category classification 

system for Android malware is also introduced based on 

the Light Gradient Boosting Model (GBM). This model 

categorizes malware into five classes: Adware, Banking 

Malware, SMS Malware, Mobile Riskware, and Benign 

apps. Results highlight that the Light GBM algorithm 

achieves the highest F1-score of 95.47% and the best 

accuracy of 95.49% [20]. 

In [21], the research explores static, dynamic, and 

hybrid analyses for detecting malware. The dataset 

includes benign, malware, and Greyware applications. 

Various classifiers such as XGBoost, Gradient Boosting, 

Decision Tree, and Random Forest are employed. The 

study highlights the effectiveness of static features 

(specifically permissions) and dynamic features (activity 

repetition). Results indicate that accuracy rates for static, 

dynamic, and hybrid analyses are consistently above 94%, 

with static analysis particularly noted for its cost-

effectiveness in classification tasks. Furthermore, in [22], 

BrainShield has introduced a hybrid malware detection 

model designed to defend against attacks on Android 

devices. Trained on the Omnidroid dataset, BrainShield 

integrates static, dynamic, and hybrid neural networks. 

The results indicate that the model achieved accuracies of 

92.9% with static analysis, 81.1% with dynamic analysis, 

and 91.1% with hybrid (combined static and dynamic) 

analysis. 

In [23], a method is introduced for detecting Android 

malware by analyzing correlations among abstracted API 

calls made at the method level within applications. These 

API calls are grouped into transactions to establish 

behavioral semantics for each application. The system 

characterizes app behavior by calculating the confidence 

of association rules between these calls. Machine learning 

techniques are then applied to integrate distinct behavioral 

patterns of malicious and benign apps, creating an 

effective detection system. Results show strong 

performance, achieving 96% accuracy and 98% F-

measure on the Drebin and AMD datasets, demonstrating 

competitive accuracy and efficiency [23]. Moreover, 

research introduces PermDroid, a framework designed to 

enhance the effectiveness of machine learning-based 

Android malware detection through feature selection 

techniques [13]. Initially, PermDroid applies statistical 

methods such as t-test and logistic regression to identify 

the most relevant features distinguishing malware from 

benign apps. It then refines the feature set through 

regression and correlation analyses. The optimized subset 

of features is utilized to build malware detection models 

using three ensemble approaches: homogeneous, 

heterogeneous, and linear ensembles. Experimental 

findings demonstrate that PermDroid's feature selection 

strategy enables models like DNN and NDTF to achieve a 

high malware detection accuracy of 98.8%, surpassing 

previous frameworks [13]. 

An automated approach for detecting Android 

malware using the Optimal Ensemble Learning Approach 

for Cybersecurity is introduced in [24]. The primary 

objective of this technique is to automate the classification 

and identification of Android malware. The Android 

malware detection process employs ensemble learning 

with LS-SVM, KELM, and RRVFLN models. 

Additionally, parameter tuning based on HPO enhances 

malware detection results. The simulation results 

demonstrate the superiority of the proposed technique 

over existing approaches [24]. A malware detection 

method called CogramDroid is introduced in [25], which 

relies on opcode ngrams. This method categorizes 

applications by analyzing the relative frequency patterns 

of opcode ngrams, employing the concept of word 

cooccurrence from natural language processing. The result 

shows that using three grams and seven core opcodes, 

CogramDroid achieved an accuracy rate of 96.22% and an 

F1-score of 96.69% [25]. Additionally, this work presents 

a framework that uses reverse-engineered Android app 

features and advanced machine learning to identify 

security vulnerabilities. The researchers developed a 

model incorporating cutting-edge static analysis methods 
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and leveraging extensive malware datasets [25]. 

Additionally, the study employed an ensemble learning 

strategy, integrating multiple machines learning 

algorithms, including AdaBoost, SVM, Decision Trees, 

KNN, NB, and RF. This ensemble approach was used to 

enhance the performance and accuracy of the vulnerability 

detection model. The proposed framework was evaluated 

across three distinct datasets, and the experimental results 

demonstrate an accuracy of 96.24% in detecting malware 

extracted from Android applications using the AdaBoost 

machine-learning technique [12]. 

In [26], an Android malware detection method 

utilizing multiple machine learning algorithms is 

introduced. The study explores features extracted from 

Android app binaries, including permissions, API calls, 

system calls, code segments, and structural attributes. 

