
https://doi.org/10.31449/inf.v48i17.6543 Informatica 48 (2024) 95–108 95

A Model for Android Platform Malware Detection Utilizing Multiple

Machine Learning Algorithms

 Hussein Al Bazar*1, Hussein Abdel-Jaber2, Muawya Naser3, Arwa Zakaria Hamid4

 1,2,4Faculty of Computer Studies, Arab Open University (AOU), Riyadh, Saudi Arabia
3 Department of Cybersecurity, Princess Sumaya University for Technology, Amman, Jordan

E-mail: halbazar@arabou.edu.sa, habdeljaber@arabou.edu.sa, m.aldalaien@psut.edu.jo, a.hamid@arabou.edu.sa

*Corresponding author

Keywords: mobile devices, android, malware, security threats, machine learning.

Received: July 3, 2027

In today's technological landscape, the ubiquitous use of mobile devices underscores their critical

importance in facilitating daily tasks and enabling a wide array of functionalities, from communication

to commerce and entertainment. However, this widespread adoption also brings significant concerns

regarding security and privacy, especially with the proliferation of mobile applications capable of

accessing sensitive data without explicit user consent. The Android operating system, renowned for its

openness and extensive app ecosystem, faces substantial security challenges due to its susceptibility to

malware attacks. Malicious software, covertly embedded within seemingly legitimate apps, poses serious

threats such as data theft, unauthorized access, and device compromise. This study presents a

comprehensive approach to malware detection on the Android platform, utilizing a dataset comprising

4,464 instances, evenly divided between 2,533 labeled as "Malware" and 1,931 labeled as "Benign." The

dataset, sourced from real-world Android applications, includes 328 extracted features to enhance

detection accuracy. Five machine learning algorithms were evaluated to develop a robust malware

detection system: Random Forest, Extra Trees, Logistic Regression, Gradient Boosting, and Support

Vector Machine. The performance of these algorithms was rigorously assessed based on accuracy,

precision, recall, F1-score, and ROC-AUC. The performance of these algorithms is rigorously evaluated

and compared based on accuracy, precision, recall, and F1-score. The results reveal that the Logistic

Regression algorithm achieved the highest accuracy at 97.31%, outperforming the other models.

Specifically, Random Forest achieved 96.64%, Extra Trees 96.08%, Gradient Boosting 96.19%, and

Support Vector Machine 96.75%. These findings suggest that Logistic Regression is particularly effective

in identifying Android malware within this dataset, offering a reliable solution for enhancing mobile

security. This research benchmarks these results against prior models utilizing different machine learning

approaches and provides concrete insights into the most effective methodologies for mitigating Android

malware threats. By advancing detection capabilities through sophisticated machine learning techniques,

this study contributes to ongoing efforts to safeguard mobile device users from evolving cybersecurity

threats, underscoring the critical role of data-driven models in enhancing the security and privacy of

Android platforms.

Povzetek: Študija uvaja model za zaznavanje zlonamerne programske opreme na Android platformi z

uporabo mnogoterih algoritmov strojnega učenja - tako učinkovito zmanjšuje varnostna tveganja na

mobilnih napravah.

1 Introduction
As technology advances, mobile devices are increasingly

relied upon by users [1, 2]. The contemporary era is seeing

a rapid proliferation of mobile devices and their associated

apps, driven by their seamless functionality and ongoing

improvements in smartphone technology [3]. Mobile

phones have become omnipresent, enabling a multitude of

daily tasks such as calling, web browsing, online banking,

social networking, e-commerce, gaming, photography,

and app usage [4-6]. Furthermore, the vast array of

capabilities offered by mobile devices and the expanding

range of user activities have raised significant concerns

regarding device security and personal privacy [7, 8].

Mobile applications installed on a device can utilize

various features and capabilities, such as the integrated

GPS for location tracking, the camera, and the

microphone. This extensive access to the device's

hardware and sensors enables installed apps to collect data

without the user's explicit consent or awareness [5].

According to a study by the International Association of

Mobile Operators (GSMA), as of 2023, 5.6 billion people,

constituting 69% of the global population, were

subscribed to mobile services. Additionally, 58% of the

world's population accesses mobile Internet via

smartphones, totaling 4.7 billion users [9].

Several operating system platforms are accessible for

mobile phones in the marketplace, such as Windows

Mobile, iOS, and Android OS, the most prevalent mobile

phone operating system [10-12]. Android OS is

recognized for its high level of customization and open-

mailto:halbazar@arabou.edu.sa
mailto:habdeljaber@arabou.edu.sa
mailto:m.aldalaien@psut.edu.jo
mailto:a.hamid@arabou.edu.sa

96 Informatica 48 (2024) 95–108 H. Al Bazar et.al.

source nature, supporting a wide range of devices,

including smartphones, smartwatches, television sets, and

projectors. This flexibility allows Android OS to adapt to

diverse hardware platforms and form factors, boasting a

repository of over 2.6 billion apps available on the Google

Play Store by 2023 [5, 13]. However, the open-source

framework of Android OS, combined with lax security

vetting of marketplace applications, exposes Android

devices to heightened vulnerability against malicious

attacks [11]. Additionally, the absence of built-in tools

within Android OS to preemptively detect malware in

applications before installation leaves users unable to

ascertain the presence of potentially harmful components

[4, 6].

Malware refers to software designed to disrupt or

impair computer or mobile applications, gather sensitive

information, or carry out malicious activities [2, 4, 10]. It

can be covertly packaged with legitimate applications, or

its malicious functionalities can be concealed within an

otherwise benign-looking app, posing potential threats to

user data and device integrity [2, 4]. Malware's main

objectives include impairing applications, stealing

sensitive data like credit card details or login credentials,

accessing personal information, and executing harmful

actions [11, 12]. Cybercriminals have increasingly

targeted the Android platform by embedding sophisticated

malicious code in applications, challenging security

providers to effectively detect and counter such threats

[12, 14]. Furthermore, malicious applications often bypass

existing security measures, leaving users unaware if an

installed app might operate maliciously and engage in

harmful activities undetected [5].

The conventional method for identifying malware is

signature-based detection, where a unique identifier or

signature is extracted from the application and compared

with a database of known malware signatures [15].

However, this approach has a significant drawback: even

slight modifications to the malware, such as changes in

code lines, instructions, or keywords, can alter the

signature sufficiently to evade detection by anti-malware

software [15]. In addition to signature-based detection,

machine learning offers two primary approaches for

malware detection: supervised and unsupervised methods

[16]. Furthermore, various techniques for analyzing and

detecting Android malware fall into categories such as

static, dynamic, or hybrid analysis [13, 14]. These

methods aim to extract key feature sets used by machine

learning algorithms for subsequent malware detection

[14]. Nonetheless, a significant drawback of these

approaches is their complexity and high computational

demands, owing to their reliance on numerous features

[13, 15].

Android malware poses a significant security risk by

exploiting vulnerabilities in Android devices, potentially

leading to financial losses and unauthorized access to

sensitive personal information. As these malware attacks

become more prevalent, there is an increasing demand for

robust detection methods to protect users from these

malicious threats [16, 17].

This study proposes an Android-based platform using

machine learning models that employ various algorithms:

Random Forest (RF), Extra Trees (ET), Logistic

Regression (LR), Gradient Boosting (GB), and Support

Vector Machine (SVM), for application malware

detection. The objective is to determine which algorithm

provides the best results in terms of accuracy, precision,

recall, and F1-score. Additionally, the study compares its

findings with a previously developed model in [18]

utilizes the same dataset using different machine learning

algorithms to determine which one has better accuracy

classification report results. This research aims to

determine the machine learning algorithm that produces

the best classification results among those evaluated.

