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To enhance the travel experience of tourists and make the shortest travel personalized route, an innovative 

personalized route optimization method based on a deep, intelligent ant colony is proposed. The algorithm 

considers the tourists' travel time, cost constraints, and the experience of attractions. It establishes the 

objective function of tourists' personalized route optimization to maximize the utility of their travel and 

tourism activities and minimize the total path. Based on the attention mechanism neural network, the 

objective function feature matrix is extracted, which is used to replace the heuristic information matrix of 

the ant colony algorithm, and at the same time, the guidance information of the target point is added to 

understand the optimization of the ant colony algorithm. The optimized algorithm solves the objective 

function and obtains the optimization results of the personalized, customized route for intelligent tourism. 

This paper selected a tourist city with 20 4A level or above scenic spots as the test object, and conducted 

personalized customization optimization experiments on the tourist routes of these scenic spots using deep 

intelligent ant colony algorithm. The test results show that in the optimization of personalized customized 

routes for smart tourism, the application of feature extraction and improved ant colony algorithm has 

achieved a significant optimization effect of increasing the time reduction rate from 15.2% 33.7% to 

44.6% 68.2%. At the same time, in various testing scenarios, including tourist non load and partial 

attraction load situations, the algorithm can reasonably plan the route and improve the tourist experience 

while ensuring the shortest total path. In the end, the optimized personalized route achieved a high level 

of over 93.36% in both the actual multi-objective shortest path proximity and single objective average 

achievement, verifying the superiority and effectiveness of this method. 

Povzetek: V članku je predstavljen inovativen algoritem, ki združuje globoko učenje in optimizacijo 

kolonij mravelj za prilagojeno načrtovanje turističnih poti, kar izboljša personalizacijo in učinkovitost. 

 

1 Introduction 
Intelligent tourism is an emerging tourism method that 

provides comprehensive tourist information by sensing 

tourism resources, designing tourism activities, 

summarizing tourism information, and releasing it in time 

[1], [2]. Its development encompasses tourism 

management services and marketing at three levels, 

centering on the interactive experience of tourists, 

integration of tourism resources, customization of tourism 

products, and promotion of industrial innovation and 

upgrading. In implementing smart tourism, personalized 

planning of tourism routes is crucial [3], which can reduce 

traffic time, improve the quality of tourism, and meet the 

needs of tourists to choose different attractions [4]. 

Tourists usually plan travel routes according to time, cost, 

route length, attraction types, and other factors [5], [6], [7], 

but reducing travel time may reduce the number of 

attractions to play and cannot meet all the needs [8]. 

In reference [9], to achieve the design of 

heterogeneous group tourism routes, tourism safety is 

taken as the core goal, combined with the degree of 

pleasure of tourism, using artificial multi-intelligence  

 

systems for multi-objective tourism itinerary design. This 

method can reduce the risk of visiting scenic spots in the 

application process. However, the length of tourist routes 

is not considered. Therefore, the planned routes are often 

redundant. To achieve the optimal path planning in 

reference [10], an adaptive informed tree (AIT*) and 

effort informed tree (EIT*) are used to plan the path 

between the starting point and the target point, which is 

the shortest path between the two; However, in the 

application process of this method, it is unable to 

comprehensively consider the associations between 

multiple scenic spots for path planning, resulting in a 

single planning result from the algorithm. To achieve 

optimal path planning, reference [11] plans the path to 

minimize travel time. It solves this problem using the 

adaptive spider monkey optimization model to obtain 

optimal path planning results. However, in the application 

process, this method cannot guarantee the tourists' demand 

for the diversity of scenic spots. In reference [12], to 

ensure that the tourist routes meet the traffic conditions, 

route matching is carried out based on an intelligent 

algorithm combined with a map matching algorithm to 



140   Informatica 48 (2024) 139–154 Z. Ziyue 

determine and adjust the tourist routes. However, in the 

application process of this method, the travel time is 

extended. In summary, the current research can be 

summarized as follows: 

 

Table 1: Related work 

Reference 

resources 
Method of use Key findings Limit 

Reference 

[9] 

Artificial Multi 

Intelligence System 

Designing a multi-objective 

tourism itinerary with tourism 

safety as the core and combining it 

with the level of tourism 

enjoyment 

Not considering the length of the 

tourism route resulted in excessive 

redundancy in the planned route 

Reference 

[10] 

Adaptive Informed 

Tree (AIT) and Effort 

Informed Tree (EIT) 

Can effectively reduce the risk of 

visiting tourist attractions 

Unable to comprehensively consider 

the relationships between multiple 

scenic spots, resulting in a single 

planning outcome 

Reference 

[11] 

Adaptive Spider 

Monkey Optimization 

Model 

Plan the shortest path between the 

starting point and the target point 

Cannot guarantee tourists' demand for 

diversity of scenic spots 

Reference 

[12] 

Intelligent algorithm 

combined with map 

matching algorithm 

Obtain the optimal path planning 

result with the goal of minimizing 

travel time 

Long travel time may reduce tourist 

experience 

 

 

The profound wisdom ant colony algorithm is a 

traditional ant colony algorithm optimization algorithm, 

combining deep learning and ant colony algorithm 

formation [13]. The algorithm combines the advantages of 

the two algorithms to optimize the problem. In the process 

of the solution, the algorithm can be transformed into a 

different size of the business travel problem to form the 

corresponding heuristic matrix of information, and then 

based on the matrix for the solution of the business travel 

problem, the more careful consideration of the needs of 

business travel [14], to obtain the optimal solution. 

Therefore, a personalized customized route optimization 

method for smart tourism based on deep intelligent ant 

colony is proposed. By using attention mechanism neural 

networks, personalized features of tourists are captured 

and extracted in real time, forming a feature matrix. This 

matrix then replaces heuristic information in traditional 

ant colony algorithms, injecting dynamic and personalized 

guidance into the search process. At the same time, the 

guidance information of the target point is integrated to 

further optimize the search path of the ant colony, ensuring 

the maximization of tourism activity utility and the 

shortest total path while meeting the time and cost 

constraints of tourists. This technological innovation not 

only breaks the constraints of traditional tourism route 

planning relying on static data or simple rules, but also 

realizes dynamic and personalized route customization 

based on real-time preferences and constraints of tourists, 

greatly improving the personalization of tourism 

experience and overall satisfaction of tourists. 

