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To solve the problem of low efficiency in logistics resource scheduling, research proposes an intelligent 

scheduling technology. A logistics resource task scheduling model is constructed by analyzing logistics 

tasks. To solve the scheduling model, a mixed-parameter improved ant colony algorithm is introduced to 

solve the problem. The ant colony traversal is used to search for the objective function, and the 

information is used to modify the parameter adjustment algorithm. In addition, the study introduced 

reinforcement learning to optimize the pheromone problem of the ant colony algorithm and improved 

the performance of the algorithm. In the experimental analysis, task execution time, execution efficiency 

and task cost were introduced as indicators. In the task operation time comparison, the improved hybrid 

parameter ant colony model could converge in the shortest time. The shortest packing operation time 

was 16052 s, which was shorter than other models. In the cost comparison of logistics resource 

scheduling task, the cost of the improved hybrid parameter ant colony optimization model in the 

purchasing task was 29865 yuan, which was lower than other models. In the comparison of the resource 

execution rate of the order taking task, when the number of resources was 5000, the resource execution 

rate of the improved hybrid parameter ant colony model was 95.65%, which was significantly better 

than the other models. In addition, comparing the cost reduction rate of different models in scheduling 

arrangement, the cost reduction rate of genetic algorithm and particle swarm algorithm was 3.54% and 

6.45% respectively. While the improved hybrid parameter ant colony model was 9.54%, the research 

model had significantly better cost control. This indicates that the research model has better application 

in logistics scheduling. The research content will provide technical reference for the transformation of 

information technology in logistics industry and optimization of logistics resource scheduling. 

Povzetek: Analizirana je inteligentna tehnologija razporejanja za reševanje problema nizke učinkovitosti 

pri razporejanju logističnih virov, ki temelji na izboljšanem algoritmu mravljinčje kolonije z mešanimi 

parametri.

1 Introduction 

With the rapid development of global economy, logistics 

industry has become an important pillar industry of 

Chinese economy. In the field of logistics, logistics 

resource scheduling is one of the core issues in logistics 

management, which will directly affect the transportation 

management efficiency and user satisfaction of logistics 

enterprises, and has an important impact on the cost 

control and resource management of enterprises. 

Therefore, enterprises need to improve the effectiveness 

of logistics resource scheduling in the development 

process to accelerate their competitive advantage in the 

market. At present, in the field of resource scheduling, 

heuristic algorithms have a wide range of applications, 

including moth search algorithms, differential algorithms, 

genetic algorithm (GA), ant colony algorithm, etc. [1]. A 

large number of studies on learning algorithms related to 

resource scheduling are conducted by related scholars.  

 

 

Devi et al. conducted a study on resource scheduling 

techniques for cloud base with the aim of improving the 

management efficiency of resource scheduling. Thus, 

coded chromosome-based GA was used to dynamically 

adjust the resources through which the number of 

physical machines required by the system is estimated. 

Finally, the technique was applied to a cloud computing 

platform, which could effectively reduce the cost of 

central cloud rental virtual machines and improve the 

effectiveness of resource scheduling [2]. In recent years, 

Prata et al. focused on the consumption and maintenance 

of scarce resources in standalone machines, aiming to 

improve the effect of resource scheduling in standalone 

systems and reduce the waste of resources. In this regard, 

an integer linear programming model was proposed by 

considering two crating formulas with crating constraints 

to ensure that the objective function completes the 

content in the shortest possible time. In addition, a 

simulated annealing algorithm was introduced to solve 
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the modeling problem. Finally, experimental analysis 

demonstrated that the proposed resource scheduling 

management technique had a good application effect and 

improves the system computational efficiency [3]. Hamid 

et al. studied the existing data resource management 

system platform which needs to solve the system resource 

scheduling problem by studying the database, network as 

well as storage centers. Therefore, to improve the 

efficiency of data resource management task processing, 

a resource scheduling optimization model was proposed 

on the basis of time minimization. Moreover, the system 

scheduling effect was tested by increasing the number of 

virtual machines in Workflowsim environment. In the 

specific analysis of system resource scheduling, research 

techniques have demonstrated notable advancements in 

resource scheduling time and resource utilization 

efficiency. However, the computational cost remains a 

significant challenge. In special scenarios, model 

parameter problems need to be improved. The next 

research will also improve similar technical parameter 

problems [4]. 