Furthermore, it seeks to identify whether the developed

model or previous models utilizing different machine

learning algorithms demonstrate superior accuracy results.

The paper is structured as follows: Section 2 reviews

existing related works on models for detecting Android

malware. Section 3 describes the developed machine

learning model in detail. Section 4 provides an overview

of the dataset used in this research. Section 5 presents the

achieved classification results and a discussion of the

compared algorithms. Section 6 introduces the

classification results and discussion between the proposed

model and a previous model. Conclusions and future work

based on the findings of the study are revealed in Section

7.

2 Related work
This section discusses the most recent studies on

employing machine learning models for detecting

malware on the Android platform.

In [1], a method for detecting Android malware is

introduced based on aggregating vulnerable features. This

approach uses static analysis to link each API call with

specific features, which are combined to determine their

frequency. Several machine learning classifiers were

tested, with RF showing the highest effectiveness,

achieving an ROC-AUC score of 98.87%, particularly for

obfuscated malware. The study also employs Non-

negative Matrix Factorization (NMF) to streamline the

model, demonstrating its scalability by reducing the

feature set by 75.9% while maintaining a strong ROC-

AUC score of 95.67%. Moreover, in [2]. The researchers

propose a machine-learning approach using the SVM

algorithm to detect Android malware. The study

emphasizes static analysis of API calls made by Android

apps. The dataset includes malicious and benign

applications accessing system resources via Android API

calls. Comparative analysis against other methods shows

exceptional performance, achieving an overall accuracy of

99.75% [2]. Furthermore, in [8], a static-based

classification approach is introduced for Android malware

detection using permissions and API calls. The study

employs SVM, K-nearest neighbors (KNN), and Naive

Bayes (NB) classifiers on the "CIC InvesAndMal2019"

dataset. Results indicate that SVM achieves the highest

average accuracy rate of 94%, followed by KNN at 93%

and NB at 84%.

The study [19] presents an effective method for feature

extraction from Android APKs using static analysis. The

A Model for Android Platform Malware Detection Utilizing… Informatica 48 (2024) 95–108 97

research utilizes diverse features such as API calls, intents,

permissions, and command signatures. Extracting these

features employs two well-known datasets, Drebin and

Malgenome. Machine learning classifiers, including

SVM, MVC, and RF, are trained on these features.

Additionally, Principal Component Analysis (PCA) is

used to optimize feature sets and train models. Results

show that RF achieves % the highest accuracy of 96.27%

with the Drebin permission feature combination.

Meanwhile, SVM with PCA surpasses other classifiers,

reaching a peak accuracy of 97.63% using the Malgenome

permission combination [19]. Additionally, in [7], a novel

approach for Android malware detection is proposed

based on the coexistence of features. A new dataset is

created, integrating co-occurring permissions and API

calls at varying combination levels. The frequent pattern

growth method extracts the most relevant coexisting

features. Android APK samples from Drebin, Malgenome,

and MalDroid2020 datasets were utilized to generate these

new datasets. Using the Random Forest algorithm with

coexisting permissions features, the approach achieves a

maximum accuracy of 98%. Specifically, the Malgenome

dataset outperforms the state-of-the-art accuracy of 87%,

reaching 98%. Furthermore, compared to the state-of-the-

art 93% accuracy using the Drebin dataset, the proposed

method achieves 95% accuracy [7].

In a recent study conducted by [5], the effectiveness of

various machine-learning approaches for classifying

Android malware using the Drebin dataset was evaluated.

The researchers analyzed a dataset comprising 123,453

benign and 5,560 malware applications sourced from

Drebin. Their primary goal was to assess the performance

of several classifiers and determine the key features

influencing their decision-making. The study found that

SVM achieved the highest accuracy, precision, and recall

metrics among the classifiers tested, which included

RidgeReg, RF, LassoReg, BNB, 1-ANN, and ANN. In

contrast, RidgeReg was identified as the optimal choice

due to its model complexity, optimization capabilities, and

ability to fine-tune [5].

In [20], the effectiveness of various machine-learning

models for detecting Android malware is investigated.

The study employs SMOTE normalization for numerical

features and Principal Component Analysis (PCA) to

enhance accuracy. A robust multi-category classification

system for Android malware is also introduced based on

the Light Gradient Boosting Model (GBM). This model

categorizes malware into five classes: Adware, Banking

Malware, SMS Malware, Mobile Riskware, and Benign

apps. Results highlight that the Light GBM algorithm

achieves the highest F1-score of 95.47% and the best

accuracy of 95.49% [20].

In [21], the research explores static, dynamic, and

hybrid analyses for detecting malware. The dataset

includes benign, malware, and Greyware applications.

Various classifiers such as XGBoost, Gradient Boosting,

Decision Tree, and Random Forest are employed. The

study highlights the effectiveness of static features

(specifically permissions) and dynamic features (activity

repetition). Results indicate that accuracy rates for static,

dynamic, and hybrid analyses are consistently above 94%,

with static analysis particularly noted for its cost-

effectiveness in classification tasks. Furthermore, in [22],

BrainShield has introduced a hybrid malware detection

model designed to defend against attacks on Android

devices. Trained on the Omnidroid dataset, BrainShield

integrates static, dynamic, and hybrid neural networks.

The results indicate that the model achieved accuracies of

92.9% with static analysis, 81.1% with dynamic analysis,

and 91.1% with hybrid (combined static and dynamic)

analysis.

In [23], a method is introduced for detecting Android

malware by analyzing correlations among abstracted API

calls made at the method level within applications. These

API calls are grouped into transactions to establish

behavioral semantics for each application. The system

characterizes app behavior by calculating the confidence

of association rules between these calls. Machine learning

techniques are then applied to integrate distinct behavioral

patterns of malicious and benign apps, creating an

effective detection system. Results show strong

performance, achieving 96% accuracy and 98% F-

measure on the Drebin and AMD datasets, demonstrating

competitive accuracy and efficiency [23]. Moreover,

research introduces PermDroid, a framework designed to

enhance the effectiveness of machine learning-based

Android malware detection through feature selection

techniques [13]. Initially, PermDroid applies statistical

methods such as t-test and logistic regression to identify

the most relevant features distinguishing malware from

benign apps. It then refines the feature set through

regression and correlation analyses. The optimized subset

of features is utilized to build malware detection models

using three ensemble approaches: homogeneous,

heterogeneous, and linear ensembles. Experimental

findings demonstrate that PermDroid's feature selection

strategy enables models like DNN and NDTF to achieve a

high malware detection accuracy of 98.8%, surpassing

previous frameworks [13].

An automated approach for detecting Android

malware using the Optimal Ensemble Learning Approach

for Cybersecurity is introduced in [24]. The primary

objective of this technique is to automate the classification

and identification of Android malware. The Android

malware detection process employs ensemble learning

with LS-SVM, KELM, and RRVFLN models.