 

 

2 Optimization of personalized and 

customized itineraries for 

intelligent tourism 

2.1 Architecture of smart tourism 

personalized route optimization 

method based on deep, intelligent ant 

colony 

To meet the demand for tourists' personalized route 

planning, a smart tourism personalized customized route 

optimization method based on profound, intelligent ant 

colonies is proposed. This method is based on the 

restriction that a tourist can visit multiple attractions only 

once and replaces the distance between paths with the 

transportation time between attractions [15]. It considers 

the current popularity of attractions, crowding perception, 

and weights these parameters, while also taking into 

account tourists' perception of their tourism experience. 

Thus, it is determined in the paper to ensure the best tourist 

experience while making the shortest travel path [16]. The 

deep, intelligent ant colony optimization algorithm, based 

on the ant colony algorithm, improves the algorithm's 

solution efficiency by replacing the heuristic information 

matrix with the problem feature matrix extracted by the 

deep reinforcement learning method. The deep learning 

algorithm is applied to transform the tourist route 

optimization problem instance into the feature matrix of 

the problem, which is then used as the heuristic matrix for 

the ant colony algorithm to solve the personalized path 

planning.  
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The overall process of personalized route optimization for 

smart tourism based on deep, intelligent ant colonies is 

shown in Fig. 1. 

The method consists of three essential parts: one is to 

determine the optimization objective function of smart 

tourism personalized routes, the second is to extract the 

feature matrix of the objective function by using a neural 

network that incorporates the attention mechanism, and 

the third is to obtain the optimization results of smart 

tourism personalized routes by using ant colony algorithm 

to solve the objective function based on the feature matrix. 
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Figure 1: Overall process of personalized route development and optimization for smart tourism based on deep, 

intelligent ant colony 

2.2 Smart tourism personalized route 

planning objective function 

determination 

Setting up a tourist transportation network for𝐺 = (𝑉, 𝐷), 
of which𝑉 = {𝑣1, 𝑣2, ⋯ , 𝑣𝑛}is consist of the starting point 

of the tourists' trip𝑣1 , the ending point𝑣𝑛 and different 

types of attractions𝑣𝑖(𝑖 = 2,3,⋯ , 𝑛 − 1),𝐷 = {𝑑𝑖𝑗}is the 

set of tourist transportation network paths, the𝑑𝑖𝑗 is the 

direct path of attraction𝑣𝑖arriving to attraction𝑣𝑗. Tourist 

experience utility consists of two parts: the travel utility of 

tourists moving between nodes and the utility of tourist 

activities in attractions. In the travel process, tourists need 

to consider the mode of transportation when choosing 

tourist destinations [17]. Tourists who face various modes 

of transportation will select the mode of transportation 

with the most excellent utility [18], and the choice of 

transportation is related to its travel costs, travel time, and 

other service attributes. Tourist travel utility is calculated 

as follows: 
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𝑈𝑖𝑗
𝑘 = 𝑤1𝑇𝑖𝑗

𝑘 +𝑤2𝐶𝑖𝑗
𝑘  (1) 

Where, 𝑈𝑖𝑗
𝑘 is the travel utility of selecting k 

transportation mode between attractions 𝑖 to 𝑗 ; 𝑤1 and 

𝑤2are weights for travel time and travel cost, respectively; 

the𝑇𝑖𝑗
𝑘indicates choice of transportation mode𝑘, the travel 

time from the attractions𝑣𝑖to the attractions𝑣𝑗.𝐶𝑖𝑗
𝑘 indicates 

choice of transportation mode𝑘, travel expenses from the 

attractions𝑣𝑖to the attractions𝑣𝑗. 

To maximize the utility of tourism activities, the level 

of tourism activity experience can be expressed in terms 

of tourism value indicators, i.e., the utility of tourism 

activities obtained by tourists at an attraction about the 

attributes of the attraction, the duration of the tourism 

activity and the cost of the attraction, the formula for the 

utility𝑈𝑖
𝑎obtained from tourism activities carried out at the 

attraction𝑖is: 

𝑈𝑖
𝑎 =

𝛽1𝐴𝑖 + 𝛽2 𝑙𝑛(𝑇𝑖
𝑣)

𝑒𝑥𝑝(𝛽3𝐶𝑖)
 (2) 

Where: 𝐴𝑖 indicates the attractiveness of 

attractions𝑖 .𝛽1and 𝛽2and 𝛽3denotes the parameter to be 

determined.𝑇𝑖
𝑣indicates the duration of tourism activities 

at the attractions𝑣𝑖.𝐶𝑖indicates the costs required to carry 

out tourism activities at the attractions𝑣𝑖. 

The optimization of tourists' travel routes should be 

based on the maximization of tourists' travel utility and the 

utility of tourism activities𝑈𝑚𝑎𝑥and the shortest total path

min Z as the goal, the goal comprehensively considers 

the tourists' travel time [19], cost constraints, and the sense 

of experience for the attractions, the establishment of 

tourists' personalized travel route planning optimization 

objective function, which is formulated as follows. 

𝑈𝑚𝑎𝑥 (∑∑∑𝜙1𝑥𝑖,𝑗
𝑘 𝑈𝑖𝑗

𝑘

𝑛

𝑗=2

𝑛−1

𝑖=1

𝑚

𝑘=1

+∑𝜙2𝑦𝑖𝑈𝑖
𝑎

𝑛−1

𝑖=2

)

𝑚𝑎𝑥

 

(3) 

Where,𝜙1and𝜙2denote the travel utility and attraction 

utility weighting coefficients, respectively; 

the𝑥𝑖𝑗and𝑦𝑖both denote decision variables. 

To ensure that the objective function can fully meet 

the needs of tourists' personalized travel route planning, it 

is constrained as follows:

 

{
 
 

 
 ∑∑𝑥1,𝑗

𝑘

𝑛

𝑗=2

= 1

𝑚

𝑘=1

∑∑𝑥𝑖,𝑛
𝑘

𝑛−1

𝑖=1

= 1

𝑚

𝑘=1

 (4) 

∑∑∑𝑥𝑖,𝑗
𝑘

𝑛

𝑗=1

= 1

𝑛

𝑖=1

𝑚

𝑘=1

 (5) 

{
𝑡1 = 𝑡2
𝑡1 + 𝑇𝑖,𝑗

𝑘 = 𝑡𝑠𝑗
 (6) 

∑∑∑𝑥𝑖𝑗
𝑘𝑇𝑖,𝑗

𝑘

𝑛

𝑗=2

+∑𝑦𝑖(𝑡1 − 𝑡3)

𝑛−1

𝑖=2

𝑛−1

𝑖=1

𝑚

𝑘=1

≤ 𝑡0 − 𝑡2 (7) 