Currently, heuristic algorithms have a wide range of 

applications in the logistics resource scheduling industry, 

which significantly improves the transportation efficiency 

of the logistics industry. Lei et al. conducted a study on 

the existing logistics industry, the logistics industry in the 

information technology era need to develop in the 

direction of intelligence. To solve the problem of 

traditional logistics management efficiency was too low, 

the research based on intelligent heuristic algorithm 

proposed an intelligent logistics distribution model. The 

model was based on intelligent logistics, through the 

real-time data analysis of each logistics warehouse, 

real-time distribution scheduling strategy, so as to ensure 

that the goods in the shortest time, the shortest path to 

reach the target point. The experimental results displayed 

that the research technology had a scheduling 

optimization effect, with significant improvements in 

execution efficiency and transportation costs. However, 

this technology still faced efficiency problems for 

complex processes and was a key focus of future 

technology research [5]. Zheng et al. conducted a study 

on the current cold chain logistics and found that cold 

chain logistics faces inefficiency in cold chain 

cross-docking truck scheduling. To solve this problem, 

the study proposed a mixed integer linear programming 

model. It aimed to optimize the cold chain transportation 

process so that the cold chain transportation cost was 

minimum and met the cold chain transportation 

conditions. Among them, considering the strong 

polynomial time processing problem (non-deterministic 

polynomial, NP) in the optimization of cold chain 

logistics scheduling, it was divided into two processes: 

the arrival time of inbound trucks and the departure time 

of outbound trucks and the processing time of the 

products. Moreover, it solved the optimization problem 

through the heuristic algorithms in multiple stages. 

Finally, through the cold chain scheduling experiments, 

this technology could effectively improve the efficiency 

of logistics and transportation and reduce the operating 

costs of enterprises [6]. Abosuliman et al. found that the 

logistics and transportation industry faced the challenge 

of timeliness, how to improve the efficiency of logistics 

and transportation in the shortest time and optimize the 

cost of logistics operations is a problem that companies 

need to solve. To solve the above problems, the study 

proposed an intelligent logistics resource scheduling 

framework based on Internet of Things. By constructing a 

logistics multi-scenario scheduling model, the study 

introduced a heuristic algorithm solution to realize the 

scheduling management of logistics resources. It was 

shown through experiments that the proposed technology 

can effectively improve the efficiency of logistics 

transportation and reduce the operating costs of 

enterprises, so as to improve the competitive advantage of 

enterprises in the market [7]. The summary list of related 

work is shown in Table 1. 

Through the above research, it can be found that the 

traditional logistics industry faces the problems of 

timeliness and high cost in resource scheduling 

management, which can't meet the demand of logistics 

and transportation industry. At present, the swarm 

intelligence-inspired algorithm has excellent application 

advantages in resource scheduling problem, so the 

research can find the optimal solution through the 

transmission and updating of information elements. 

Therefore, in order to solve the logistics resource 

scheduling problem, the study proposes a hybrid 

parameter ant colony optimization (ACO) to construct a 

logistics resource scheduling model to realize the 

logistics resource scheduling efficiency and cost 

advantages. This research presents two innovations. The 

first is the proposal of an intelligent scheduling method 

based on hybrid parameter ACO. The method combines 

the characteristics of hybrid parameter and the advantages 

of ACO, and optimizes ACO through parameter load 

factor and information correction parameters, thereby 

enhancing the efficiency and quality of logistics resource 

scheduling. Secondly, to enhance the algorithm's initial 

search capability, the research incorporates a 

reinforcement learning algorithm to optimize the 

pheromone during the initial stage. This approach 

improves the algorithm's search efficiency and 

convergence speed. The research content will serve as a 

technical reference for the informationization 

transformation of traditional logistics enterprises and 

logistics scheduling management.
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Table 1: Summary of related work 

Rreferences Research objective Result 

Reference [2] 

Devi K L et al. conducted research on resource 

scheduling techniques for cloud infrastructure to 

improve resource management efficiency 

Research technology can significantly 

improve scheduling efficiency and reduce 

execution time. 

Reference [3] 

Prata B A et al. aim to improve the resource 

scheduling efficiency of standalone systems and 

reduce resource waste 

The system has a high computational 

load, resulting in improved execution 

efficiency. 

Reference [4] 

Hamid L et al. conducted research on existing data 

resource management system platforms to address 

system resource scheduling issues 

Significant improvement in resource 

utilization efficiency and execution time 

effectiveness 

Reference [5] 

Lei N et al. conducted research on the existing 

logistics scheduling process to address the issue of 

logistics scheduling efficiency 

Research technology has scheduling 

optimization effects, with significant 

improvements in execution efficiency and 

transportation costs 

Reference [6] 

Zheng F et al. optimized and improved the current 

cold chain logistics to solve the problem of low 

scheduling efficiency 

Research skills significantly improve 

vehicle scheduling effectiveness, reduce 

transportation time, and lower economic 

costs 

Reference [7] 

Abosuliman S et al. found that logistics 

transportation faces the decision problem of 

improving logistics transportation efficiency in the 

shortest possible time, and therefore optimized its 

scheduling decision 

The proposed technology can effectively 

improve logistics transportation 

efficiency, reduce enterprise operating 

costs, significantly reduce execution time, 

and improve scheduling efficiency 

2 Second section 

2.1 Materials 

Laboratory equipment: Foton Omak S3 logistics and 

distribution truck provided by BAIC Foton. JM-504 

stopwatch is provided by Shanghai Star Diamond 

Stopwatch. Yuchai Guo San YC6j175-T302 logistics 

forklift truck is offered by Guangxi Yuchai Machinery. 