Additionally, parameter tuning based on HPO enhances

malware detection results. The simulation results

demonstrate the superiority of the proposed technique

over existing approaches [24]. A malware detection

method called CogramDroid is introduced in [25], which

relies on opcode ngrams. This method categorizes

applications by analyzing the relative frequency patterns

of opcode ngrams, employing the concept of word

cooccurrence from natural language processing. The result

shows that using three grams and seven core opcodes,

CogramDroid achieved an accuracy rate of 96.22% and an

F1-score of 96.69% [25]. Additionally, this work presents

a framework that uses reverse-engineered Android app

features and advanced machine learning to identify

security vulnerabilities. The researchers developed a

model incorporating cutting-edge static analysis methods

98 Informatica 48 (2024) 95–108 H. Al Bazar et.al.

and leveraging extensive malware datasets [25].

Additionally, the study employed an ensemble learning

strategy, integrating multiple machines learning

algorithms, including AdaBoost, SVM, Decision Trees,

KNN, NB, and RF. This ensemble approach was used to

enhance the performance and accuracy of the vulnerability

detection model. The proposed framework was evaluated

across three distinct datasets, and the experimental results

demonstrate an accuracy of 96.24% in detecting malware

extracted from Android applications using the AdaBoost

machine-learning technique [12].

In [26], an Android malware detection method

utilizing multiple machine learning algorithms is

introduced. The study explores features extracted from

Android app binaries, including permissions, API calls,

system calls, code segments, and structural attributes.

Results indicate that SDL achieves the highest accuracy

rate of 99.3%, followed closely by SVM at 98.69%.

Similarly, in [11], a method leveraging Java application

permissions and APIs for Android malware detection is

presented. RF, SVM, NB, and DT machine learning

algorithms are applied, with RF achieving the highest

accuracy rate of 96.2% among the tested techniques.

These studies underscore the efficacy of machine learning

approaches in identifying and categorizing malicious

software on Android devices, demonstrating significant

advancements in malware detection capabilities.

Researchers explored Android malware detection

using a hybrid approach combining machine learning with

genetic algorithms. Their study involved deploying nine

machine-learning algorithms on a dataset containing 5,000

benign Android apps and 2,500 malware samples, each

characterized by 1,104 static features. Notably, they

integrated a genetic algorithm-based feature selection

technique to pinpoint the most informative attributes from

the dataset. Experimental results showcased that this

genetic algorithm-based strategy significantly boosted

overall malware detection performance, especially in

terms of time efficiency, compared to traditional machine

learning models lacking feature selection [17].

Furthermore, in a study conducted by [4], the MobiPCR

malware detection system for the Android platform is

introduced, incorporating a cloud-based architecture and

an edge computing model. This innovative design utilizes

machine learning frameworks to achieve efficient and

accurate malware detection while reducing computational

and power demands on mobile devices. The core

functionality of MobiPCR involves uploading new

application binaries to a cloud-hosted detector, which

performs code analysis and applies advanced machine-

learning techniques to detect potential malicious

components [4].

In [27], a parallel machine learning-based method is

introduced for early detection. Using a custom analysis

tool, this approach employs diverse classifiers and extracts

static features such as API-related features, app

permissions, and OS/framework commands from Android

app APK files. These features train multiple machine

learning models in a parallel classification setup,

including DT, Simple Logistic, NB, PART, and RIDOR.

Experimental results demonstrate that the PART

algorithm achieves superior detection capability and

accuracy, performing at 95.8% and 96.3%, respectively,

outperforming other algorithms in the study [27]. In

contrast, [6] proposes an approach for identifying malware

in Android applications using image-based feature

extraction. This method converts files from Android app

source code into grayscale images. It extracts various

image features such as SIFT, SURF, KAZE, ORB, color

histograms, Haralick texture measures, and Hu moments.

These features train machine learning models, including

RF, AdaBoost, and GB. Testing across three datasets

containing 9,700 samples shows that RF, AdaBoost, and

GB classifiers achieve high accuracies ranging from

95.78% to 98.75% when utilizing global image features.

These studies highlight advanced methodologies in

Android malware detection, combining sophisticated

feature extraction techniques with powerful machine-

learning algorithms to enhance accuracy and efficiency in

detecting malicious applications.

A method to identify repackaged Android malware

adopts a comprehensive approach that examines the app's

internal code structure, behavioral patterns, and

dependency relationships. This involves segmenting the

code into graphs, identifying vulnerabilities at both class

and method levels, and utilizing an evolving genetic

algorithm to optimize a feature set. This optimized feature

set is then used to train machine learning models

efficiently to detect repackaged malware. Experimental

findings demonstrate that by using lower-dimensional

feature sets, classifiers such as SVM and Neural Networks

consistently achieve classification accuracies exceeding

90-91%, effectively streamlining the training process

while maintaining high accuracy levels [14]This approach

highlights the integration of advanced techniques in code

analysis and machine learning to combat repackaged

Android malware effectively.

Numerous research studies have conducted thorough

and systematic reviews on the application of machine

learning techniques for Android malware detection, as

evidenced by studies such as [15, 16, 28]. These reviews

aim to provide a comparative analysis of different

methods for detecting Android malware and discuss the

evaluation metrics employed to measure their

effectiveness. The overarching goal is to offer a

comprehensive overview of the current state-of-the-art in

Android malware detection, highlighting the strengths and

limitations of various machine learning-based approaches.

By assessing these methods using standardized metrics,

these studies aim to assist researchers and practitioners in

making well-informed decisions when selecting malware

detection solutions tailored to their specific requirements

[15, 16, 28].

Researchers have extensively explored deep learning

techniques for Android malware detection, showcasing a

variety of innovative approaches and their respective

achievements. For instance, Alzaylaee et al. introduced

DL-Droid, a dynamic deep-learning system that analyzes

Android applications and achieved detection rates up to

97.8% using dynamic features alone and 99.6% when

incorporating dynamic and static features [29]. Another

system, MAPAS, utilizes convolutional neural networks

A Model for Android Platform Malware Detection Utilizing… Informatica 48 (2024) 95–108 99

to analyze API call graphs, achieving an accuracy rate of

91.27% [30]. Deep learning algorithms such as LSTM and

MLP have also been effectively employed, demonstrating

malware detection accuracies exceeding 99% across

various datasets [31]. Moreover, a convolutional neural

network-based method proposed in [32] achieved an

impressive accuracy rate of 99.92% by optimizing

parameters such as filter sizes, training epochs, learning

rates, and network configurations using the Drebin

dataset. Additionally, studies like [33] explored GRU-

based methods while [34] introduced MobiTive, an

efficient Android malware detection system leveraging

customized deep neural networks for responsive real-time

detection on mobile devices. These advancements

underscore the growing effectiveness of deep learning in

enhancing Android malware detection capabilities. Table

1 summarizes some recent studies that have discussed the

method used, the dataset used, and the performance

matrices based on accuracy, precision, recall, and F1-

score.

Table 1: A summary of recent android malware detection solutions.

Ref Year Method (s) Dataset Accuracy Precision Recall F1-Score

[26] 2024

SVM

Android applications collected

data.

98.69 98.7 98.7 98.7

CNN 97.53 97.6 97.5 97.5

AE 95.33 95.3 95.3 95.3

DBN 97.7 97.7 97.7 97.7

ELM 98.2 98.2 98.2 98.2

SDL 99.34 99.3 99.3 9.3

[3] 2023

Naïve Bayes APK 85.1 - - -

KNN 87.2 - - -

SVM 91.4 - - -

DBN-GRU 97.9 - - -

[4] 2023

Hamming DES Collected from multiple sources.