∑∑∑𝑥𝑖,𝑗
𝑘 𝐶𝑖𝑗

𝑘

𝑛

𝑗=2

𝑛−1

𝑖=1

𝑚

𝑘=1

+∑𝑦𝑖𝐶𝑖
𝑎

𝑛−1

𝑖=2

≤ 𝐶 (8) 

{
𝑥𝑖,𝑗
𝑘 = {

1,   Tourists choose transportation mode 𝑘 from node 𝑖 to 𝑗 for travel

0,   else

𝑦𝑖 = {
1,    Visiting tourist attractions 𝑖

0，   𝑒𝑙𝑠𝑒
{

 (9) 

 

Among them, formula (4) is the round-trip constraint; 

formula (5) ensures that tourists can only choose one mode 

of transportation on each path; formula (6) requires that 

the sum of the end moment and the travel time of the 

tourist activity carried out in the previous attraction is 

equal to the start moment of the tourist activity in the next 

attraction [20]; formula (7) is the travel time constraint; 

formula (8) is the cost constraint; and formula (9) is the 

decision variable constraint. 𝑡1 , 𝑡2 , 𝑡0  and 𝑡3denote the 

leaving time, departure time, return time, and arrival time 

attractions𝑣𝑖respectively.𝐶 indicates the cost of the travel 

budget. 



A Deep Intelligent Ant Colony-Based Approach to Personalized…                                              Informatica 48 (2024) 139–154   143 

2.3 Attention mechanism neural network 

based objective function feature 

extraction 

Since the objective function of smart tourism personalized 

route planning determined in the paper is a multi-objective 

function, to ensure the solution effect of the objective 

function, the features of intelligent tourism personalized 

route planning are extracted by constructing the neural 

network model of the attention mechanism, which 

provides the basis for the subsequent planning. 

2.3.1 Structure of the neural network model of 

the attention mechanism 

In the paper, the neural network model of attention 

mechanism in deep learning is used for the feature 

extraction of the objective function. The model consists of 

two parts: the encoder-decoder structure and the hybrid 

attention mechanism structure [21], the encoder-decoder 

structure is mainly responsible for the establishment of the 

correlation between the input of the objective function 

problem and the output of the features in the travelers’ 

situation, the input of the objective function problem is the 

coordinate of all the attractions and the information of the 

currently constructed partial solution [22]. The hybrid 

attention mechanism structure integrates the correlation 

between the input and output parameters of the objective 

function-solving problem in the encoder-decoder. It gives 

different degrees of attention to the cities to be visited. Fig. 

2 illustrates the structure of this model.

1 2, , . . . , nv v v

1 2
, ,...,

nv v vh h h
1 2
, ,...,

nd d dh h h

1 2, ,..., nd d d

G Z D

0
,

tv vh h 
 

Fully connected 

layer

Attention mechanism

Characteristic 

matrix

 

Figure 2: Attention mechanism neural network model structure 

The encoder in this model uses a one-dimensional 

convolutional embedding layer structure to transform the 

problem inputs into high-dimensional vectors, fully 

utilizing the structural information in the attractions. The 

inputs to this part are the Euclidean coordinates of each 

attraction. In the encoder, the feature vectors 

corresponding to the outputs of each task are independent 

of each other, and thus these variables do not reflect the 

characterization of the set of edges for the attractions 𝐷. 

Consequently, it is necessary to target the set of edges of 

the𝐷 for characterization. This paper adopts the hybrid 

attention neural network structure to extract relevant 

features. This variable can be considered as a global 

variable of the scene, which contains the relevant 

information of the set of edges𝐸. 

The decoder is mainly used to combine the encoder 

input, global variable input, and current solution 

information [23] to output evaluations of all optional 

scenic spots for the next stage. Considering that the 

solution process of the traveling salesperson problem has 

specific Markov characteristics, that is, the evaluation of 

optional scenic spots in the next stage is only related to the 
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initial scenic spots and the current scenic spots, so this 

paper will initially visit the scenic spots𝑣0 , the current 

location of the attraction𝑣𝑡and the distance𝑑𝑡
𝑖between the 

currently visited site and other sites to be visited as the 

input to the decoder and defines the structure of the 

decoder as a superficial one-dimensional embedding 

layer. 

The hybrid attention mechanism structure is used to 

predict which of the following available attractions is 

more likely to be chosen for an optimal solution, and the 

attention model is used to give a higher probability of 

selection to the attraction that is more likely to produce an 

optimal solution in the next step. 

2.3.2 Objective function feature extraction 

In the paper, to fully grasp the characteristics of the 

objective function, this method adopts the hybrid attention 

neural network structure for the feature extraction of the 

objective function, and the mixed attention neural network 

is composed of two network structures, which are the 

bidirectional long and short-term memory network and the 

convolutional neural network, respectively. 

The structure transforms the coordinate 

feature[𝑥𝑖 , 𝑦𝑖]of the city and the distance𝑑𝑡
𝑖between the 

currently visited city and the other cities to be seen into 

the feature vectors 𝐻 = [ℎ𝑣1 , ℎ𝑣2 , . . . , ℎ𝑣𝑛] and 𝐵 =

[ℎ𝑑1 , ℎ𝑑2 , . . . , ℎ𝑑𝑛]of the corresponding dimensions, after 

which the global variable 𝐺 is obtained by hybrid attention 

modeling. On this basis, calculate the state variable 

𝑍 using the formula: 

𝑍 = 𝑔 𝑙𝑖𝑚 𝑝 𝑠𝑒(𝐺; [ℎ𝑣0 , ℎ𝑣𝑡]) (10) 

Where: [ℎ𝑣0 , ℎ𝑣𝑡] express performing splicing 

operations to𝑣0and 𝑣𝑡. 
Decode𝐺,𝐵and𝑍component models, and input the full 

connected layer for feature calculation. The mixed 

attention mechanism can project𝐺 , 𝐵 and  𝑍 with each 

projection matrix of𝑛, and then calculate single attention 

for𝑛times respectively, and finally splicing the result [24]; 

obtaining the relevance of each to-be-visited 

attraction 𝜇(𝑦𝑖 , 𝑥𝑖) , the softmax function is used to 

normalize the correlation, and the specific score for the 

following optional scenic spots is obtained. 

The formula for𝜇(𝑦𝑖 , 𝑥𝑖)is: 

𝜇(𝑦𝑖 , 𝑥𝑖) = 𝑡𝑎𝑛ℎ(𝑦𝑖 × 𝑤 × 𝑥
𝑇 + 𝑏; 𝑍) (11) 

Where:𝑦𝑖denotes the output of the bi-directional long 

and short-term memory network, i.e., the set of selected 

attractions.𝑥denotes the feature vector of the production 

of the convolutional neural network layer, i.e., the set of 

points of interest to be chosen. 𝑤 indicates the 

weights.𝑏indicates a bias. 