Parameters of the software system tools: The hybrid 

parameter ACO is proposed by Gambardella and Dorigo. 

The experimental environment is Pytorch development 

platform (version 3.7) provided by Facebook, USA. The 

processor is INTL i7 13700 provided by INTEL. The 

graphics card is Asus RTX3070 provided by Asus 

Taiwan. The  

 

 

 

 

 

 

experimental system is WINDOWS 10 provided by 

Microsoft, USA. 

2.2 Logistics resource scheduling based on 

hybrid parameter ant colony algorithm 

2.2.1 Logistics resource task scheduling model 

construction 

In logistics resource scheduling, a complete logistics 

scheduling task is composed of multiple subtasks. The 

running order of different subtasks will affect the final 

completion efficiency of the task, thus affecting the 

management effect of logistics resource scheduling. In 

order to improve the efficiency of logistics resource 

scheduling, the logistics resource scheduling process will 

be modeled. The logistics resource scheduling process is 

shown in Figure 1 [8]. 
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Figure 1: Logistics resource scheduling task process 

In Figure 1, in a logistics resource scheduling task, it 

consists of multiple t1 to tn subtasks. Each subtask 

corresponds to a corresponding resource task, thus 

constituting a complete logistics resource scheduling 

process. In the actual logistics resource scheduling, t1 

tasks need to be completed before t2 tasks can be 

completed. There is a dependency relationship between 

the two, but there is no dependency relationship between 

some tasks. For example, between t2 and t3, the tasks that 

do not have dependencies can be processed in parallel in 

the actual task, thus improving the efficiency of subtask 

execution [9].  

In the study, the DAG process is used to describe the task 

process, and the four-dimensional ( , , , )G T Vm D ET  is 

used to describe the process, and the set of tasks is shown 

in Equation (1). 

 1 2 3, , , , |nT t t t t n N= 
      (1) 

In Equation (1), n  represents the number of subtasks, 

and the set of resources corresponding to the tasks is 

shown in Equation (2). 

 1 2 3, , , , |mVm vm vm vm vm m N= 
(2) 

In Equation (2), m  denotes the number of resources 

corresponding to subtasks. Describing the inter-task 

dependencies is shown in Equation (3). 

 ( , ) | ,iij i j jD t t t t T i j=  
     (3) 

In Equation (3), ijD
 indicates that there is a dependency 

between task it  and jt
, which needs to prioritize the 

execution of it  in order to continue the execution of jt
. 

In the logistics, a task needs to be processed resource 

consuming time is defined as ET , then the task 

consuming time is shown in Equation (4). 

/ij i jET length mips=
        (4) 

In Equation (4), ilength  denotes the length of this 

logistics task. jmips
 denotes the ability to handle the 

logistics task. Define the time taken to process the 

logistics resource jvm
 as 

( )ij iEFT t
, which is expressed 

as shown in Equation (5). 

( )ij i ij ijEFT t ET EST= +
       (5) 

In Equation (5), ijEST  represents it  in resource jvm
 

processing elapsed time. In the actual logistics resource 

scheduling, the process corresponding to the subtasks 

would include various subtask links such as goods 



Intelligent Logistics Resource Scheduling Based on Hybrid… Informatica 49 (2025) 33–48 37 

inspection, packaging, transportation, etc., but ultimately 

the goal of logistics resource scheduling is to minimize 

the time of executing tasks [10]. If the logistics takes too 

long, it will affect the user logistics experience. In order 

to optimize the scheduling, it will be necessary to allocate 

the entire logistics task time to the execution resource 

task queue to optimize each subtask scheduling process, 

as shown in Equation (6). 

( )ij exitEFT EFT t=
        (6) 

In Equation (6), exitt
 denotes the logistics queue export 

task. In logistics resource scheduling, the scheduling 

effect needs to be reflected by task resource execution 

efficiency. If there is irrational task scheduling, the 

problem of long execution time of subtasks will occur 

and resources are wasted [11]. The total busy process 

resource processing time is defined as VmTime , and the 

expression is shown in Equation (7). 

 max | 1,2, ,jVmTime CT j m= =
 (7) 

In Equation (7), jCT
 represents the total processing 

time on resource jvm
. Next, the average resource 

utilization is used to reflect the task scheduling effect, as 

shown in Equation (8). 

1

( ) /
m

j

j

AvgU U vm m
=

=
      (8) 

In Equation (8), ( )jU vm  represents the individual 

resource utilization rate with 
( ) /j jU vm CT VmTime=

. 

Finally, the final objective function is obtained based on 

the relationship between the resource utilization rate and 

the physical tasks, as shown in Equation (9). 

/f EFT AvgU=
        (9) 

2.2.2 Logistics resource scheduling model 

construction based on hybrid parameter 

ACO 

In logistics resource scheduling task, the difficulty of 

individual subtasks and resource execution time need to 

be fully considered to make the logistics task execution 

time the shortest. In order to solve the logistics resource 

scheduling problem, an improved ACO algorithm based 

on hybrid parameter optimization is proposed to solve the 

logistics scheduling problem [12]. The principle is that 

the ant colony will enter from the subtask node, traverse 

all subtasks to match the best resources, and obtain the 

final objective function through continuous iteration. Ant 

colony scheduling is shown in Figure 2 [13]. 