Application Centers

Drebin

Ashish Bhatia

94.5 - - -

Voting 70.4 - - -

Naïve stacking 87.7 - - -

MobiPCR 99.1 - - -

[20] 2023

LGB

CICMalDroid2020

94.80 - - 94.81

RF 94.11 - - 94.12

ET 93.74 - - 93.77

KNN 84.66 - - 84.71

SVM 45.88 - - 45.53

[7] 2023

RF

Best-achieved

accuracy.

A new dataset was created from

Drebin, Malgenome, and

MalDroid2020 APK samples. RF

results were shown with varying

numbers of selected features.

98.0 - - -

[8] 2022

SVM
CICInvesAndMal2019

 Permission features

94.36 95.9 82.6 88.8

KNN 93.42 91.1 83.7 87.3

NB 84.33 97.4 63.0 70.8

[19] 2022

SVM

Drebin (D)

 Malgenome (M)

With the usage of Principal

Component Analysis (PCA).

D 98.19

M 98.84

D 98.0

M 99.0

D 97.0

M 97.0

D 98.0

M 98.0

MVC
D 97.65

M 98.24

D 98.0

M 1.0

D 95.0

M 94.0

D 97.0

M 96.0

RF
D 97.15

M 97.78

D 98.0

M 1.0

D 94.0

M 95.0

D 96.0

M 97.0

[21] 2022

GB

Palo Alto Networks

With static feature results

99.5 99.4 99.7 99.6

XGBoost 99.5 99.4 99.7 99.6

DT 99.4 99.4 99.7 99.4

RF 94.6 95.1 99.4 97.2

[17] 2021

J48

Andro-AutoPsy

96.8 - - 95.2

RF 97.8 - - 96.6

Decision Table 94.6 - - 91.6

MLP 98.1 - - 97.1

NB 69.1 - - 91.0

SVM 96.4 - - 96.4

LR 96.3 - - 94.4

100 Informatica 48 (2024) 95–108 H. Al Bazar et.al.

AdaBoost 88.4 - - 81.7

KNN 97.2 - - 95.7

[1] 2020

LR

Drebin

91.86 94.77 84.72 89.47

SVM 93.35 90.88 93.06 91.95

RF 93.77 99.80 84.72 91.73

KNN 93.15 89.37 94.44 91.84

[2] 2020 SVM

Best-achieved

accuracy.

Collected from an Android

environment including Google

Play, Amazon AppStore, APKP,

AMD, and Drebin

99.75 99.54 99.97 -

[11] 2020

SVM

Android MSA

84.5 - - 81.9

ID3 80.7 - - 79.9

NB 91.4 - - 88.7

RF 96.2 - - 94.9

[23] 2019

KNN

Drebin (D)

AMD

D 92.0

96.0

D 90.0

95.0

D 96.0

97.0

D 93.0

96.0

RF D 96.0

98.0

D 97.0

99.0

D95.0

98.0

D 96.0

98.0

SVM D94.0

97.0

D 94.0

97.0

D 94.0

97.0

D 94.0

97.0

To conclude, Android malware detection, while

advanced, still faces significant challenges that highlight

the need for further research. Many existing methods

heavily depend on static or dynamic analysis, each with

limitations such as vulnerability to code obfuscation or

high computational demands. These techniques cannot

often generalize effectively across the diverse and rapidly

evolving Android environment, resulting in issues with

both accuracy and scalability. Additionally, while

machine learning approaches are increasingly being

utilized, they often rely on single models that may not

fully capture the wide range of malware behaviors, leading

to less-than-optimal detection rates. Existing studies

overlook the potential benefits of combining multiple

machine learning algorithms to enhance detection

performance. A significant gap in existing studies is the

narrow focus on accuracy as the sole metric for evaluation,

overlooking other crucial aspects like robustness and

adaptability. To address these gaps, this research

introduces a model that employs a combination of

multiple machines learning algorithms, enhancing

detection robustness and accuracy. This approach

mitigates the weaknesses of single-method strategies and

offers a more comprehensive defense against

sophisticated malware, representing a crucial

advancement in the field.

3 Malware detection model
A model for detecting malware on the Android

platform has been developed using several machine

learning algorithms such as Support Vector Machine,

Random Forest, Extra Trees, Logistic Regression, and

Gradient Boosting. The model's workflow is depicted in

Figure 1. Initially, the dataset utilized was obtained from

the Kaggle website [35], which serves as a platform

providing a variety of datasets for machine learning

projects.

The preprocessing stage involved several critical steps

to ensure data readiness. The encoding of categorical

variables in the dataset is facilitated using the

LabelEncoder class. This method transforms categorical

data into numerical labels, assigning a unique integer to

each category within a column. Implemented within the

custom Encoder class, each categorical feature transforms

individually, ensuring compatibility with subsequent

machine learning algorithms that require numerical input

rather than categorical labels. LabelEncoder class

encodes the values of target variables into values between

0 and the number of class values– 1.

To address class imbalance within the dataset, the

RandomOverSampler class is applied. This method

randomly duplicates instances of the minority class

(malware) and appends them to the dataset until it

achieves a balanced representation of both classes

(malware and benign). By oversampling the minority class

within the training set after the initial split using

train_test_split, the model training process is fortified

against bias towards the majority class, thereby enhancing

its ability to generalize effectively.

After balancing the dataset, feature selection is

implemented using the SelectFromModel class.

SelectFromModel can be applied with an estimator to give

importance to every feature by using a particular attribute

like coef_, feature_importances_, or importance_getter

callable beyond fitting [36]. When the importance of the

values of features is less than the given threshold value,

these features are not significant and are deleted [36]This

approach involves selecting the most important features

based on the importance of the fitted model's features. For

instance, for the algorithms used in the developed model,

the SelectFromModel is integrated into each pipeline after

preprocessing. This technique helps improve model

efficiency and generalization by focusing on the most

discriminative features while discarding less relevant

ones. By reducing the dimensionality of the dataset to

these influential attributes, overfitting is mitigated, and

A Model for Android Platform Malware Detection Utilizing… Informatica 48 (2024) 95–108 101

model performance is enhanced, contributing to more

accurate predictions in detecting and classifying Android

malware.

Finally, the dataset undergoes partitioning into training

and testing subsets utilizing the StratifiedShuffleSplit

cross-validation method. StratifiedShuffleSplit offers

indices for train/test aiming at dividing data into sets for

train/test [36]. This strategic approach involves randomly

shuffling and splitting the dataset while maintaining the

original distribution of classes, ensuring that each split

retains the same proportion of Android malware and

benign samples. By configuring n_splits=5, the dataset is

segmented into five distinct training and testing sets across

multiple iterations. This methodology is pivotal as it

guarantees that the machine learning models are trained on

diverse yet balanced subsets of data, facilitating robust

evaluation and validation. Consequently, the models are

rigorously assessed for their ability to generalize to unseen

data, thereby bolstering their reliability and effectiveness

in classifying Android malware.

Figure 1: The machine learning malware detection

model.

4 The used dataset
The dataset obtained from Kaggle, specifically tailored

for detecting Android malware [35], encompasses 328

features extracted from Android applications. These

carefully curated features aim to cover various facets of

app behavior, assisting machine learning models in

effectively identifying patterns linked to malware [35].

With a total of 4,464 instances, the dataset is evenly

divided between 2,533 instances labeled as "Malware" and

1,931 instances labeled as "Benign". The decision to

utilize this dataset was motivated by its comprehensive

nature, offering researchers a trove of information for

malware detection and analysis on the Android platform.