To ensure the effectiveness of feature extraction, a 

parameter matrix 𝜅 is introduced, and 

superimpose𝜅 and𝜇(𝑦𝑖 , 𝑥𝑖) to obtain the feature matrix, 

which is calculated as follows: 

[

𝐽1
𝐽2
⋮
𝐽𝑛

] = (

𝜅11 𝜅12 ⋯ 𝜅1𝑛
𝜅21 𝜅22 ⋯ 𝜅2𝑛
⋮ ⋮ ⋮
𝜅𝑛1 𝜅𝑛2 ⋯ 𝜅𝑛𝑛

)(

𝜇1
𝜇2
⋮
𝜇𝑛

) (12) 

Where:𝜇𝑖denotes the vector of similarity matrices. 

The weight calculated by mixed distribution is 

normalized by softmax to obtain the corresponding 

weight𝑊𝑖 , finally, the output vector of the bidirectional 

network with the corresponding weights𝑊𝑖computed to 

obtain the final objective function characterization𝑂𝑖 , 

which is calculated by the following formula: 

𝑊𝑖 =
𝑒𝑥𝑝(𝐽𝑖)

∑ 𝑒𝑥𝑝(𝐽𝑖)
𝑛
𝑗=1

 (13) 

𝑂𝑖 =∑𝑊𝑖

𝑛

𝑖=1

𝑦𝑖 (14) 

Where:𝐽𝑖denotes the similarity feature vector. 

After the calculation of𝑂𝑖 in accordance with the 

above steps, the initial starting point is set for each 

attraction in the scene one by one, the feature vectors of 

each remaining attraction are obtained, and finally, the 

feature vectors of all the attractions are spliced to derive 

the heuristic matrix𝑀0 . To reduce the computational 

complexity of the model, pre-processing for 𝑀0, which is 

calculated as follows: 

𝑃(𝑦𝑡 , 𝑥𝑡) = 𝑠𝑜𝑓𝑡 𝑚𝑎𝑥 (
𝜇𝑡
𝑖

√𝑛
3 ) (15) 

Where:𝑛denotes the size of the example.𝑃(𝑦𝑡 , 𝑥𝑡)is 

the conditional probability of a transfer from a selected 

attraction to a to-be-selected attraction. 

Through formula (15), we can achieve the equal 

proportion of 𝜇𝑖 to reduce, and narrow the order of 

magnitude gap of the evaluation value of different scenic 

spots in𝑀0. The travel quotient problems solved in this 

paper are all symmetric travel quotient problems, that is, 

travel from city𝑠𝑖to city𝑠𝑗should have the same evaluation 

as travel from city𝑠𝑗to city𝑠𝑖. Therefore, this paper uses 

the following method to process𝑀0and obtain the final 

feature matrix𝑀, whose calculation formula is: 

𝑀 = 𝑀0 +𝑀0
𝑇 (16) 

Where:𝑀0
𝑇represents the transposition of𝑀0. 

2.4 Optimal path solving for tourism 

personalization based on improved ant 

colony algorithm 

According to the above subsection, after completing the 

extraction of the feature matrix of the objective function, 

considering that the optimization based on the feature 

matrix may fall into the local optimal solution, it isn't easy 

to find the global optimal solution. Therefore, the ant 

colony algorithm is used to solve the objective function. 

Still, the ant colony algorithm will leave pheromone on the 

paths in the process of solving. Other ants will tend to 

choose the paths with more pheromone to search for the 
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objective solution when they sense the residual 

pheromone, and the inspirational information of the ant 

colony algorithm is the inverse of the Euclidean distance 

between the current node and the next optional node, due 

to the lack of the objective point. Due to the lack of 

guidance information on the target point and the slight 

difference in the amount of pheromone between different 

paths at the early stage of the algorithm, ants have a great 

deal of randomness in choosing paths, which reduces the 

search efficiency and optimization ability of the ants. 

Therefore, to improve the optimal path-solving effect of 

tourism personalization [25], To incorporate the heuristic 

information matrix in the 𝑀  -substitution algorithm 

acquired in the above subsection, based on the 

replacement, and then add the guidance information of the 

target point to reduce the invalid path search, optimize the 

algorithm for the personalized optimal path searchability, 

to ensure the optimization effect of the path. 

When ants move, the probability of each path being 

selected is derived by the pheromone concentration and 

distance heuristic function [26], and a roulette algorithm 

selects the paths, the probability for ant 𝑚 moving from 

the node i to node𝑗is calculated by the formula: 

𝑃𝑖𝑗 =

{
 

 [𝜉𝑖𝑗(𝑡)]
𝛼
[𝜂𝑖𝑗(𝑡)]

𝛽

𝑀 {[𝜉𝑖𝑗(𝑡)]
𝛼
+ [𝜂𝑖𝑗(𝑡)]

𝛽
}
, 𝑗 ∈ 𝐸𝑖

0,  𝑗 ∉ 𝐸𝑖

 (17) 

Where:𝑃𝑖𝑗 is probability of moving from node i to 

node 𝑗 ; the𝛼 is pheromone-inspired factors; the𝛽 is the 

expectation function factor, both of which affect the 

importance of the pheromone and distance heuristic 

functions, respectively.𝐸𝑖denotes the set of destinations 

that the ants can reach in the next step.𝑖is the current node; 

the𝜉𝑖𝑗(𝑡)represents the pheromone concentration in the 

moving route between different nodes 𝑖 and 𝑗 at time 𝑡 ; 

the𝜂𝑖𝑗(𝑡)denotes the heuristic information function, which 

is calculated as follows: 

𝜂𝑖𝑗(𝑡) =
1

𝑑𝑖𝑗
 (18) 

By replacing the 𝜂𝑖𝑗(𝑡) in formula (17), the guide 

information of the target point is added to the heuristic 

function to reduce the invalid path search, and the 

calculation formula of the improved heresy’s function is 

as follows: 

�̃�(𝑡) =
1

𝐷𝑖𝑗 + 𝑑𝑗𝐸
 (19) 

Where: 𝐷𝑖𝑗 is the equivalent distance between the 

current node i and the next optional node 𝑗 ;𝑑𝑗𝐸 is the 

Euclidean distance between the node 𝑗 and the target 

point𝐸. 

Improving the heuristic function can successfully 

avoid the issue of inadequate heuristic information at the 

early stage of the algorithm and improve its search 

efficiency. 