Results indicate that SDL achieves the highest accuracy 

rate of 99.3%, followed closely by SVM at 98.69%. 

Similarly, in [11], a method leveraging Java application 

permissions and APIs for Android malware detection is 

presented. RF, SVM, NB, and DT machine learning 

algorithms are applied, with RF achieving the highest 

accuracy rate of 96.2% among the tested techniques. 

These studies underscore the efficacy of machine learning 

approaches in identifying and categorizing malicious 

software on Android devices, demonstrating significant 

advancements in malware detection capabilities. 

Researchers explored Android malware detection 

using a hybrid approach combining machine learning with 

genetic algorithms. Their study involved deploying nine 

machine-learning algorithms on a dataset containing 5,000 

benign Android apps and 2,500 malware samples, each 

characterized by 1,104 static features. Notably, they 

integrated a genetic algorithm-based feature selection 

technique to pinpoint the most informative attributes from 

the dataset. Experimental results showcased that this 

genetic algorithm-based strategy significantly boosted 

overall malware detection performance, especially in 

terms of time efficiency, compared to traditional machine 

learning models lacking feature selection [17]. 

Furthermore, in a study conducted by [4], the MobiPCR 

malware detection system for the Android platform is 

introduced, incorporating a cloud-based architecture and 

an edge computing model. This innovative design utilizes 

machine learning frameworks to achieve efficient and 

accurate malware detection while reducing computational 

and power demands on mobile devices. The core 

functionality of MobiPCR involves uploading new 

application binaries to a cloud-hosted detector, which 

performs code analysis and applies advanced machine-

learning techniques to detect potential malicious 

components [4]. 

In [27], a parallel machine learning-based method is 

introduced for early detection. Using a custom analysis 

tool, this approach employs diverse classifiers and extracts 

static features such as API-related features, app 

permissions, and OS/framework commands from Android 

app APK files. These features train multiple machine 

learning models in a parallel classification setup, 

including DT, Simple Logistic, NB, PART, and RIDOR. 

Experimental results demonstrate that the PART 

algorithm achieves superior detection capability and 

accuracy, performing at 95.8% and 96.3%, respectively, 

outperforming other algorithms in the study [27]. In 

contrast, [6] proposes an approach for identifying malware 

in Android applications using image-based feature 

extraction. This method converts files from Android app 

source code into grayscale images. It extracts various 

image features such as SIFT, SURF, KAZE, ORB, color 

histograms, Haralick texture measures, and Hu moments. 

These features train machine learning models, including 

RF, AdaBoost, and GB. Testing across three datasets 

containing 9,700 samples shows that RF, AdaBoost, and 

GB classifiers achieve high accuracies ranging from 

95.78% to 98.75% when utilizing global image features. 

These studies highlight advanced methodologies in 

Android malware detection, combining sophisticated 

feature extraction techniques with powerful machine-

learning algorithms to enhance accuracy and efficiency in 

detecting malicious applications. 

A method to identify repackaged Android malware 

adopts a comprehensive approach that examines the app's 

internal code structure, behavioral patterns, and 

dependency relationships. This involves segmenting the 

code into graphs, identifying vulnerabilities at both class 

and method levels, and utilizing an evolving genetic 

algorithm to optimize a feature set. This optimized feature 

set is then used to train machine learning models 

efficiently to detect repackaged malware. Experimental 

findings demonstrate that by using lower-dimensional 

feature sets, classifiers such as SVM and Neural Networks 

consistently achieve classification accuracies exceeding 

90-91%, effectively streamlining the training process 

while maintaining high accuracy levels [14]This approach 

highlights the integration of advanced techniques in code 

analysis and machine learning to combat repackaged 

Android malware effectively. 

Numerous research studies have conducted thorough 

and systematic reviews on the application of machine 

learning techniques for Android malware detection, as 

evidenced by studies such as [15, 16, 28]. These reviews 

aim to provide a comparative analysis of different 

methods for detecting Android malware and discuss the 

evaluation metrics employed to measure their 

effectiveness. The overarching goal is to offer a 

comprehensive overview of the current state-of-the-art in 

Android malware detection, highlighting the strengths and 

limitations of various machine learning-based approaches. 