As part of the preprocessing steps, it was observed that the

data suffered from imbalance, with more instances of

"Malware" compared to "Benign" applications. To

address this limitation, a RandomOverSampler technique

was employed during preprocessing to balance the dataset.

This approach aimed to mitigate the effects of data

imbalance and ensure that the machine learning models

are trained on a more representative dataset, enhancing the

robustness and accuracy of the analysis.

5 Results and discussion of the

compared algorithms
This section presents the results of the developed

model, which relies on machine learning algorithms for

Android malware detection. The model utilizes Random

Forest, Extra Trees, Logistic Regression, Gradient

Boosting, and Support Vector Machine algorithms.

Within the framework, these algorithms are compared

across multiple parameters, including accuracy, precision,

recall, and F1-Score. The objective is to determine which

algorithm demonstrates the most favorable outcomes

among those employed.

As shown in Figure 2, the performance of the RF

model was evaluated using a comprehensive set of

metrics, including precision, recall, F1-score, and

accuracy on both training and testing datasets. The RF

model demonstrated robust capabilities with a precision of

0.96 and a recall of 0.96 for the Benign class, indicating

that 96% of instances predicted as benign were correct and

accurately identified 96% of actual benign instances. For

malware detection, the model achieved a precision of 0.97

and a recall of 0.97, highlighting its high accuracy in

predicting malware instances. The balanced performance

of the RF model is further underscored by the F1-scores

of 0.96 for the Benign class and 0.97 for the Malware

class. These scores reflect the model's ability to effectively

balance between correctly identifying positives and

minimizing false positives, which is crucial for reliable

malware detection systems. In terms of generalization, the

RF model exhibited strong performance on previously

unseen test data, achieving an accuracy of 96.64%. This

indicates that the model successfully applied its learned

patterns from the training set to new instances,

demonstrating robust performance without overfitting.

Figure 2: Random Forest malware classification report.

Referencing Figure 3. The Extra Trees classifier

demonstrated robust capabilities, achieving a precision of

102 Informatica 48 (2024) 95–108 H. Al Bazar et.al.

0.95 and a recall of 0.96 for the Benign class. These

metrics indicate that 95% of instances predicted as benign

were accurate, and the classifier correctly identified 96%

of actual benign instances. For malware detection, the

classifier achieved a precision of 0.97 and a recall of 0.96,

highlighting its high accuracy in predicting malware

instances. The balanced performance of the Extra Trees

classifier is further underscored by the F1-scores of 0.95

for the Benign class and 0.97 for the Malware class. These

scores illustrate the classifier's ability to effectively

manage the trade-off between correctly identifying and

minimizing false positives, which is essential for robust

malware detection systems. In terms of accuracy, the

Extra Trees classifier achieved an impressive overall

accuracy of 96.08% on the test dataset.

Figure 3: Extra trees malware classification report.

For the Logistic Regression Algorithm, as illustrated

in Figure 4. The Logistic Regression classifier exhibited

robust performance metrics across benign and malware

classes. The Benign class achieved a precision of 0.98 and

a recall of 0.96, indicating that 98% of instances predicted

as benign were accurate and correctly identified 96% of

actual benign instances. In detecting malware, the

classifier achieved a precision of 0.97 and a recall of 0.98,

highlighting its high accuracy in identifying malware

instances. The balanced performance is further

highlighted by the F1-scores of 0.97 for the Benign class

and 0.98 for the Malware class, demonstrating its ability

to effectively balance between correctly identifying

positives and minimizing false positives, which is crucial

for reliable malware detection systems. Moreover,

achieving an overall accuracy of 97.31% on the test

dataset underscores the classifier's robustness in

generalizing its learned patterns to new instances without

overfitting.

Figure 4: Logistic regression malware classification

report.

Referencing Figure 5, the Gradient Boosting classifier

demonstrated robust performance across metrics crucial

for Android malware detection. The Benign class

achieved a precision of 0.96 and a recall of 0.95, indicating

that 96% of instances predicted as benign were correct and

accurately identified 95% of actual benign instances. In

detecting malware, the classifier achieved a precision of

0.96 and a recall of 0.97, highlighting its high accuracy in

identifying malware instances. The balanced performance

is further illustrated by the F1-scores of 0.95 for the

Benign class and 0.97 for the Malware class, showcasing

the classifier's capability to effectively balance between

correctly identifying positives and minimizing false

positives, essential for robust malware detection systems.

Moreover, achieving an overall accuracy of 96.19% on the

test dataset underscores the classifier's ability to generalize

learned patterns to new instances without overfitting.

Figure 5: Gradient boosting malware classification

report.

As illustrated in Figure 6. The Support Vector

Machine classifier exhibited robust performance metrics

crucial for Android malware detection. The Benign class

achieved a precision of 0.98 and a recall of 0.95, indicating

that 98% of instances predicted as benign were correct and

accurately identified 95% of actual benign instances. In

detecting malware, the classifier achieved a precision of

0.96 and a recall of 0.98, highlighting its high accuracy in

identifying malware instances. The balanced performance

is further underscored by the F1-scores of 0.96 for the

Benign class and 0.97 for the Malware class. This

demonstrates the classifier's ability to effectively balance

between correctly identifying positives and minimizing

false positives, which is crucial for robust malware

detection systems. Additionally, achieving an overall

accuracy of 96.75% on the test dataset illustrates the

classifier's capability to generalize learned patterns to new

instances without overfitting.

A Model for Android Platform Malware Detection Utilizing… Informatica 48 (2024) 95–108 103

Figure 6: Support vector machine malware classification

report.

According to the discussion mentioned above, it can

be shown that across the evaluated machine learning,

including RF, ET, LR, GB, and SVM, each algorithm

demonstrated robust capabilities in distinguishing

between benign and malware applications. RF and LR

exhibited high precision and recall for both benign (RF:

0.96, 0.96; LR: 0.98, 0.96) and malware (RF: 0.97, 0.97;

LR: 0.97, 0.98) classes, reflecting their strong accuracy in

classification tasks. Extra Trees and Gradient Boosting

also performed well with precision-recall metrics (ET:

benign 0.95, 0.96; malware 0.97, 0.96; GB: benign 0.96,

0.95; malware 0.96, 0.97) and balanced F1-scores (ET:

benign 0.95, malware 0.97; GB: benign 0.95, malware

0.97), indicating effective trade-offs between correct

identifications and false positives. SVM showed similarly

strong performance (benign 0.98, 0.95; malware 0.96,

0.98) with balanced F1-scores (benign 0.96, malware

0.97). Logistic Regression stood out with the highest

overall accuracy of 97.31%, closely followed by SVM

(96.75%), RF (96.64%), ET (96.08%), and GB (96.19%)

on the test dataset. These results suggest that while each

classifier excels in specific metrics, Logistic Regression

demonstrates the most favorable outcomes overall for

Android malware detection tasks, balancing precision,

recall, and accuracy effectively.

Moreover, the study referenced in [18] employs

identical data sourced from the Kaggle website and

applies various machine-learning algorithms for Android

malware detection. This study compares its developed

model with the one in [Ref], specifically focusing on

Random Forest, Extra Trees, Logistic Regression,

Gradient Boosting, and SVM algorithms using accuracy

as the primary metric. Accuracy holds significant

importance in research, often serving as a pivotal indicator

to assess the efficacy of malware detection techniques in

scholarly articles.