The objective function is optimized once the heuristic 

function has been improved to a satisfactory degree. When 

each ant completes a step or constructs a complete path, it 

is necessary to update the pheromone. The pheromone 

updating rule is formulated as follows. 

𝜉𝑖𝑗(𝑡 + 1) = (𝑖 − 𝜌)𝜉𝑖𝑗(𝑡) + 𝛥𝜉𝑖𝑗(𝑡) (20) 

𝛥𝜉𝑖𝑗(𝑡) = ∑𝛥𝜉𝑖𝑗
𝑘 (𝑡)

𝑚

𝑘=1

 (21) 

Where:𝜌is the pheromone volatilization coefficient, 

and𝜌 ∈ (0,1)；𝛥𝜉𝑖𝑗(𝑡) is the total change in the upper 

pheromone on the section(𝑖, 𝑗);𝛥𝜉𝑖𝑗
𝑘 (𝑡)is the amount of 

pheromone released by the𝑘th ant on section(𝑖, 𝑗). 
𝛥𝜉𝑖𝑗

𝑘 (𝑡)usually use the ant cycle system model for 

calculation, and the formula is: 

( )
( ),Ant  passes through ,  in this loop

0 else

k
kij

Q
k i j

dt




 = 

 ，

 

(22) 

Where: 𝑄 is a constant indicating the pheromone 

intensity.𝑑𝑘is the length of the path traveled by the𝑘th ants 

in this loop. 

Since the objective function constructed in the paper 

considers the tourists' sense of experience for the 

attractions, to ensure that the formulated personalized path 

meets the tourists' needs for the attractions, the selection 

probability between the attractions is calculated, and the 

weight between the attractions needs to be restricted 

before the probability calculation, which is calculated by 

the following formula. 

𝑤𝑖𝑗 =

{
 
 
 

 
 
 

𝑑𝑖𝑗 ⋅ 𝑘𝑗

𝑁𝑗 ⋅ 𝑞𝑗
, �̃� ≤ 𝑅𝑗

𝑑𝑖𝑗 ⋅ �̃�

𝑁𝑗 ⋅ 𝑞𝑗
, 𝑅 < �̃� < 𝑁

𝑑𝑖𝑗 ⋅ �̃� ⋅ 𝑒
𝛾⋅(�̃�−𝑁)

𝑁𝑗 ⋅ 𝑞𝑗
, �̃� ≥ 𝑁

 (23) 

𝑃𝑖𝑗
𝑘 =

[𝜉𝑖𝑗(𝑡)]
𝛼
⋅ [�̃�(𝑡)]

𝛽

∑ ([𝜉𝑖𝑗(𝑡)]
𝛼
⋅ [�̃�(𝑡)]

𝛽
)𝑘∈𝐸𝑖

 (24) 

Where:�̃�is current number of people in the scenic area 

for attraction𝑗.𝛾is the relative importance of the number of 

people on the tourist experience when the number of 

people in a picturesque spot exceeds the load.𝑁𝑗 is the 

maximum number of persons loaded for attraction𝑗.𝑅𝑗 i 

critical mass that does not affect the tourist experience for 

attractions𝑗.𝑞𝑗 indicates the current attraction popularity 

rating. 

Based on the above steps, pheromone updating is 

carried out, in updating the pheromone, first judge: 

whether the current round of iteration makes the path 

optimization degree is higher, if yes, then update the 

residual pheromone; on the contrary, only volatile 

pheromone without increasing the residual pheromone. 

The optimization and updating formula of pheromone is 

as follows: 
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{
𝜏𝑖𝑗(𝑡 + 1) = (1 − 𝜀)𝜏𝑖𝑗(𝑡) +∑𝜏𝑖𝑗

𝑘 ,∑𝑤(𝑡 + 1) ≥∑𝑤(𝑡)

𝜏𝑖𝑗(𝑡 + 1) = (1 − 𝜀)𝜏𝑖𝑗(𝑡),∑𝑤(𝑡 + 1) <∑𝑤(𝑡)
 (25) 

Where:  is the pheromone volatilization constant; 

the∑𝑤(𝑡)denotes the sum of all path weights. 

The steps for solving the optimal path for tourism 

personalization based on the improved ant colony 

algorithm are described as follows: 

Step 1: Initialization of parameters. Set the number of 

cycles that𝑁𝑐 = 0, the maximum number of cycles 𝑁𝑚𝑎𝑥 , 

emptying of the taboo table𝑆𝑘 . Order the initialization 

pheromone of (𝑖, 𝑗) , the𝜏𝑖𝑗(0) = 𝜏0 , of which 𝜏0 is a 

constant, and at the initial moment, the 𝜏𝑖𝑗(0) = 0 ; 

Calculate�̃�(𝑡). 
Step 2: Place𝑚 ants on 𝑛 attractions, then the city 

where the ant k is located added to the𝑆𝑘 of the ant𝑘. 

Step 3: Number of cycles𝑁𝑐 = 𝑁𝑐 + 1and the number 

of ants𝐾 = 1. 

Step 4: Computing the path selection 

probability𝑃𝑖𝑗
𝑘(𝑡)for ant𝑘, moving to the next attraction as 

determined by a random factor𝑗, then𝑗is added to the taboo 

table𝑆𝑘of ant𝑘, at this point 𝐾 = 𝐾 + 1. 

Step 5: If satisfied 𝐾 ≥ 𝑚, perform step 4; otherwise, 

perform step 6. 

Step 6: Calculate the travel expenses for each ant's 

path, the�̃�and travel experiences𝐹, which is used to obtain 

the value of the composite objective 

function𝑚𝑖𝑛 𝑆 and𝑈𝑚𝑎𝑥 and record the current optimal 

solution; if the optimal solution is the current optimal 

solution, then conduct a local search to determine whether 

the optimal solution needs to be updated. 

Step 7: Update the path pheromone, after update, the 

pheromone 𝜏𝑖𝑗(𝑡) of each edge (𝑖, 𝑗) is judged, greater 

than𝜏𝑚𝑎𝑥amend to𝜏𝑚𝑎𝑥 , less than𝜏𝑚𝑖𝑛amend to𝜏𝑚𝑖𝑛 . 

Step 8: If satisfied𝑁𝑐 > 𝑁𝑚𝑎𝑥 , then the next step is 

performed; otherwise, the taboo table 𝑆𝑘  is cleared, 

perform step 3. 

Step 9: Output the result of the objective function, i.e., 

the optimal path result of tourism personalization. 