By assessing these methods using standardized metrics, 

these studies aim to assist researchers and practitioners in 

making well-informed decisions when selecting malware 

detection solutions tailored to their specific requirements 

[15, 16, 28]. 

Researchers have extensively explored deep learning 

techniques for Android malware detection, showcasing a 

variety of innovative approaches and their respective 

achievements. For instance, Alzaylaee et al. introduced 

DL-Droid, a dynamic deep-learning system that analyzes 

Android applications and achieved detection rates up to 

97.8% using dynamic features alone and 99.6% when 

incorporating dynamic and static features [29]. Another 

system, MAPAS, utilizes convolutional neural networks 
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to analyze API call graphs, achieving an accuracy rate of 

91.27% [30]. Deep learning algorithms such as LSTM and 

MLP have also been effectively employed, demonstrating 

malware detection accuracies exceeding 99% across 

various datasets [31]. Moreover, a convolutional neural 

network-based method proposed in [32] achieved an 

impressive accuracy rate of 99.92% by optimizing 

parameters such as filter sizes, training epochs, learning 

rates, and network configurations using the Drebin 

dataset. Additionally, studies like [33] explored GRU-

based methods while [34] introduced MobiTive, an 

efficient Android malware detection system leveraging 

customized deep neural networks for responsive real-time 

detection on mobile devices. These advancements 

underscore the growing effectiveness of deep learning in 

enhancing Android malware detection capabilities. Table 

1 summarizes some recent studies that have discussed the 

method used, the dataset used, and the performance 

matrices based on accuracy, precision, recall, and F1-

score. 

 

 

Table 1: A summary of recent android malware detection solutions. 

Ref Year Method (s) Dataset Accuracy Precision Recall F1-Score 

[26] 2024 

SVM 

Android applications collected 

data. 

98.69 98.7 98.7 98.7 

CNN 97.53 97.6 97.5 97.5 

AE 95.33 95.3 95.3 95.3 

DBN 97.7 97.7 97.7 97.7 

ELM 98.2 98.2 98.2 98.2 

SDL 99.34 99.3 99.3 9.3 

[3] 2023 

Naïve Bayes APK  85.1 - - - 

KNN 87.2 - - - 

SVM 91.4 - - - 

DBN-GRU 97.9 - - - 

[4] 2023 

Hamming DES Collected from multiple sources. 

Application Centers 

Drebin 

Ashish Bhatia 

94.5 - - - 

Voting 70.4 - - - 

Naïve stacking 87.7 - - - 

MobiPCR 99.1 - - - 

[20] 2023 

LGB  

CICMalDroid2020 

94.80 - - 94.81 

RF 94.11 - - 94.12 

ET 93.74 - - 93.77 

KNN 84.66 - - 84.71 

SVM 45.88 - - 45.53 

[7] 2023 

RF 

Best-achieved 

accuracy.  

A new dataset was created from 

Drebin, Malgenome, and 

MalDroid2020 APK samples. RF 

results were shown with varying 

numbers of selected features. 

98.0 - - - 

[8] 2022 

SVM 
CICInvesAndMal2019 

 Permission features 

94.36 95.9 82.6 88.8 

KNN 93.42 91.1 83.7 87.3 

NB 84.33 97.4 63.0 70.8 

[19] 2022 

SVM 

 

Drebin (D)  

 Malgenome (M)  

 

With the usage of Principal 

Component Analysis (PCA). 

D 98.19  

M 98.84  

D 98.0  

M 99.0   

D 97.0  

M 97.0   

D 98.0  

M 98.0   

MVC 
D 97.65 

M 98.24 

D 98.0 

M 1.0  

D 95.0 

M 94.0 

D 97.0 

M 96.0 

RF 
D 97.15  

M 97.78 

D 98.0 

M 1.0  

D 94.0 

M 95.0 

D 96.0 

M 97.0 

[21] 2022 

GB 

Palo Alto Networks 

With static feature results 

99.5 99.4 99.7 99.6 

XGBoost 99.5 99.4 99.7 99.6 

DT 99.4 99.4 99.7 99.4 

RF  94.6 95.1 99.4 97.2 

[17] 2021 

J48 

Andro-AutoPsy 

96.8 - - 95.2 

RF 97.8 - - 96.6 

Decision Table  94.6 - - 91.6 

MLP 98.1 - - 97.1 

NB 69.1 - - 91.0 

SVM 96.4 - - 96.4 

LR 96.3 - - 94.4 
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AdaBoost 88.4 - - 81.7 

KNN 97.2 - - 95.7 

[1] 2020 

LR 

Drebin 

91.86 94.77 84.72 89.47 

SVM 93.35 90.88 93.06 91.95 

RF 93.77 99.80 84.72 91.73 

KNN 93.15 89.37 94.44 91.84 

[2] 2020 SVM 

Best-achieved 

accuracy. 