The accuracy, precision, recall, and F1-score results

for Random Forest, Extra Trees, Logistic Regression,

Gradient Boosting, and SVM are provided in Figures 7-

11, respectively. In addition, these results, besides macro

average and weighted average results for the same order

of algorithms, are shown in Table 2.

Figure 7: Random Forest malware classification results.

Figure 8: Extra trees malware classification results.

Figure 9: Logistic regression classification results.

Figure 10: Gradient boosting classification results.

90

92

94

96

98

100

ACC Preceision Recall F1-Score

P
er

ce
n
ta

g
e

Random Forest Classification Results

90

92

94

96

98

100

ACC Preceision Recall F1-Score

P
er

ce
n
ta

g
e

Extra Trees Classification Results

90

92

94

96

98

100

ACC Preceision Recall F1-Score

P
er

ce
n
ta

g
e

Logistic Regression Classification Results

90

92

94

96

98

100

ACC Preceision Recall F1-Score

P
re

ce
n
ta

g
e

Gradient Boosting Classification Results

104 Informatica 48 (2024) 95–108 H. Al Bazar et.al.

Figure 11: SVM malware classification results.

Table 2: The used ML algorithms malware

classification results.

ML

Algorithm
RF ET LR GB SVM

Accuracy 0.97 0.96 0.97 0.96 0.97

Precision 0.97 0.97 0.97 0.96 0.96

Recall 0.97 0.96 0.98 0.97 0.98

F1-score 0.97 0.97 0.98 0.97 0.97

macro avg 0.97 0.96 0.97 0.96 0.97

weighted avg 0.97 0.96 0.97 0.96 0.97

The results of accuracy, precision, recall, and F1-score

of the compared algorithms are shown in Figure 12.

Random Forest, Logistic Regression, and SVM offer

similar accuracy results, and these results are better than

the accuracy results for Extra Trees and Gradient

Boosting. Both Extra Trees and Gradient Boosting

provide similar accuracy results. Random Forest, Extra

Trees, and Logistic Regression present similar precision

results, which are higher than those for Gradient Boosting

and SVM. The precision results for Gradient Boosting and

SVM are similar. The recall results for Logistic

Regression and SVM are similar and the highest. In

addition, Random Forest and Gradient Boosting have

similar recall results, which are better than the recall result

for Extra Trees. Logistic Regression provides the best F1-

score result. Random Forest, Extra Trees, Gradient

Boosting, and SVM have similar F1-score results.

Figure 12. Classification results of the compared

algorithms.

The Receiver Operating Characteristic (ROC) curve is

presented in Figure 13. The ROC curve represents the

classifier performance on dissimilar classification

thresholds [37]. The figure of the ROC curve shows the

True Positive Rate versus the False Positive Rate.

The Receiver Operating Characteristic Area Under the

Curve (ROC AUC) is a result that summarizes the

classifier's performance for all potential classification

thresholds [37]. ROC AUC results can be accomplished

by gauging the area under the ROC curve [37]. ROC AUC

result reveals how the classifier differentiates between

negative and positive classes. As long as the ROC AUC

result is higher, the performance is more satisfactory. The

perfect model has an AUC result equal to 1 [37]. Figure

13 shows that the AUC results for all compared algorithms

are similar, and these results are 0.99. These results

indicate that the model's performance using the compared

algorithms is near perfect.

90

92

94

96

98

100

ACC Preceision Recall F1-Score

P
er

ce
n
ta

g
e

SVM Classification Results

90
92
94
96
98

100

ACC Preceision Recall F1-Score

Classification Results of Used ML

Algorithems

RF ET LR GB SVM

A Model for Android Platform Malware Detection Utilizing… Informatica 48 (2024) 95–108 105

Figure 13: ROC AUC Results of the compared algorithms.

6 Results and discussion of the

proposed model and the previous

model
Referring to Table 3, the comparison of algorithm

accuracies between the developed model and the model in

[18], both applied to the same datasets, reveal nuanced

performance differences in detecting Android malware.

The Logistic Regression model in the developed study

demonstrated superior test accuracy of 0.9731, compared

to 0.9615 in [18], indicating its enhanced performance on

this dataset. Similarly, the Support Vector Machine

achieved higher accuracy in the developed model,

recording 0.9675 compared to 0.9521 in [18],

underscoring its more robust performance on the dataset

utilized. The Random Forest and Extra Trees classifiers

also demonstrated higher test accuracies in the developed

model (Random Forest: 0.9664 to 0.9570; Extra Trees:

0.9608 to 0.9550), suggesting their better adaptation to the

dataset's characteristics. In contrast, the Gradient Boosting

Classifier showed comparable performance between the

developed model (0.9619) and the other model (0.9637),

indicating consistent effectiveness across datasets.

Overall, the classifiers generally exhibited superior test

accuracy in the developed model compared to the results

reported in [18]. These observations highlight the

importance of dataset selection and evaluation in ensuring

machine learning models' robust and reliable performance

in practical applications. The proposed Logistic

Regression model offers the best accuracy results because

it has the highest True Positive and True Negative cases

and the lowest False Positive and False Negative Cases.

The novelty of the proposed model using machine

learning algorithms is provided as follows:

• The dataset contains much data that helps analyze and

detect malware on Android platforms.

• The dataset used is rich in features, where these features

are taken from Android applications.

• The methodology used can help in detecting Android

malware.

The high classification results indicate the high

performance of the proposed model using machine

learning algorithms.

Table 3: The accuracy results of the developed model

and the developed model of [18].

Method The Developed

Model

The Other

Model [18]

Random Forest 0.9664 0.9570

Extra Trees 0.9608 0.9550

Logistic

Regression

0.9731 0.9615

Gradient Boosting 0.9619 0.9637

Support Vector

Machine

0.9675 0.9521

7 Conclusion and future work
Based on the comprehensive evaluation and analysis

presented in this study, the machine learning models,

including Random Forest, Extra Trees, Logistic

Regression, Gradient Boosting, and Support Vector

Machine, have proven highly effective in distinguishing

between benign and malware applications within the

Android ecosystem. These algorithms demonstrated

106 Informatica 48 (2024) 95–108 H. Al Bazar et.al.

robust performance across key metrics such as accuracy,

precision, recall, F1-scores, and ROC-AUC, essential for

accurate malware detection. Logistic Regression emerged

as the standout performer, with the highest overall

accuracy of 97.31%, underscoring its reliability in

classifying malware instances while maintaining a low

false-positive rate.

Comparative analysis with a previous model using the

same dataset revealed that our developed model

consistently outperformed the prior approach across all

evaluated algorithms in accuracy. This improvement

signifies the effectiveness of our methodology in

enhancing malware detection capabilities on Android

devices. The results suggest that our approach achieves

superior performance and lays a foundation for future

advancements in cybersecurity research.

Moving forward, future research could concentrate on

further enhancing the model's scalability and applicability

in real-time scenarios. This may entail incorporating more

advanced features, exploring ensemble methods to

amalgamate different algorithm strengths, or utilizing

deep learning techniques to achieve superior detection

accuracy. The proposed model can be applied to different

datasets to obtain its performance using varying-size

datasets. Additionally, broadening the dataset to

encompass a more comprehensive array of malware

samples and real-world scenarios could offer deeper

insights into the model's robustness and applicability.