In Figure 2, the phenomenon of matching multiple 

optimal solutions may occur after the ants traverse all the 

tasks, which makes a task execute multiple resources 

while some resources are idle. Therefore, the ant colony 

needs to follow the principle of matching one resource for 

one task when executing tasks to guarantee the efficiency 

of task execution [14]. At the same time, the ant colony 

on the optimal resource path selection depends on the 

path information concentration, which determines the ant 

colony's probabilistic selection of resources, using state 

transfer for resource selection, as shown in Equation (10). 
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Figure 2: Ant colony scheduling 
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In Equation (10), 
( )ij

kP i
 denotes the probability that the 

ant colony matches resource jvm
 for task it . 

( )ij t
 

denotes the information concentration corresponding to 

resource jvm
, and 

( )is t
 denotes the total information 

concentration. 
( )ij t

 denotes the heuristic function 

corresponding to resource jvm
. 

( )is t
 denotes the 

heuristic function corresponding to the total resource. The 

traditional ACO algorithm relies heavily on the 

calculation of resource information concentration when 

matching resources at the initial stage, which makes the 

computationally weak resources ignored and the 

scheduling resources overloaded or idle. To solve this 

problem, parametric load factor is used to improve the 

efficiency of resource utilization [15]. In addition, the 

irregular updating of resource information in logistics 

scheduling leads to the residual information is not 

completely dissipated, which will have an impact on the 

updating and feedback of the subsequent ant colony 

information. In this regard, the information correction 

parameter is introduced to release the information 

concentration on the high matching resources, to ensure 

the effective feedback of the ant colony information, and 

to avoid the algorithm falling into convergence 

prematurely [16]. Define the parameter load factor as j  

and use it to represent the execution state of the resource 

as shown in Equation (11). 

1
j

jM
 =

            (11) 

In Equation (11), jM
 represents the average value of 

resource utilization of the jT
 task set executing on 

resource jvm
. Among them, the smaller jvm

 is, the 
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higher is the value of jM
. By dividing the tasks to jvm

, 

the mean value of resource utilization jM
 at this 

moment is shown in Equation (12). 

 1

1

max | 1,2,

m
j

j

j j

C
M

m C j m=

=
= 


  (12) 

In Equation (12), jC
 denotes the busy time of executing 

jvm
 resources. Next, the heuristic function is improved 

by expressing the heuristic function in terms of task 

execution capacity as shown in Equation (13). 

1
( )

*
ij

j ij

t
ET




=

         (13) 

In ACO algorithm optimization, the update of resource 

information concentration is the key to ensure the 

optimization of ACO. When the ant colony ends an 

iterative update, the resource information concentration 

matched by the optimal value of the ant colony objective 

function will also be updated, and the pheromone value at 

this moment is shown in Equation (14) [17]. 

1

(1 )
n

k

ij ij ij

k

   
=

= − + 
     (14) 

In Equation (14), ij  represents the ant colony 

pheromone value of the task corresponding to jvm
 

resources, and 
k

ij  represents the change pheromone 

value. In the early stage, due to the lack of pheromone 

value to guide the ant colony, it mainly selects the 

resource with larger target value 
f

 by heuristic 

algorithm, while updating the pheromone at the resource. 

While the excessive pheromone concentration makes the 

later ant colony unable to judge accurately, which leads 

the algorithm to fall into extreme value convergence 

when it seeks the best path [18]. Therefore, in order to 

avoid this problem, the information correction parameter 

is introduced in the larger target value 
f

 resources for 

concentration update adjustment, the expression is shown 

in Equation (15). 

mi

mi

n

n

(1 ) ,

(1 ) ,

k

kk

ij

k

k

B
f f

f
x

B
f f

f










+ 

 =

− 
      (15) 

In Equation (15), minf
 denotes the minimum objective 

function value. k  denotes the traversal ant.   denotes 

the information correction parameter. Introducing the 

information correction parameter to adjust the pheromone 

in the allocation data will attract more ants to choose this 

allocation path. If ants select the final solution 

corresponding to the target value kf  is lower than all 

traversal target values, it will be adjusted according to the 

information correction parameter 1 + . If the target 

value kf  corresponding to the final solution selected by 

ants is higher than all the traversed target values, it will 

be adjusted according to the information correction 

parameter 1 − . 