Collected from an Android 

environment including Google 

Play, Amazon AppStore, APKP, 

AMD, and Drebin 

99.75 99.54 99.97 - 

[11] 2020 

SVM 

Android MSA 

84.5 - - 81.9 

ID3 80.7 - - 79.9 

NB 91.4 - - 88.7 

RF 96.2 - - 94.9 

[23] 2019 

KNN 

 

Drebin (D) 

AMD 

D 92.0 

96.0 

D 90.0 

95.0 

D 96.0 

97.0 

D 93.0 

96.0 

RF D 96.0 

98.0 

D 97.0 

99.0 

D95.0 

98.0 

D 96.0 

98.0 

SVM D94.0 

97.0 

D 94.0 

97.0 

D 94.0 

97.0 

D 94.0 

97.0 

To conclude, Android malware detection, while 

advanced, still faces significant challenges that highlight 

the need for further research. Many existing methods 

heavily depend on static or dynamic analysis, each with 

limitations such as vulnerability to code obfuscation or 

high computational demands. These techniques cannot 

often generalize effectively across the diverse and rapidly 

evolving Android environment, resulting in issues with 

both accuracy and scalability. Additionally, while 

machine learning approaches are increasingly being 

utilized, they often rely on single models that may not 

fully capture the wide range of malware behaviors, leading 

to less-than-optimal detection rates. Existing studies 

overlook the potential benefits of combining multiple 

machine learning algorithms to enhance detection 

performance. A significant gap in existing studies is the 

narrow focus on accuracy as the sole metric for evaluation, 

overlooking other crucial aspects like robustness and 

adaptability. To address these gaps, this research 

introduces a model that employs a combination of 

multiple machines learning algorithms, enhancing 

detection robustness and accuracy. This approach 

mitigates the weaknesses of single-method strategies and 

offers a more comprehensive defense against 

sophisticated malware, representing a crucial 

advancement in the field. 

3 Malware detection model 
A model for detecting malware on the Android 

platform has been developed using several machine 

learning algorithms such as Support Vector Machine, 

Random Forest, Extra Trees, Logistic Regression, and 

Gradient Boosting. The model's workflow is depicted in 

Figure 1. Initially, the dataset utilized was obtained from 

the Kaggle website [35], which serves as a platform 

providing a variety of datasets for machine learning 

projects. 

The preprocessing stage involved several critical steps 

to ensure data readiness. The encoding of categorical 

variables in the dataset is facilitated using the 

LabelEncoder class. This method transforms categorical 

data into numerical labels, assigning a unique integer to 

each category within a column. Implemented within the 

custom Encoder class, each categorical feature transforms 

individually, ensuring compatibility with subsequent 

machine learning algorithms that require numerical input 

rather than categorical labels.  LabelEncoder class 

encodes the values of target variables into values between 

0 and the number of class values– 1. 

To address class imbalance within the dataset, the 

RandomOverSampler class is applied. This method 

randomly duplicates instances of the minority class 

(malware) and appends them to the dataset until it 

achieves a balanced representation of both classes 

(malware and benign). By oversampling the minority class 

within the training set after the initial split using 

train_test_split, the model training process is fortified 

against bias towards the majority class, thereby enhancing 

its ability to generalize effectively.  

After balancing the dataset, feature selection is 

implemented using the SelectFromModel class. 

SelectFromModel can be applied with an estimator to give 

importance to every feature by using a particular attribute 

like coef_, feature_importances_, or importance_getter 

callable beyond fitting [36]. When the importance of the 

values of features is less than the given threshold value, 

these features are not significant and are deleted [36]This 

approach involves selecting the most important features 

based on the importance of the fitted model's features. For 

instance, for the algorithms used in the developed model, 

the SelectFromModel is integrated into each pipeline after 

preprocessing. This technique helps improve model 

efficiency and generalization by focusing on the most 

discriminative features while discarding less relevant 

ones. By reducing the dimensionality of the dataset to 

these influential attributes, overfitting is mitigated, and 
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model performance is enhanced, contributing to more 

accurate predictions in detecting and classifying Android 

malware. 