Furthermore, the continuous evolution of Android

malware necessitates ongoing adaptation and innovation

in detection methodologies. Tackling these challenges

requires interdisciplinary collaboration to develop

comprehensive solutions that identify and mitigate the

impact of malicious software on mobile device users. This

study contributes significantly to safeguarding mobile

ecosystems against emerging cybersecurity threats by

advancing the forefront of machine learning-driven

malware detection. In summary, while this study has made

significant strides in enhancing Android malware

detection through machine-learning methods, pursuing

comprehensive mobile security remains an ongoing

endeavor. Embracing innovation and collaboration in

future research endeavors can further build upon these

foundational advancements to establish more resilient and

adaptable defense mechanisms against evolving cyber

threats.

Acknowledgment
The authors extend their appreciation to the Arab Open

University for funding this work through AOU research

fund No. (AOURG-2023-011).

References

[1] 1. Arindaam Roy, Divjeet Singh Jas, Gitanjali

Jaggi, and Kapil Sharma, Android malware

detection based on vulnerable feature aggregation.

Procedia Computer Science, 2020. 173: p. 345-

353. DOI:

https://doi.org/10.1016/j.procs.2020.06.040.

[2] 2. Hyoil Han, SeungJin Lim, Kyoungwon Suh,

Seonghyun Park, Seong-je Cho, and Minkyu Park.

Enhanced android malware detection: An svm-

based machine learning approach. in 2020 IEEE

International Conference on Big Data and Smart

Computing (BigComp). 2020. IEEE DOI:

https://doi.org/10.1109/bigcomp48618.2020.00-

96.

[3] 3. V.Maria Anu Sk Heena Kauser, Android

Malware Detection using Machine Learning

Techniques KNN-SVM, DBN and GRU.

International Journal of Computer Science and

Network Security, 2023. 23(7): p. 202-209. DOI:

https://doi.org/10.22937/IJCSNS.2023.23.7.23.

[4] 4. Chuanchang Liu, Jianyun Lu, Wendi Feng, Enbo

Du, Luyang Di, and Zhen Song, MOBIPCR:

Efficient, accurate, and strict ML-based mobile

malware detection. Future Generation Computer

Systems, 2023. 144: p. 140-150. DOI:

https://doi.org/10.1016/j.future.2023.02.014.

[5] 5. Vasileios Syrris and Dimitris Geneiatakis, On

machine learning effectiveness for malware

detection in Android OS using static analysis data.

Journal of Information Security and Applications,

2021. 59: p. 102794. DOI:

https://doi.org/10.1016/j.jisa.2021.102794.

[6] 6. Halil Murat Ünver and Khaled Bakour, Android

malware detection based on image-based features

and machine learning techniques. SN Applied

Sciences, 2020. 2(7): p. 1299. DOI:

https://doi.org/10.1007/s42452-020-3132-2.

[7] 7. Esraa Odat and Qussai M Yaseen, A novel

machine learning approach for android malware

detection based on the co-existence of features.

IEEE Access, 2023. 11: p. 15471-15484. DOI:

https://doi.org/10.1109/access.2023.3244656.

[8] 8. Ahmed S Shatnawi, Qussai Yassen, and

Abdulrahman Yateem, An android malware

detection approach based on static feature analysis

using machine learning algorithms. Procedia

Computer Science, 2022. 201: p. 653-658. DOI:

https://doi.org/10.1016/j.procs.2022.03.086.

[9] 9. GSMA Report, The Mobile Economy 2024.pd.

2024.

[10] 10. Muawya Naser, Hussein Albazar, and

Hussein Abdel-Jaber, Mobile Spyware

Identification and Categorization: A Systematic

Review. Informatica, 2023. 47(8). DOI:

https://doi.org/10.31449/inf.v47i8.4881.

[11] 11. Maad M Mijwil, Malware Detection in

Android OS Using Machine Learning Techniques.

International Journal of Data Science and

Applications, 2020. 3(2): p. 5-9.

[12] 12. Beenish Urooj, Munam Ali Shah,

Carsten Maple, Muhammad Kamran Abbasi, and

Sidra Riasat, Malware detection: a framework for

reverse engineered android applications through

machine learning algorithms. IEEE Access, 2022.

https://doi.org/10.1016/j.procs.2020.06.040
https://doi.org/10.1109/bigcomp48618.2020.00-96
https://doi.org/10.1109/bigcomp48618.2020.00-96
https://doi.org/10.22937/IJCSNS.2023.23.7.23
https://doi.org/10.1016/j.future.2023.02.014
https://doi.org/10.1016/j.jisa.2021.102794
https://doi.org/10.1007/s42452-020-3132-2
https://doi.org/10.1109/access.2023.3244656
https://doi.org/10.1016/j.procs.2022.03.086
https://doi.org/10.31449/inf.v47i8.4881

A Model for Android Platform Malware Detection Utilizing… Informatica 48 (2024) 95–108 107

10: p. 89031-89050. DOI:

https://doi.org/10.1109/access.2022.3149053.

[13] 13. Arvind Mahindru, Himani Arora,

Abhinav Kumar, Sachin Kumar Gupta, Shubham

Mahajan, Seifedine Kadry, and Jungeun Kim,

PermDroid a framework developed using

proposed feature selection approach and machine

learning techniques for Android malware

detection. Scientific Reports, 2024. 14(1): p.

10724. DOI: https://doi.org/10.1038/s41598-024-

60982-y.

[14] 14. R Srinivasan, S Karpagam, M Kavitha,

and R Kavitha. An Analysis of Machine Learning-

Based Android Malware Detection Approaches. in

Journal of Physics: Conference Series. 2022. IOP

Publishing DOI: https://doi.org/10.1088/1742-

6596/2325/1/012058.

[15] 15. Ali Muzaffar, Hani Ragab Hassen,

Michael A Lones, and Hind Zantout, An in-depth

review of machine learning based Android

malware detection. Computers & Security, 2022.

121: p. 102833. DOI:

https://doi.org/10.1016/j.cose.2022.102833.

[16] 16. Naseef-Ur-Rahman Chowdhury,

Ahshanul Haque, Hamdy Soliman, Mohammad

Sahinur Hossen, Tanjim Fatima, and Imtiaz

Ahmed. Android malware Detection using

Machine learning: A Review. in Intelligent Systems

Conference. 2023. Springer DOI:

https://doi.org/10.36227/techrxiv.22580881.v1.

[17] 17. Jaehyeong Lee, Hyuk Jang, Sungmin

Ha, and Yourim Yoon, Android malware detection

using machine learning with feature selection

based on the genetic algorithm. Mathematics,

2021. 9(21): p. 2813. DOI:

https://doi.org/10.3390/math9212813.

[18] 18. BRYAM BLAS RIMAC.

Malware_Prediction_Models_BalancedAccuracy

=96.30%. 2024 [cited 2024 June 15]; Available

from:

https://www.kaggle.com/code/bryamblasrimac/ma

lware-prediction-models-balancedaccuracy-96-30.

[19] 19. Priya Raghuvanshi and Jyoti Prakash

Singh. Android malware detection using machine

learning techniques. in 2022 International

Conference on Computational Science and

Computational Intelligence (CSCI). 2022. IEEE

DOI:

https://doi.org/10.1109/csci58124.2022.00200.

[20] 20. Hani AlOmari, Qussai M Yaseen, and

Mohammed Azmi Al-Betar, A comparative

analysis of machine learning algorithms for

android malware detection. Procedia Computer

Science, 2023. 220: p. 763-768. DOI:

https://doi.org/10.1016/j.procs.2023.03.101.