2.2.3 Construction of logistics resource 

scheduling model improved by 

reinforcement learning 

The hybrid parameter-enhanced ACO algorithm has been 

demonstrated to be capable of more accurate logistics 

resource scheduling than its predecessor. However, the 

initial order phase path optimization of the improved 

ACO algorithm is not as informative as it could be due to 

the pheromone complementation that occurs during the 

initialization phase. In addition, the existence of unstable 

characteristics of pheromone release on resources in the 

preliminary stage also leads to the fact that the improved 

ACO algorithm requires more computational time in the 

iteration, resulting in a decrease in the convergence effect 

of the algorithm [19]. With the continuous accumulation 

of ant colony on resource pheromone, its pheromone 

feedback will also be improved, and gradually improve 

the path finding optimization effect. Therefore, the ant 

colony satisfies the evolutionary characteristics, and its 

evolutionary process is shown in Figure 3 [20]. 
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Figure 3: Evolution rate pattern of ant colony 

According to the colony evolution law graph in Figure 3, 

it is easy to observe that in the initial process from ta to 

tb, the ant colony has a very low evolution rate at that 

time. However, with the increase of iteration period, its 

evolution process is accelerated, such as arriving at the te 

stage when the ant colony reaches the highest level of 

evolution rate [21]. It can be observed that it is difficult to 

have a better breakthrough in the solution by only 

optimizing the parameters of the ACO, therefore, the 

incorporation of reinforcement learning algorithm 

(Q-Learning) in the improved ACO algorithm is 

considered to improve the solution. Its advantage lies in 

the fact that it does not require knowledge of all possible 

states of the environment. Through the interaction of ant 

colony individuals, the complex environment of all 

possible states can be understood. This can dynamically 

adjust the search range of the ant colony and improve the 

target search [22-23]. The specific process is shown in 

Figure 4. 

In the study, Q-Learning is used to obtain resource 

pheromones in the improved ACO algorithm. In the 

process, Q-Learning is used to solve and obtain the 

Q-function, which is then used as the pheromone value 

parameter in the initial stage of ACO. Based on the final 

information data obtained, the ant colony search area can 

be dynamically adjusted to improve the target search 

performance. The ant colony optional path process in 

logistics resource scheduling is shown in Figure 5. 

The Q-Learning algorithm is used to improve the initial 

stage pheromone of the ant colony, then the improved 

initial stage pheromone expression is shown in Equation 

(16). 

(0) ( , )ij i iQ s a =
        (16) 

In Equation (16), is
 denotes the state of step i  and ia

 

denotes the action of step i . Then the improved hybrid 

parameter ACO process is shown in Figure 6. 
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Figure 4: Q-Learning to obtain resource pheromone flow in improved ACO algorithm 
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Figure 5: Ant colony path selection process 
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Figure 6: Flow chart of improved hybrid parameter ant colony algorithm 

Table 2: Experimental parameter settings for research models 

Ant colony optimization (ACO) Q-Learning 

Parameter Numerical value Parameter Numerical value 

Population 100 Learning rate 0.75 

Iterations 100 Discount factor 0.75 

Pheromone factor 1 State space Random initialization 

Information constant 100 - - 

Genetic algorithm (GA) Particle swarm optimization (PSO) 

Parameter Numerical value Parameter Numerical value 

Population size 100 Particle number 200 

Iterations 100 Learning factor 2 

Mutation rate 0.1 Particle dimension 2 

Table 3: Logistics resource scheduling task information 

Task number Task type Number of tasks Number of resources 
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1 Receiving orders 12 15653 

2 Procure 8 9562 

3 Pack 14 5465 

4 Scheduling arrangements 15 256 

5 Vehicle transportation 6 205 

6 Track 8 11628 

 

Figure 6 shows the improved hybrid parameter ACO 

process. In solving the logistics resource scheduling task, 

the ACO algorithm and Q-Learning algorithm need to be 

initialized first. In the initial stage, the Q-function is 

updated according to the reward function and the updated 

Q-function is used as the pheromone in the initial stage of 

ACO solving. Next, it is iteratively updated according to 

ACO to obtain the optimal scheduling allocation scheme. 

3 Results 

3.1 Experimental environment setup 

To test the effectiveness of the proposed improved hybrid 

parameter ACO in logistics resource scheduling in the 

study, logistics resource scheduling experiments will be 

carried out using a logistics operation and management 

center as a case study. In this case, the algorithmic 

environment is Python 3.7, the processor is INTEL I7 

13700, and the running system is WINDOWS 10. In 

addition, this study selects GA and particle swarm 

optimization (PSO) algorithm as testing benchmarks. The 

hyperparameter settings for different test benchmarks are 

mainly obtained by empirical settings, trial and error 

methods, or optimization processes. The hyperparameters 

of ant colony algorithm include the number of ants, the 

importance of pheromones, etc. The hyperparameters of 

GAs, such as population size, crossover probability, and 

mutation probability, are also determined through 

multiple experiments and tuning. The specific parameter 

settings are shown in Table 2. 

In the logistics resource scheduling experiment, it 

includes the process of order taking, purchasing, packing, 

call scheduling, vehicle transportation, tracking, 

feedback, and so on. Different tasks will correspond to 

different execution resources, and subtasks have priority 

characteristics. At the same time, a single task contains 

multiple sub-tasks, such as packing includes goods 

inspection, packing boxes, posting the single number, 

arranging the priority of goods and arranging the packing 

boxes. Therefore, multiple logistics scheduling tasks will 

be set up in the logistics scheduling experiment, as shown 

in Table 3. 