3 Test analysis 
To verify the application effect of the method in the 

intelligent tourism personalized customization route 

optimization, this paper selects a tourism city as the test 

object. The city has 20 scenic spots above the 4A level and 

66 scenic spots above the 3A level. This paper only uses 

20 scenic spots above the 4A level as the test scenic spots 

of this method and uses the technique in this paper to 

customize and optimize the tourism routes of these scenic 

spots; the application effect of the process is tested. Fig. 3 

displays the plane distribution of 20 test scenic spots in the 

city.

Attractions

 

Figure 3: Schematic diagram of the planar distribution of 20 test scenic spots in the city 

The relevant parameters for each attraction are 

displayed in Table 2. 

During the experiment, the test dataset covered 

detailed information of 20 attractions with a 4A rating or 

higher, including location coordinates, opening hours, 

ticket prices, and tourist reviews, as well as personal 

preference data of tourists, such as time preferences, cost 

budgets, and attraction type preferences. In order to 

evaluate the performance of the proposed optimization 

path algorithm, the algorithm parameters shown in Table 

3 were set. Meanwhile, multiple evaluation metrics were 

employed to comprehensively and meticulously assess the 

effectiveness and practicality of the algorithm.
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Table 2: Relevant parameters of each scenic spot 

Scenic Area Number Current number of people/person Fame rating 

1 447 75.6 

2 503 80.2 

3 329 70.1 

4 766 88.4 

5 384 70.3 

6 422 72.0 

7 803 94.6 

8 777 90.1 

9 526 76.6 

10 607 80.4 

Table 3: Details of algorithm parameter settings proposed 

Category Describe Specific values/parameters 

Neural Network 

Architecture 

Input layer Node count: 10 (scenic feature dimension) 

Hidden layer 1 
Number of nodes: 64, activation function: 

ReLU 

Hidden Layer 2 
Number of nodes: 32, activation function: 

ReLU 

Output layer Node count: 1, activation function: Sigmoid 

Training parameters 

Learning rate 0.001 

Optimizer Adam optimizer 

Loss function Mean Square Error (MSE) 

Batch size 32 

Training epochs 100 

Early stop strategy 
Stop if the loss of the validation set does not 

decrease for 20 consecutive rounds 

Deep intelligent ant colony 

algorithm 

Ant number  50 

Pheromone volatility coefficient 0.7 

Pheromone intensity Initial value: 1, dynamically updated 

Heuristic information 
Utility value matrix output by neural 

network 

Select probability function 
Roulette selection method, incorporating 

target point guidance information 

Improvement point 1 Dynamically adjust inspiration information 

Improvement Point 2 
Target point guidance increases the 

probability of selection 

Hardware 

CPU Intel Core i7-9700K 

GPU NVIDIA GeForce RTX 2080 Ti 

Memory 32GB DDR4 

Software environment 

Operating system Windows 10 

Programming language Python 3.8 

Deep Learning Framework TensorFlow 2.4 

Other libraries NumPy, Pandas, Matplotlib 

 

(1) Time reduction rate: used to measure the 

percentage reduction in total travel time before and after 

optimization; 

(2) Path length: Ensure that the actual total path 

traveled is as short as possible; 

(3) Multi objective shortest path proximity: reflects 

the degree to which the optimized path approaches the 

optimal solution in multiple dimensions (time, cost, 

experience), quantified in percentage form; 

(4) Single objective average achievement: The 

average achievement level of the optimization path for 

each single objective (such as shortest time, lowest cost, 

best experience), expressed as a percentage. 

The method in the paper in the intelligent tourism 

personalized customized route optimization process first 

extracts the characteristics of the objective function based 

on the results of the characteristics of the personalized 

customized route optimization solution. Therefore, 

removing the attributes of the effect is essential, randomly 
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selecting ten attractions, using the method in the paper on 

extracting the characteristics of the ten attractions, to 

obtain the results of the visualization of its feature matrix, 

as shown in Fig. 4. 

In Figure 4, each matrix represents a specific feature 

such as geographic distance, tourist ratings, and opening 

hours, and the color intensity in the matrix intuitively 

reflects the similarity or difference between attractions on 

that feature. Matrix A represents the geographical distance 

characteristics between tourist attractions. The depth of 

colors directly reflects the physical distance between 

scenic spots, which helps optimize algorithms to consider 

the convenience of actual travel when planning routes. 

After analyzing the test results in Fig. 4, it is concluded 

that the method in the paper can calculate the feature 

matrix between different attractions in the process of 

personalized route optimization and solving. Each 

attraction has its corresponding feature results, and the 

extracted results can present the distribution of each 

feature, similarity, etc., which can provide a reliable basis 

for optimizing and solving personalized, customized 

routes. 

The paper uses the improved ant colony algorithm to 

solve the personalized route optimization. The algorithm 

needs to update the pheromone concentration during the 

solution process, and the ants are based on the pheromone 

concentration for the path selection, to obtain the 

distribution of pheromone concentration updating during 

the application process of the method in the paper, and the 

test results are shown in Fig. 5.
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Figure 4: Visualization results of feature matrices between ten scenic spots 
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Figure 5 Update distribution results of pheromone concentration 

After analyzing the test results in Fig. 5, it is 

concluded that the algorithm in the process of searching 

for excellence, with the gradual increase of pheromone 

concentration, ants move to the target point of the path is 

getting shorter and shorter, through the pheromone 

concentration of the update, the highest concentration of 

the path that is the path of searching for the optimal. 

Hence, the algorithm has a better application, can be based 

on the size of the pheromone on the path of the ant's 

allocation, and finally determines the path of the highest 

concentration of the path. The path with the highest 

pheromone concentration is finally resolved. 

In this paper, the feature matrix of the objective 

function is mainly applied to substitute the heuristic 

information function of the ant colony algorithm in 

solving the objective function. At the same time, the 

guiding information of the target point is added to reduce 

the ineffective path search and optimize the algorithm's 

ability to search for the sexually optimal paths. The time 

reduction rate is used in the paper as an average index to 

evaluate the optimization effect of the algorithm. Table 3 

displays the test outcomes before and after optimizing the 

algorithm under different numbers of attractions. 

After analyzing the test results in Table 3, it is 

concluded that the time reduction rate is 15.2%~33.7% 

when the algorithm makes routes between different 

numbers of scenic spots before optimization. After 

optimizing the algorithm in this paper, the time reduction 

rate is between 44.6% and 68.2% when making routes 

between different numbers of scenic spots. The result of 

the time reduction rate is significantly better than before 

optimization. Therefore, the optimization effect of this 

method is good, which can better realize the optimization 

of intelligent tourism personalized customization routes 

and obtain the best route formulation scheme. 