[21] 21. Ahmed S Shatnawi, Aya Jaradat, Tuqa

Bani Yaseen, Eyad Taqieddin, Mahmoud Al-

Ayyoub, and Dheya Mustafa, An android malware

detection leveraging machine learning. Wireless

Communications and Mobile Computing, 2022.

2022(1): p. 1830201. DOI:

https://doi.org/10.1155/2022/1830201.

[22] 22. Corentin Rodrigo, Samuel Pierre,

Ronald Beaubrun, and Franjieh El Khoury,

BrainShield: a hybrid machine learning-based

malware detection model for android devices.

Electronics, 2021. 10(23): p. 2948. DOI:

https://doi.org/10.3390/electronics10232948.

[23] 23. Hanqing Zhang, Senlin Luo, Yifei

Zhang, and Limin Pan, An efficient Android

malware detection system based on method-level

behavioral semantic analysis. IEEE Access, 2019.

7: p. 69246-69256. DOI:

https://doi.org/10.1109/access.2019.2919796.

[24] 24. Hayam Alamro, Wafa Mtouaa, Sumayh

Aljameel, Ahmed S Salama, Manar Ahmed

Hamza, and Aladdin Yahya Othman, Automated

android malware detection using optimal ensemble

learning approach for cybersecurity. IEEE Access,

2023. DOI:

http://dx.doi.org/10.1016/j.procs.2020.06.040.

[25] 25. Parnika Bhat and Kamlesh Dutta,

CogramDroid–An approach towards malware

detection in Android using opcode ngrams.

Concurrency and Computation: Practice and

Experience, 2021. 33(20): p. e6332. DOI:

https://doi.org/10.1002/cpe.6332.

[26] 26. R. Nagarajan S. Muthuselvi, AN

IMPLEMENTATION OF ANDROID MALWARE

DETECTION USING MACHINE LEARNING

TECHNIQUES. International Research Journal of

Modernization in Engineering Technology and

Science, 2024. 06(03): p. 2543-2548. DOI:

https://doi.org/10.56726/irjmets50730.

[27] 27. Suleiman Y Yerima, Sakir Sezer, and

Igor Muttik. Android malware detection using

parallel machine learning classifiers. in 2014

Eighth international conference on next generation

mobile apps, services and technologies. 2014.

IEEE DOI:

https://doi.org/10.1109/ngmast.2014.23.

[28] 28. Janaka Senanayake, Harsha Kalutarage,

and Mhd Omar Al-Kadri, Android mobile malware

detection using machine learning: A systematic

review. Electronics, 2021. 10(13): p. 1606. DOI:

https://doi.org/10.3390/electronics10131606.

[29] 29. Mohammed K Alzaylaee, Suleiman Y

Yerima, and Sakir Sezer, DL-Droid: Deep learning

based android malware detection using real

devices. Computers & Security, 2020. 89: p.

101663. DOI:

https://doi.org/10.1016/j.cose.2019.101663.

[30] 30. Jinsung Kim, Younghoon Ban,

Eunbyeol Ko, Haehyun Cho, and Jeong Hyun Yi,

MAPAS: a practical deep learning-based android

malware detection system. International Journal of

Information Security, 2022. 21(4): p. 725-738.

https://doi.org/10.1109/access.2022.3149053
https://doi.org/10.1038/s41598-024-60982-y
https://doi.org/10.1038/s41598-024-60982-y
https://doi.org/10.1088/1742-6596/2325/1/012058
https://doi.org/10.1088/1742-6596/2325/1/012058
https://doi.org/10.1016/j.cose.2022.102833
https://doi.org/10.36227/techrxiv.22580881.v1
https://doi.org/10.3390/math9212813
https://www.kaggle.com/code/bryamblasrimac/malware-prediction-models-balancedaccuracy-96-30
https://www.kaggle.com/code/bryamblasrimac/malware-prediction-models-balancedaccuracy-96-30
https://doi.org/10.1109/csci58124.2022.00200
https://doi.org/10.1016/j.procs.2023.03.101
https://doi.org/10.1155/2022/1830201
https://doi.org/10.3390/electronics10232948
https://doi.org/10.1109/access.2019.2919796
http://dx.doi.org/10.1016/j.procs.2020.06.040
https://doi.org/10.1002/cpe.6332
https://doi.org/10.56726/irjmets50730
https://doi.org/10.1109/ngmast.2014.23
https://doi.org/10.3390/electronics10131606
https://doi.org/10.1016/j.cose.2019.101663

108 Informatica 48 (2024) 95–108 H. Al Bazar et.al.

DOI: https://doi.org/10.1007/s10207-022-00579-

6.

[31] 31. Abdulaziz Alzubaidi, Sustainable

Android Malware Detection Scheme using Deep

Learning Algorithm. International Journal of

Advanced Computer Science and Applications,

2021. 12(12). DOI:

https://doi.org/10.14569/ijacsa.2021.01212104.

[32] 32. Muhammad Aamir, Muhammad

Waseem Iqbal, Mariam Nosheen, M Usman

Ashraf, Ahmad Shaf, Khalid Ali Almarhabi,

Ahmed Mohammed Alghamdi, and Adel A

Bahaddad, AMDDLmodel: Android smartphones

malware detection using deep learning model. Plos

one, 2024. 19(1): p. e0296722. DOI:

https://doi.org/10.1371/journal.pone.0296722.

[33] 33. Omar N Elayan and Ahmad M Mustafa,

Android malware detection using deep learning.

Procedia Computer Science, 2021. 184: p. 847-

852. DOI:

https://doi.org/10.1016/j.procs.2021.03.106.

[34] 34. Ruitao Feng, Sen Chen, Xiaofei Xie,

Guozhu Meng, Shang-Wei Lin, and Yang Liu, A

performance-sensitive malware detection system

using deep learning on mobile devices. IEEE

Transactions on Information Forensics and

Security, 2020. 16: p. 1563-1578. DOI:

https://doi.org/10.1109/tifs.2020.3025436.

[35] 35. Kaggle. Android Malware Detection

Dataset. 2024 [cited 2024 May 15]; Available

from:

https://www.kaggle.com/datasets/dannyrevaldo/an

droid-malware-detection-dataset/data.

[36] 36. Fabian Pedregosa, Gaël Varoquaux,

Alexandre Gramfort, Vincent Michel, Bertrand

Thirion, Olivier Grisel, Mathieu Blondel, Peter

Prettenhofer, Ron Weiss, and Vincent Dubourg,

Scikit-learn: Machine learning in Python. the

Journal of machine Learning research, 2011. 12: p.

2825-2830.

[37] 37. Evidently AI. How to explain the ROC

curve and ROC AUC score? [cited 2024 August

19, 2024]; Available from:

https://www.evidentlyai.com/classification-

metrics/explain-roc-curve.

https://doi.org/10.1007/s10207-022-00579-6
https://doi.org/10.1007/s10207-022-00579-6
https://doi.org/10.14569/ijacsa.2021.01212104
https://doi.org/10.1371/journal.pone.0296722
https://doi.org/10.1016/j.procs.2021.03.106
https://doi.org/10.1109/tifs.2020.3025436
https://www.kaggle.com/datasets/dannyrevaldo/android-malware-detection-dataset/data
https://www.kaggle.com/datasets/dannyrevaldo/android-malware-detection-dataset/data
https://www.evidentlyai.com/classification-metrics/explain-roc-curve
https://www.evidentlyai.com/classification-metrics/explain-roc-curve