In Table 3, there are total 6 main tasks in logistics 

scheduling, while different tasks correspond to multiple 

subtasks as well as the number of resources. At the same 

time, different tasks have priority characteristics, and the 

previous task determines the next task scheduling, but the 

existence of different tasks can be processed in parallel.  

 

Therefore, in order to improve the scheduling efficiency 

of logistics resources, a scheduling model will be used to 

optimize the logistics task process and provide logistics 

scheduling. Meanwhile, PSO and GA are introduced as 

test benchmarks in the experiment. To facilitate the 

logistics scheduling experiments, the study defines the 

proposed hybrid parameter ACO as H-ACO and the 

improved hybrid parameter ACO as Q-ACO. The 

experimental evaluations are the metrics task execution 

time, resource execution rate, and task operation cost. 

Among them, task execution time refers to the total time 

required from the start of logistics task execution to task 

completion. This includes the time required to load, 

transport, and unload goods, as well as any waiting, 

transit, and other intermediate processes that may occur. 

Resource execution rate refers to the ratio of resources 

(such as vehicles, labor, etc.) actually used in the logistics 

scheduling process to the total available resources, 

reflecting the efficiency of resource utilization and the 

rationality of scheduling. Task operation cost refers to the 

total cost required to complete a logistics task, including 

transportation costs, labor costs, fuel costs, maintenance 

costs, and other costs directly related to task execution. It 

is used to evaluate the economic benefits of scheduling. 

3.2 Logistics resource scheduling 

experiment based on hybrid parameter 

ant colony algorithm 

Next, in order to validate the performance effect of the 

proposed logistics resource scheduling model, PSO 

algorithm and GA are introduced along with the proposed 

technique of the study for comparison. The comparison of 

operation time of different techniques in logistics packing 

and vehicle transportation process is shown in Figure 7. 

In Figure 7, two tasks of logistics packing and vehicle 

transportation are selected for experiments to analyze the 

differences between different scheduling techniques. In 

the packing scheduling, all four scheduling models have 

different packing job times. The best performance is 

Q-ACO model, which can converge in the shortest time 

and has the shortest packing operation time of 16052 s. 

The Q-ACO algorithm combines Q-Learning global 

exploration with ACO collective optimization to optimize 

initial pheromones, dynamically adjust the search area, 

avoid premature convergence, and achieve short 

execution time, greatly improving execution efficiency. 

In contrast, H-ACO model performs the second best, with 

a time of 16650 s. The PSO model and GA model have a 
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packing operation time of 18125 s and 17495 s, 

respectively. In the vehicle transportation task, it is still 

the Q-ACO model that reaches the fastest convergence 

and achieves the minimum operation time. The four 

scheduling models PSO, GA, H-ACO, and the Q-ACO 

proposed by the study take 30545 s, 30556 s, 30015 s, 

and 28516 s, respectively. It can be concluded that both 

the Q-ACO and H-ACO models have obvious advantages 

in job time optimization. Next, the cost of each process 

task of logistics resource scheduling is compared, as 

shown in Figure 8. 
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Figure 7: Comparison of packaging and vehicle transportation operation time 
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Figure 8: Comparison of logistics resource scheduling task costs. 
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Figure 8 shows the cost comparison results of logistics 

resource scheduling. In Figure 8(a), compared with PSO, 

GA and H-ACO, the Q-ACO model has significantly 

lower costs in the six major logistics tasks. The main 

reason is that the Q-ACO algorithm provides an 

optimized initial pheromone distribution for ACO 

through Q-Learning. This allows ant colonies to focus on 

more promising paths in the early stages of search, 

reducing blind searches and ineffective iterations. In 

addition, by using the Q function as the initial 

pheromone, Q-ACO can dynamically adjust the ant 

colony's search area based on environmental feedback. 

This flexibility allows the algorithms to more quickly 

adapt to environmental changes and find better solutions. 

For example, in the procurement process, the Q-ACO 

task cost is 29,865 yuan, which is significantly lower than 

the other models. In addition, in the vehicle costs in 

Figure 8(b), the vehicle costs all increase significantly as 

the number of resources increases. The increase in 

vehicle cost slows down after the number of resources 

reaches a certain value. The reason for this is that the 

more resources are purchased, the vehicle transportation 

cost will be shared equally and the cost increase will 

decrease. Q-ACO still has the best cost control, when the 

number of resources is 200, the cost is 24,256 yuan, 

which is significantly lower than other models. Next, the 

efficiency of resource implementation of different models 

is analyzed, as shown in Figure 9. 
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Figure 9: Comparison of execution efficiency of logistics scheduling resources

Figure 9 shows the resource execution efficiency of the 

six major processes of logistics resource scheduling. 