Finally, the dataset undergoes partitioning into training 

and testing subsets utilizing the StratifiedShuffleSplit 

cross-validation method. StratifiedShuffleSplit offers 

indices for train/test aiming at dividing data into sets for 

train/test [36]. This strategic approach involves randomly 

shuffling and splitting the dataset while maintaining the 

original distribution of classes, ensuring that each split 

retains the same proportion of Android malware and 

benign samples. By configuring n_splits=5, the dataset is 

segmented into five distinct training and testing sets across 

multiple iterations. This methodology is pivotal as it 

guarantees that the machine learning models are trained on 

diverse yet balanced subsets of data, facilitating robust 

evaluation and validation. Consequently, the models are 

rigorously assessed for their ability to generalize to unseen 

data, thereby bolstering their reliability and effectiveness 

in classifying Android malware. 

 
Figure 1: The machine learning malware detection 

model. 

4 The used dataset 
The dataset obtained from Kaggle, specifically tailored 

for detecting Android malware [35], encompasses 328 

features extracted from Android applications. These 

carefully curated features aim to cover various facets of 

app behavior, assisting machine learning models in 

effectively identifying patterns linked to malware [35]. 

With a total of 4,464 instances, the dataset is evenly 

divided between 2,533 instances labeled as "Malware" and 

1,931 instances labeled as "Benign". The decision to 

utilize this dataset was motivated by its comprehensive 

nature, offering researchers a trove of information for 

malware detection and analysis on the Android platform. 

As part of the preprocessing steps, it was observed that the 

data suffered from imbalance, with more instances of 

"Malware" compared to "Benign" applications. To 

address this limitation, a RandomOverSampler technique 

was employed during preprocessing to balance the dataset. 

This approach aimed to mitigate the effects of data 

imbalance and ensure that the machine learning models 

are trained on a more representative dataset, enhancing the 

robustness and accuracy of the analysis. 

5 Results and discussion of the 

compared algorithms 
This section presents the results of the developed 

model, which relies on machine learning algorithms for 

Android malware detection. The model utilizes Random 

Forest, Extra Trees, Logistic Regression, Gradient 

Boosting, and Support Vector Machine algorithms. 

Within the framework, these algorithms are compared 

across multiple parameters, including accuracy, precision, 

recall, and F1-Score. The objective is to determine which 

algorithm demonstrates the most favorable outcomes 

among those employed. 

As shown in Figure 2, the performance of the RF 

model was evaluated using a comprehensive set of 

metrics, including precision, recall, F1-score, and 

accuracy on both training and testing datasets. The RF 

model demonstrated robust capabilities with a precision of 

0.96 and a recall of 0.96 for the Benign class, indicating 

that 96% of instances predicted as benign were correct and 

accurately identified 96% of actual benign instances. For 

malware detection, the model achieved a precision of 0.97 

and a recall of 0.97, highlighting its high accuracy in 

predicting malware instances. The balanced performance 

of the RF model is further underscored by the F1-scores 

of 0.96 for the Benign class and 0.97 for the Malware 

class. These scores reflect the model's ability to effectively 

balance between correctly identifying positives and 

minimizing false positives, which is crucial for reliable 

malware detection systems. In terms of generalization, the 

RF model exhibited strong performance on previously 

unseen test data, achieving an accuracy of 96.64%. This 

indicates that the model successfully applied its learned 

patterns from the training set to new instances, 

demonstrating robust performance without overfitting. 

 

 
Figure 2: Random Forest malware classification report. 