To verify the application effect of the method in the 

paper, in the attractions of non-loaded tourists and part of 

the attractions tourists load (of which three attractions 

occur tourists load) two cases, using the method in the 

paper to carry out the personalized route optimization in 

the two cases, to obtain the optimal path of the planning 

results, as shown in Fig. 6. 

After analyzing the test results in Fig. 6, it is 

concluded that in the case of non-load of tourists in scenic 

spots and some scenic spots, the optimization of the 

personalized, customized route, can ensure the shortest 

total path to achieve the goal of personalized travel route 

planning optimization of tourists, in addition, when the 

tourist load occurs in some scenic spots, this method can 

reasonably carry out the time planning of the loaded scenic 

spots, and load the scenic spots, so as not to increase the 

route planning length without ensuring the experience of 

tourists, and meet the goal of personalized travel route 

planning and optimization. 

To further verify the application effect of the methods 

in the paper, the reference [9] method, the reference [10] 

method, the reference [11] method, the reference [12] 

method are selected as the comparison methods of the 

optimization methods in the paper, and the results of the 

total length of the customized routes of the five algorithms 

are tested in the route customization of tourists with ten 

different starting points, and the entire length of the 

customized routes are tested in the premise of completing 

tours to 20 sightseeing spots, as shown in Table 4.
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(a) Results of tourist non load (b) Results of tourist load in some scenic spots 

Figure 6: Planning results of the optimal route 

Table 4: Test results of time reduction rate under different numbers of tourist attractions 

Number of attractions/piece Before optimization After optimization 

2 16.6 50.2 

4 17.3 55.7 

6 21.1 60.3 

8 24.9 62.7 

10 26.7 48.9 

12 30.5 60.1 

14 15.2 68.2 

16 32.4 66.6 

18 33.7 50.5 

20 30.6 44.6 

Table 5: Total length results of customized routes using five methods 

Starting point 
Reference [9] 

Method 

Reference [10] 

Method 

Reference [11] 

Method 

Reference [12] 

Method 

The method 

in the text 

1 119.6 122.2 118.6 123.7 109.6 

2 120.5 122.4 120.7 119.7 111.3 

3 119.5 124.8 122.8 120.6 112.4 

4 121.2 123.4 120.7 121.1 108.3 

5 120.6 121.1 120.8 125.3 114.4 

6 122.2 121.6 120.3 122.1 113.8 

7 116.8 118.4 120.2 119.7 111.1 

8 118.8 119.7 120.7 118.5 104.3 

9 121.1 122.5 123.6 120.9 112.2 

10 120.9 122.3 122.1 124.5 112.3 

 

Based on the analysis of the test results in Table 4, it 

is concluded that when ten tourist routes located at 

different starting points are formulated by reference [9] 

method, reference [10] method, reference [11] method, 

and reference [12] method, respectively, the four methods 

can obtain the total path planning results, and the full path 

planning results of the four methods are slightly different; 

After the route customization among all scenic spots is 

carried out with the method in this paper, the route 

planning result is significantly less than that of the other 

four methods at the same starting point, of which the 

longest planned route is 114.4 km. Therefore, the method 

in this paper has a good application effect and can obtain 

the shortest route planning result while ensuring the 

maximum utility of tourists. 

To further verify the optimization effect of the method 

in the paper for the personalized route of intelligent 

tourism, after the route planning by the process, the actual 

multi-objective shortest path proximity and single-

objective average degree of realization are used as 

evaluation indexes to judge the optimized routes by the 

method in the paper. The values of the actual multi-

objective shortest path proximity and single-objective 

average degree of realization are all in the range of 0 to 

100%. The larger the value, the better the optimization 

effect of the personalized route is. After analyzing the 
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customized optimization of routes with different distances 

by the method in the paper, the actual multi-objective 

shortest path proximity and single-objective average 

realization of the optimized routes are shown in Table 5. 

After analyzing the test results in Table 5, it is 

concluded that after using the method in the paper to 

optimize and customize the personalized routes, the actual 

multi-objective shortest path proximity and single-

objective average realization of each route optimization 

are above 93.36% and the maximum values of the two 

reach 98.68% and 99.03%, respectively. Therefore, the 

method in this paper has a good application effect, which 

can ensure the optimization of personalized route 

customization effect and enhance the tourists' experience. 

In order to evaluate the computational efficiency and 

scalability of the proposed personalized customized route 

optimization method for smart tourism based on deep 

intelligent ant colony, this paper compares it with a 

baseline method (greedy algorithm). The experiment was 

conducted on three different sized datasets: a small dataset 

(containing 10 attractions, each with 5 features), a 

medium-sized dataset (containing 50 attractions, each 

with 10 features), and a large dataset (containing 200 

attractions, each with 15 features), to observe the changes 

in algorithm performance with increasing data volume. 

The experimental results are shown in Table 6. 

According to Table 6, as the size of the dataset 

increases, the running time of both algorithms 

significantly increases. This indicates that the 

computational complexity of the algorithm is positively 

correlated with the size of the dataset. The proposed 

algorithm has a slightly longer running time on small 

datasets than the baseline algorithm, but the increase in 

running time is relatively large on medium and large 

datasets. This may be due to the proposed algorithm 

adopting more complex optimization strategies when 

dealing with complex scenes, resulting in an increase in 

computational complexity. Despite running for a long 

time on large datasets, it is still able to complete 

calculations in a reasonable amount of time (about 12 

seconds), indicating that the algorithm has a certain degree 

of scalability. In contrast, although the baseline algorithm 

has a shorter running time on large datasets, its 

optimization effect is not as comprehensive and accurate 

as the proposed algorithm. In summary, the proposed 

algorithm has shown good performance in personalized 

tourism route optimization. Despite its high computational 

complexity, it still has good scalability at a reasonable 

dataset size.

Table 6: Optimization Effect Test Results for Different Routes 

Route length /km Multi-objective shortest path proximity Average achievement of a single objective 

3 95.07 95.58 

6 97.22 96.14 

9 96.14 99.03 

12 94.27 97.22 

15 97.35 95.28 

18 93.36 94.14 

21 94.82 97.08 

24 98.11 95.66 

27 98.68 94.47 

30 97.69 98.11 

Table 7: Scalability experiment of the proposed method 

Dataset size 
Number of 

attractions 

Number of 

features 

The running time of the 

proposed algorithm (s) 

The running time of the 

baseline algorithm (s) 

Small datasets 10 5 0.012 0.008 

Medium sized 

dataset 
50 10 0.456 0.234 

Large datasets 200 15 12.345 6.789 
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4 Discussion 

4.1 Discussion on algorithm advantages 

In the field of personalized customized route optimization 

for smart tourism, the method proposed in this study has 

demonstrated significant advantages compared to state-of-

the-art methods (SOTA) in multiple aspects. The 

following is a detailed discussion of these differences, 

including routing optimization efficiency, computational 

complexity, and practical applicability. 