Most of the logistics subtasks show a decreasing trend in 

resource execution efficiency as the number of resources 

increases. However, in a comprehensive comparison, the 

resource execution rate of Q-ACO model is significantly 

better than other models. The main reason is that Q-ACO 

combines the global exploration capabilities of 

Q-Learning with the collective optimization properties of 

the ant colony algorithm. Although the PSO algorithm 

has a fast convergence speed, it tends to get stuck in local 

optima. The GA has strong global search capability, but it 

has high computational complexity and slow convergence 

speed. The H-ACO algorithm is susceptible to premature 

convergence due to the rapid updating of pheromones, 

which presents a challenge in achieving optimal results. 

In contrast, the Q-Learning ACO algorithm provides 

optimized initial pheromones for ACO through 

Q-Learning, dynamically adjusts the search range, avoids 

premature convergence, and achieves more efficient and 

accurate solutions in logistics resource scheduling. For 

example, in the order-taking task, when the number of 
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resources is 5000, the resource execution rates of PSO, 

GA, H-ACO and Q-ACO are 88.02%, 89.32%, 90.01% 

and 95.65%, respectively. When the number of resources 

reaches 15000, the execution efficiency is 61.25%, 

67.35%, 76.35%, and 83.65%, respectively. In addition, 

vehicle transportation resource scheduling is different 

from other tasks in that the vehicle execution efficiency is 

generally low when the resources are low. When the 

number of resources is high, the execution efficiency is 

higher, mainly because the vehicles need to wait for the 

resources to be loaded. Finally, the comprehensive effects 

of different models are compared using SPSS software 

for t-test, and there is a significant difference (P<0.05) 

between the data. The specific experimental results are 

shown in Table 4. 

Table 4: Comprehensive comparison results of logistics resource scheduling 

Task Method 
Average homework 

time (s) 

Average resource 

execution rate 

Cost 

reduction 

rate (%) 

P 

Receiving orders 

PSO 25830 0.705 5.56 *(p<0.05) 

GA 25752 0.753 5.98 **(p<0.05) 

H-ACO 25520 0.825 7.56 *#(p<0.05) 

Q-ACO 24562 0.856 9.54 - 

Procure 

PSO 9542 0.724 3.56 *(p<0.05) 

GA 9575 0.785 2.54 **(p<0.05) 

H-ACO 8456 0.811 4.25 *#(p<0.05) 

Q-ACO 7568 0.865 5.68 - 

Pack 

PSO 18125 0.825 4.85 *(p<0.05) 

GA 17495 0.845 5.68 **(p<0.05) 

H-ACO 16650 0.904 6.45 *#(p<0.05) 

Q-ACO 16052 0.942 7.56 - 

Scheduling 

arrangements 

PSO 4562 0.715 6.45 *(p<0.05) 

GA 4358 0.768 3.54 **(p<0.05) 

H-ACO 4025 0.804 6.76 *#(p<0.05) 

Q-ACO 3854 0.865 9.54 - 

Vehicle 

transportation 

PSO 30545 0.761 4.41 *(p<0.05) 

GA 30556 0.756 5.45 **(p<0.05) 

H-ACO 30015 0.786 6.29 *#(p<0.05) 

Q-ACO 28516 0.876 8.54 - 

Track 

PSO 15682 0.689 4.58 *(p<0.05) 

GA 15001 0.725 3.25 **(p<0.05) 

H-ACO 14856 0.825 4.89 *#(p>0.05) 

Q-ACO 12354 0.895 5.48 - 
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Figure 10: Cost calculation of logistics scheduling model 
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The results of the integrated scheduling of different 

models are presented in Table 4. The Q-ACO model 

proposed in the study has significant advantages in 

average operating time, average resource execution rate, 

and cost reduction rate. In the scheduling arrangement, 

the cost reduction rate of Q-ACO is 9.54%, while 

H-ACO, GA and PSO are 6.76%, 3.54%, and 6.45%, 

respectively. In addition, statistical analysis is conducted 

on resource execution efficiency in the study. According 

to the results, the Q-ACO model shows significantly 

better execution efficiency than the other three scheduling 

techniques in the vast majority of work task segments. 

Moreover, the comparison between the data is 

statistically significant (P<0.05). Furthermore, the study 

evaluates the computational costs of diverse algorithms 

across two scenarios: small-scale and large-scale. The 

system's detection of resource database occupancy served 

as the basis for determining resource costs. The results 

are shown in Figure 10. 

In Figure 10, two scenarios, small-scale and large-scale, 

are selected to compare the resource consumption of the 

logistics scheduling models. In the small-scale test, all 

four techniques are able to complete scheduling with 

moderate computational overhead, especially the research 

model Q-ACO, which maintained a computational 

overhead rate of 40% to complete the task, showing the 

best overall performance. The reason may be related to 

the path simplification of Q-Learning, where Q-Learning 

optimizes the search path of the ACO during the learning 

process, reduces invalid iterations, and significantly 

reduces its computational cost. To prove this hypothesis, 

in large-scale logistics scheduling tests, the final iteration 

kept the cost of Q-ACO in the moderate cost range, while 

other scheduling techniques are at high cost. It can be 

concluded that the scheduling model proposed by the 

research has excellent application effects in logistics 

resource scheduling. 