 

Referencing Figure 3. The Extra Trees classifier 

demonstrated robust capabilities, achieving a precision of 
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0.95 and a recall of 0.96 for the Benign class. These 

metrics indicate that 95% of instances predicted as benign 

were accurate, and the classifier correctly identified 96% 

of actual benign instances. For malware detection, the 

classifier achieved a precision of 0.97 and a recall of 0.96, 

highlighting its high accuracy in predicting malware 

instances. The balanced performance of the Extra Trees 

classifier is further underscored by the F1-scores of 0.95 

for the Benign class and 0.97 for the Malware class. These 

scores illustrate the classifier's ability to effectively 

manage the trade-off between correctly identifying and 

minimizing false positives, which is essential for robust 

malware detection systems. In terms of accuracy, the 

Extra Trees classifier achieved an impressive overall 

accuracy of 96.08% on the test dataset. 

 

  
Figure 3: Extra trees malware classification report. 

 

For the Logistic Regression Algorithm, as illustrated 

in Figure 4. The Logistic Regression classifier exhibited 

robust performance metrics across benign and malware 

classes. The Benign class achieved a precision of 0.98 and 

a recall of 0.96, indicating that 98% of instances predicted 

as benign were accurate and correctly identified 96% of 

actual benign instances. In detecting malware, the 

classifier achieved a precision of 0.97 and a recall of 0.98, 

highlighting its high accuracy in identifying malware 

instances. The balanced performance is further 

highlighted by the F1-scores of 0.97 for the Benign class 

and 0.98 for the Malware class, demonstrating its ability 

to effectively balance between correctly identifying 

positives and minimizing false positives, which is crucial 

for reliable malware detection systems. Moreover, 

achieving an overall accuracy of 97.31% on the test 

dataset underscores the classifier's robustness in 

generalizing its learned patterns to new instances without 

overfitting. 

 

 
Figure 4: Logistic regression malware classification 

report. 

 

Referencing Figure 5, the Gradient Boosting classifier 

demonstrated robust performance across metrics crucial 

for Android malware detection. The Benign class 

achieved a precision of 0.96 and a recall of 0.95, indicating 

that 96% of instances predicted as benign were correct and 

accurately identified 95% of actual benign instances. In 

detecting malware, the classifier achieved a precision of 

0.96 and a recall of 0.97, highlighting its high accuracy in 

identifying malware instances. The balanced performance 

is further illustrated by the F1-scores of 0.95 for the 

Benign class and 0.97 for the Malware class, showcasing 

the classifier's capability to effectively balance between 

correctly identifying positives and minimizing false 

positives, essential for robust malware detection systems. 

Moreover, achieving an overall accuracy of 96.19% on the 

test dataset underscores the classifier's ability to generalize 

learned patterns to new instances without overfitting. 

 

 
Figure 5: Gradient boosting malware classification 

report. 

 

As illustrated in Figure 6. The Support Vector 

Machine classifier exhibited robust performance metrics 

crucial for Android malware detection. The Benign class 

achieved a precision of 0.98 and a recall of 0.95, indicating 

that 98% of instances predicted as benign were correct and 

accurately identified 95% of actual benign instances. In 

detecting malware, the classifier achieved a precision of 

0.96 and a recall of 0.98, highlighting its high accuracy in 

identifying malware instances. The balanced performance 

is further underscored by the F1-scores of 0.96 for the 

Benign class and 0.97 for the Malware class. This 

demonstrates the classifier's ability to effectively balance 

between correctly identifying positives and minimizing 

false positives, which is crucial for robust malware 

detection systems. Additionally, achieving an overall 

accuracy of 96.75% on the test dataset illustrates the 

classifier's capability to generalize learned patterns to new 

instances without overfitting. 
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Figure 6: Support vector machine malware classification 

report. 

According to the discussion mentioned above, it can 

be shown that across the evaluated machine learning, 

including RF, ET, LR, GB, and SVM, each algorithm 

demonstrated robust capabilities in distinguishing 

between benign and malware applications. RF and LR 

exhibited high precision and recall for both benign (RF: 

0.96, 0.96; LR: 0.98, 0.96) and malware (RF: 0.97, 0.97; 

LR: 0.97, 0.98) classes, reflecting their strong accuracy in 

classification tasks. Extra Trees and Gradient Boosting 

also performed well with precision-recall metrics (ET: 

benign 0.95, 0.96; malware 0.97, 0.96; GB: benign 0.96, 

0.95; malware 0.96, 0.97) and balanced F1-scores (ET: 

benign 0.95, malware 0.97; GB: benign 0.95, malware 

0.97), indicating effective trade-offs between correct 

identifications and false positives. SVM showed similarly 

strong performance (benign 0.98, 0.95; malware 0.96, 

0.98) with balanced F1-scores (benign 0.96, malware 

0.97). Logistic Regression stood out with the highest 

overall accuracy of 97.31%, closely followed by SVM 

(96.75%), RF (96.64%), ET (96.08%), and GB (96.19%) 

on the test dataset. These results suggest that while each 

classifier excels in specific metrics, Logistic Regression 

demonstrates the most favorable outcomes overall for 

Android malware detection tasks, balancing precision, 

recall, and accuracy effectively. 