This study significantly improves the efficiency of 

routing optimization by introducing feature matrices to 

replace the heuristic information function of traditional ant 

colony algorithms and combining it with the guidance 

information of the target point. From the results in Table 

2, it can be seen that the optimized algorithm has increased 

the time reduction rate from 15.2% 33.7% to 44.6% 68.2% 

in route planning between different numbers of scenic 

spots, which far exceeds many SOTA methods. This 

indicates that the method proposed in this study is more 

efficient in finding the optimal path and can converge to 

the optimal solution faster, thereby reducing user waiting 

time and improving user experience. 

Although the method used in this study performed 

well in optimizing efficiency, its computational 

complexity did not significantly increase. Ant colony 

algorithm itself is a heuristic search algorithm, and its 

computational complexity mainly depends on the number 

of iterations and the number of ants. This study improved 

the pheromone update mechanism and introduced a 

feature matrix. Although some preprocessing steps were 

added, it did not significantly affect the overall 

computational complexity. In contrast, some SOTA 

methods may use more complex mathematical models or 

optimization algorithms, which can achieve better 

optimization results, but have higher computational costs 

and are not conducive to real-time applications. 

In practical applications, the method proposed in this 

study demonstrates stronger adaptability and flexibility. 

As shown in Figure 6, the method proposed in this study 

can achieve the optimization goal of personalized travel 

route planning for tourists while ensuring the shortest total 

path in both non load and partially loaded tourist 

scenarios. Especially when there is a tourist load at some 

scenic spots, this method can reasonably plan the time of 

the loaded scenic spots, avoid overcrowding of tourists, 

and improve the tourist experience. Furthermore, from the 

results in Table 3, it can be seen that the route planning 

results of our method are significantly lower than other 

SOTA methods at the same starting point, which further 

proves its superiority in practical applications. 

Compared with existing research methods, this 

study's approach addresses the limitations of previous 

work in the following aspects: 

(1) Considering multi-objective optimization 

comprehensively: Traditional methods often only focus on 

a single objective (such as shortest path, least time, etc.), 

while the method proposed in this study achieves multi-

objective optimization (such as safety, pleasure level, 

diversity of scenic spots, etc.) by introducing feature 

matrices and target point guidance information, better 

meeting the personalized needs of tourists. 

(2) Adapting to complex scenarios: Traditional 

methods often struggle to effectively cope with complex 

scenarios such as tourist loads. The method of this study 

effectively solves this problem through reasonable time 

planning and load attraction planning, improving the 

robustness and practicality of the algorithm. 

(3) Improving optimization effect: By improving the 

pheromone update mechanism of ant colony algorithm 

and introducing feature matrix, this research method has 

achieved significant improvement in optimization effect, 

not only increasing the time reduction rate, but also 

ensuring the quality of the optimized route. 

In summary, the method proposed in this study has 

demonstrated significant advantages over SOTA methods 

in terms of routing optimization efficiency, computational 

complexity, and practical applicability. These advantages 

are mainly due to the in-depth improvement of algorithm 

mechanisms and comprehensive consideration of practical 

problems, making this method have a wider application 

prospect in the field of personalized route optimization for 

smart tourism. 

4.2 Ethical discussion 

With the development of personalized tourism services, 

data privacy has become an issue that cannot be ignored. 

This study attaches great importance to the privacy 

protection of user data when designing and implementing 

algorithms. We use encryption technology to process 

sensitive information such as user location, preferences, 

etc., ensuring that unauthorized third parties do not access 

the data during transmission and storage. In addition, strict 

data access control has been implemented to ensure that 

only authorized personnel can access and process user 

data. In algorithm design, we also try to avoid collecting 

unnecessary personal information and only analyze it 

through anonymization or aggregation of data when 

necessary to reduce the invasion of individual privacy. 

These measures not only comply with the requirements of 

data protection regulations, but also demonstrate respect 

and protection for users' privacy rights. 

Personalized travel route recommendations have had 

a positive impact on tourist behavior. By providing routes 

that align with personal interests and preferences, tourists 

can enjoy the travel process more and reduce the fatigue 

and dissatisfaction caused by blind sightseeing. 

Meanwhile, personalized route recommendations can also 

guide tourists to discover more unique attractions and 

activities, enriching their travel experience. However, it 

should also be noted that excessive reliance on 

personalized recommendations may lead to a 

homogenization of tourists' travel behavior, reducing 

exploration and discovery of unknown areas. Therefore, 

while providing personalized services, tourists should also 

be encouraged to maintain an open and curious attitude, 

actively explore and experience different cultures and 

landscapes. 
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Personalized travel route recommendations have also 

had a profound impact on local communities. On the one 

hand, reasonable route planning can balance the tourist 

flow of various attractions, reduce congestion at popular 

attractions, and thus protect the local ecological 

environment and cultural heritage. Meanwhile, by guiding 

tourists to relatively less popular attractions, it can 

promote the balanced development of the local economy 

and increase residents' income. On the other hand, 

personalized route recommendations may also exacerbate 

the commercialization trend of certain scenic spots, 

damaging the original cultural atmosphere and ecological 

environment. Therefore, when developing personalized 

routes, it is necessary to fully consider the interests and 

demands of the local community, ensuring that tourism 

activities are coordinated with local culture and 

environment. 

In summary, the method of this study has 

demonstrated its superiority in multiple aspects, while also 

recognizing that in the process of optimizing personalized 

customized routes for smart tourism, it is necessary to 

attach great importance to data privacy protection, ethical 

considerations, and the impact on tourist behavior and 

local communities. Only in this way can we better promote 

the development of smart tourism and provide tourists 

with better, safer, and more sustainable tourism 

experiences. 

5 Conclusion 
Intelligent tourism personalized, customized routes are the 

basis for ensuring tourists' sense of experience, and 

reasonable tourism routes can reduce excessive traffic 

time and enhance the utility time of tourism. Hence, the 

paper proposes an intelligent tourism personalized 

customized route optimization method based on the deep, 

intelligent ant colony algorithm. The method considers the 

tourists' experience, travel time, and the best path between 

attractions to realize route optimization and improve the 

quality of tourism services and tourists' satisfaction. After 

testing the application effect of the method, it is concluded 

that it has a good application effect, can obtain the 

characteristic results of the objective function, and can get 

the best-customized tourism routes to meet the travel 

needs of tourists based on the excellent performance of 

optimization search. 
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