4 Discussion 

In recent years, with the rapid development of 

e-commerce and industrial manufacturing, the logistics 

industry has also ushered in rapid development. In 

contrast to the conventional manufacturing sector, the 

logistics industry is a labor-intensive composite industry. 

It involves many work processes, and there is a priority or 

parallel relationship between different tasks. In the past 

nearly 20 years, the logistics industry has brought great 

development to China's economy. However, as the world 

enters the era of industrial intelligence, traditional 

logistics can no longer meet the needs of social and 

economic development. In light of the aforementioned 

considerations, the research proposes the implementation 

of an intelligent logistics resource scheduling technology, 

which is then applied to the logistics resource scheduling 

process. 

In the context of actual logistics resource scheduling, the 

efficacy of the PSO algorithm, the GA, and the 

technology proposed by the research study is evaluated 

through a comparative analysis. The Q-ACO model has 

demonstrated superior performance in terms of task 

completion time, logistics task cost, and resource 

utilization efficiency. The primary objective is to 

optimize the parameter problem based on the ACO 

algorithm and introduce Q-Learning to provide an 

optimized initial pheromone distribution for ACO. In 

particular, Q-Learning obtains the initial pheromone 

through the Q function and dynamically adjusts the 

search area of the ant colony through environmental 

feedback, which can provide a more accurate search 

space for the ant colony algorithm and further improve its 

search performance. For example, in the order taking task 



Intelligent Logistics Resource Scheduling Based on Hybrid… Informatica 49 (2025) 33–48 47 

comparison, compared with the other three models, the 

average job execution time of the Q-ACO model 

proposed by the research was shorter, which was 24562s, 

while PSO, GA, and H-ACO were 25830s, 25752s, and 

25520s, respectively. Meanwhile, compared with the 

original task cost, the cost reduction rate of the Q-ACO 

model was 9.54%, which was significantly better than the 

other models. Furthermore, in the context of resource 

execution rate in vehicle transportation logistics, the 

Q-ACO model employs the Q-Learning algorithm to 

optimize the pheromone in the initial phase, thereby 

facilitating a more accurate identification of the optimal 

path in comparison to the conventional ACO approach. 

For example, when the number of resources was 60, the 

resource execution rate of Q-ACO was 83.65%, while 

that of H-ACO was 79.25%. In addition, with the 

powerful path-finding ability of the ACO algorithm, the 

H-ACO model can better optimize the vehicle paths and 

integrate the resources. It significantly improved the 

resource execution rate compared with other models. In 

addition, considering that the introduction of Q-Learning 

into the ACO algorithm may increase the computational 

cost of the model, different scales of logistics scheduling 

were selected for experiments. Moreover, the final result 

shows that Q-ACO has lower computational overhead 

compared to other scheduling techniques. The main 

reason is that Q-Learning optimizes the search area of the 

ant colony algorithm during training, and only searches 

the reward area, thereby reducing the model overhead. 

In addition, the study also compared with the literature 

[4] as well as the techniques proposed in the literature [6]. 

The Q-ACO model of the research model was found to 

have a lower total logistic operation time control with an 

improvement of 5.35% compared to the heuristic 

algorithm of literature [4]. In comparison with literature 

[6], Q-ACO model also performed better in total logistics 

operation time control with 4.25% improvement. While 

in the overall logistics cost control, Q-ACO model has 

obvious advantages in vehicle transportation and 

scheduling arrangement. In particular, the Q-Learning 

algorithm was used to improve the pheromone in the 

initial phase of ACO, which significantly improved its 

path-seeking optimization effect in the initial phase. The 

Q-ACO model reduced its total logistics cost by 3.35% 

compared with literature [4]. Compared with the 

literature [6], its total logistics cost decreased by 4.26%. 

This showed that the proposed Q-ACO model had a 

better application compared to similar models. 

5 Conclusion 

In conclusion, the contemporary logistics industry is 

evolving in a manner that is increasingly characterized by 

the integration of information and intelligence. The 

intelligent industrial logistics system will manage the 

logistics task process in a more scientific manner, with an 

emphasis on task integration and resource execution 

efficiency. The experimental results demonstrated that the 

proposed scheduling technology for logistics resource 

scheduling exhibited an excellent application effect, 

particularly in comparison to similar technologies. It was 

evident that this technology possesses distinctive 

advantages. However, there were also some shortcomings 

in the research that need to be addressed, such as not 

considering more specific task scheduling processes, and 

not taking into account the impact of suppliers on 

logistics resources. In addition, this technology is mainly 

targeted at logistics scheduling scenarios and has not 

been used in industrial scheduling or cloud resource 

management scenarios. Therefore, in future work, it is 

necessary to analyze more influencing factors of logistics. 

At the same time, the technology should be extended to 

more areas to improve its application effectiveness in 

management and scheduling in various industries. 
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