Moreover, the study referenced in [18] employs 

identical data sourced from the Kaggle website and 

applies various machine-learning algorithms for Android 

malware detection. This study compares its developed 

model with the one in [Ref], specifically focusing on 

Random Forest, Extra Trees, Logistic Regression, 

Gradient Boosting, and SVM algorithms using accuracy 

as the primary metric. Accuracy holds significant 

importance in research, often serving as a pivotal indicator 

to assess the efficacy of malware detection techniques in 

scholarly articles. 

The accuracy, precision, recall, and F1-score results 

for Random Forest, Extra Trees, Logistic Regression, 

Gradient Boosting, and SVM are provided in Figures 7-

11, respectively. In addition, these results, besides macro 

average and weighted average results for the same order 

of algorithms, are shown in Table 2. 

 

 
Figure 7: Random Forest malware classification results. 

 

 
Figure 8: Extra trees malware classification results. 

 

 
Figure 9: Logistic regression classification results. 

 

 
Figure 10: Gradient boosting classification results. 
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Figure 11: SVM malware classification results. 

 

 

 

 

Table 2: The used ML algorithms malware 

classification results. 

ML 

Algorithm 
RF ET LR GB SVM 

Accuracy 0.97 0.96 0.97 0.96 0.97 

Precision 0.97 0.97 0.97 0.96 0.96 

Recall 0.97 0.96 0.98 0.97 0.98 

F1-score 0.97 0.97 0.98 0.97 0.97 

macro avg 0.97 0.96 0.97 0.96 0.97 

weighted avg 0.97 0.96 0.97 0.96 0.97 

 

The results of accuracy, precision, recall, and F1-score 

of the compared algorithms are shown in Figure 12. 

Random Forest, Logistic Regression, and SVM offer 

similar accuracy results, and these results are better than 

the accuracy results for Extra Trees and Gradient 

Boosting. Both Extra Trees and Gradient Boosting 

provide similar accuracy results. Random Forest, Extra 

Trees, and Logistic Regression present similar precision 

results, which are higher than those for Gradient Boosting 

and SVM. The precision results for Gradient Boosting and 

SVM are similar. The recall results for Logistic 

Regression and SVM are similar and the highest. In 

addition, Random Forest and Gradient Boosting have 

similar recall results, which are better than the recall result 

for Extra Trees. Logistic Regression provides the best F1-

score result. Random Forest, Extra Trees, Gradient 

Boosting, and SVM have similar F1-score results. 

 

 
Figure 12. Classification results of the compared 

algorithms. 

 

The Receiver Operating Characteristic (ROC) curve is 

presented in Figure 13. The ROC curve represents the 

classifier performance on dissimilar classification 

thresholds [37]. The figure of the ROC curve shows the 

True Positive Rate versus the False Positive Rate.  

The Receiver Operating Characteristic Area Under the 

Curve (ROC AUC) is a result that summarizes the 

classifier's performance for all potential classification 

thresholds [37]. ROC AUC results can be accomplished 

by gauging the area under the ROC curve [37]. ROC AUC 

result reveals how the classifier differentiates between 

negative and positive classes. As long as the ROC AUC 

result is higher, the performance is more satisfactory. The 

perfect model has an AUC result equal to 1 [37]. Figure 

13 shows that the AUC results for all compared algorithms 

are similar, and these results are 0.99. These results 

indicate that the model's performance using the compared 

algorithms is near perfect.    
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Figure 13: ROC AUC Results of the compared algorithms. 

 

 

 

6 Results and discussion of the 

proposed model and the previous 

model 
Referring to Table 3, the comparison of algorithm 

accuracies between the developed model and the model in 

[18], both applied to the same datasets, reveal nuanced 

performance differences in detecting Android malware. 

The Logistic Regression model in the developed study 

demonstrated superior test accuracy of 0.9731, compared 

to 0.9615 in [18], indicating its enhanced performance on 

this dataset. Similarly, the Support Vector Machine 

achieved higher accuracy in the developed model, 

recording 0.9675 compared to 0.9521 in [18], 

underscoring its more robust performance on the dataset 

utilized. The Random Forest and Extra Trees classifiers 

also demonstrated higher test accuracies in the developed 

model (Random Forest: 0.9664 to 0.9570; Extra Trees: 

0.9608 to 0.9550), suggesting their better adaptation to the 

dataset's characteristics. In contrast, the Gradient Boosting 

Classifier showed comparable performance between the 

developed model (0.9619) and the other model (0.9637), 

indicating consistent effectiveness across datasets. 

Overall, the classifiers generally exhibited superior test 

accuracy in the developed model compared to the results 

reported in [18]. These observations highlight the 

importance of dataset selection and evaluation in ensuring 

machine learning models' robust and reliable performance 

in practical applications. The proposed Logistic 

Regression model offers the best accuracy results because 

it has the highest True Positive and True Negative cases 

and the lowest False Positive and False Negative Cases. 

The novelty of the proposed model using machine 

learning algorithms is provided as follows: 

• The dataset contains much data that helps analyze and 

detect malware on Android platforms. 

• The dataset used is rich in features, where these features 

are taken from Android applications. 

• The methodology used can help in detecting Android 

malware. 

The high classification results indicate the high 

performance of the proposed model using machine 

learning algorithms. 

 

Table 3: The accuracy results of the developed model 

and the developed model of [18]. 

Method The Developed 

Model 

The Other 

Model [18] 

Random Forest  0.9664 0.9570 

Extra Trees 0.9608 0.9550 

Logistic 

Regression  

0.9731 0.9615 

Gradient Boosting 0.9619 0.9637 

Support Vector 

Machine 

0.9675 0.9521 

7 Conclusion and future work 
Based on the comprehensive evaluation and analysis 

presented in this study, the machine learning models, 

including Random Forest, Extra Trees, Logistic 

Regression, Gradient Boosting, and Support Vector 

Machine, have proven highly effective in distinguishing 

between benign and malware applications within the 

Android ecosystem. These algorithms demonstrated 
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robust performance across key metrics such as accuracy, 

precision, recall, F1-scores, and ROC-AUC, essential for 

accurate malware detection. Logistic Regression emerged 

as the standout performer, with the highest overall 

accuracy of 97.31%, underscoring its reliability in 

classifying malware instances while maintaining a low 

false-positive rate. 

Comparative analysis with a previous model using the 

same dataset revealed that our developed model 

consistently outperformed the prior approach across all 

evaluated algorithms in accuracy. This improvement 

signifies the effectiveness of our methodology in 

enhancing malware detection capabilities on Android 

devices. The results suggest that our approach achieves 

superior performance and lays a foundation for future 

advancements in cybersecurity research. 

Moving forward, future research could concentrate on 

further enhancing the model's scalability and applicability 

in real-time scenarios. This may entail incorporating more 

advanced features, exploring ensemble methods to 

amalgamate different algorithm strengths, or utilizing 

deep learning techniques to achieve superior detection 

accuracy. The proposed model can be applied to different 

datasets to obtain its performance using varying-size 

datasets. Additionally, broadening the dataset to 

encompass a more comprehensive array of malware 

samples and real-world scenarios could offer deeper 

insights into the model's robustness and applicability. 

Furthermore, the continuous evolution of Android 

malware necessitates ongoing adaptation and innovation 

in detection methodologies. Tackling these challenges 

requires interdisciplinary collaboration to develop 

comprehensive solutions that identify and mitigate the 

impact of malicious software on mobile device users. This 

study contributes significantly to safeguarding mobile 

ecosystems against emerging cybersecurity threats by 

advancing the forefront of machine learning-driven 

malware detection. In summary, while this study has made 

significant strides in enhancing Android malware 

detection through machine-learning methods, pursuing 

comprehensive mobile security remains an ongoing 

endeavor. Embracing innovation and collaboration in 

future research endeavors can further build upon these 

foundational advancements to establish more resilient and 

adaptable defense mechanisms against evolving cyber 

threats. 
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