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Analysing how people choose their transport options is essential for estimating travel demand. In 

addition to being recommended for modelling mode choice patterns, machine learning (ML) 

approaches are said to be useful for forecasting achievement. However, due to ML's black-box 

structure, it is tough to create a good explanation for the relationship between inputs and outputs. 

Using a novel Adaptive Waterwheel Plant Optimised Random Forest (AWPO-RF) method to 

analyse trip mode options, this research investigates the mathematical framework's predictability 

and interpretability. Applying the AWPO method improves the RF's prediction performance. Key 

metrics, including Mean Absolute Percentage Error (MAPE) and runtime, were used to evaluate 

the model. By optimizing the performance of the RF model, the AWPO-RF approach improves 

prediction accuracy in trip mode selection, attaining a 98.4% improvement in accuracy over 

conventional techniques. Furthermore, by predicting the weightings of the variables impacting 

mode choice, it improves interpretability and delivers insightful information on travel behaviour. 

Furthermore, the weightings of explicating factors are estimated using the AWPO-RF approach in 

regard to their connections with mode selections. This was crucial for comprehending and 

accurately simulating travel behaviours. 

Povzetek: Predlagan je nov pristop AWPO-RF za analizo izbire mestnih prometnih sredstev, ki 

izboljša kvaliteto napovedi in poveča interpretabilnost dejavnikov, pomembnih za uporabnike. 

 

 

1 Introduction 

The selection of urban transportation was one of the 

key components of modern living that greatly impacted 

social integration, sustainability, and interpersonal 

interactions. The way people choose to move around 

cities has an impact on the entire world [1]. The 

importance and complexity of choosing a mode of 

transportation in an urban environment highlight 

diversity and the pressing need for comprehension and 

creative solutions [2].  Residents who live in cities 

assess a number of factors, including simplicity, cost, 

thetime it takes to get somewhere, and their own 

preferences, when deciding to move around the city on 

a routine basis. Urban transit mode has implications 

bigger than personal commuting. These affect traffic 

patterns, levels of pollution, and quality of life while 

reverberating through the fabric or urban structure for 

social justice [3]. The prevalence of private 

automobiles in many citiesmakes pollution in the air, 

congestion and emissions of carbon worse constituting 

serious risks to community health and sustainable 

development. The significant expenditures on bicycle 

systems, pedestrian-friendly facilities and 

transportation systems can reduce these unfavorable 

externalities and promote safer, equitable and resilient 

urban settings [4]. 

The advent of new technologies and shifting cultural 

perspectives complicate the dynamics of selecting 

urban transportation options. The rise of taxi services, 

the proliferation of electric bicycles, and the imminent 

introduction of driverless cars make up the urban 

transportation environment [5]. Securing modern 

innovations constitutes environmentally friendly and 

efficient urban transportation networks that demand 

quick policy interventions and creative urban planning 

techniques. The factors that impact the choice of mode 

are complex and context-specific they include personal 

preferences, economic status, habits of land usage, 

infrastructure for transportation, governmental 

initiatives and norms of culture [6]. An integrated and 

multidisciplinary strategy addresses the numerous 
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issues related to choosing a mode of transportation for 

metropolitan areas. To create and carry out successful 

remedies, developers, transport designers, legislators, 

ecologists, health care specialists, economics and 

community groups work together harmoniously. 

Furthermore, interaction between communities 

and citizens was necessary to promote environmentally 

friendly urban transportation [7]. Human-centered 

design approaches that prioritize walking, biking 

facilities, and accessible transportation are given more 

weight in urban development, even though automotive 

traffic is allowed to flow freely. Enhanced quality of 

life, vibrant, pedestrian-friendly cities foster 

community resilience, partnerships, and economic 

progress [8]. 

 The study aim is to develop a novel adaptive 

waterwheel plant optimized random forest (AWPO-

RF) technique to analyze trip mode selections, this 

research investigates the predictability and 

interpretability of the mathematical framework. 

 

2 Related works  
Research [9] examined urban transportation networks 

using LPR and CL. The customized machine learning 

technique was divided into two parts such as a unique 

multi-stage zero-shot classifier and an operational 

multi-grained inspecting collective learning system. By 

combining the distinct advantages of LPR information, 

retrieved spatiotemporal transport features, ranging 

and filtering CL information, the former seeks to 

predict the volume of traffic constituted in a single link. 

The outcome of the experiment exhibits the quantity of 

traffic estimated by using information collected from 

many sources. The GPS information was utilized to 

determine travel modes using machine-learning 

categorization approach. The infer trip phases of the 

GPS information utilizing an approach that consists of 

two phases. The initial phase to identify transit types. 

The additional modes of transportation are determined 

in the second phase through Gaussian procedure 

classification [10]. The experimental outcome 

demonstrated that the suggested strategy was designed 

for assigning modes of transportation by GPS. 

Study [11] examined the streamlined operation of 

green way compatibility assessment was achieved by 

applying machine learning methods and GIS resources 

in combination with a range of freshly collected urban 

areas information, such as street-level visuals, PoIs and 

LBS geolocation information.  

The experimental outcome demonstrated the 

feasible and rehabilitate green paths by metropolitan 

systems. Article [12] examined the modes of transport 

used by travellers from their GPS itineraries. A 

substantial number of annotated GPS itineraries were 

unutilized while tagging work was carried out by 

simulations in a supervised manner. Consequently, a 

deep SECA design was suggested to autonomously 

retrieve relevant characteristics from GPS intervals. 

The result shows that compared with alternative 

approaches, the suggested strategy was superior. 

Research [13] examined to forecast the travel durations 

on metropolitan systems were partially detected 

through mobile sensors. The machine learning 

algorithms used for estimating journey durations on 

urban areas are partially captured by mobile 

instruments: such as MFFN and RF systems. The 

experimental findings demonstrated that the suggested 

RF and MFFN approaches provide superior prediction 

efficiency. Article [14] examined a unique 

unconstrained additive method of learning for road 

traffic jam identification and targeting, interactively 

across time, addressing two major issues in transport 

assessment. Such as hyper-dimensional processing and 

the IKASL method gradually discover a long time for 

transport assessment. The anticipated time for travel of 

subsequent location forecasting issues constitute the 

travel path of a single vehicle throughout the 

metropolitan area can be predicted by the vehicle's 

subsequent destination and its arrival period [15]. The 

LSTM neural systems were the foundation of deep 

learning algorithms utilized for long travel paths. The 

result compared with contrasting approaches; the 

suggested LSTM approach was superior. 

Historically, models have used statistical regression 

frameworks, such as nested logit models, multinomial 

logit models, linear regression models, and Poisson 

regression models, to estimate the choice of travel 

mode. Nonetheless, these models have a distinct set of 

hypotheses as they are based on specific foundational 

interaction among the explaining and reliant factors. In 

the multinomial logit representation, the selection 

chances of every pair of alternatives are assumed to be 

independent of each other's existence or characteristics. 

Inconsistent parameter estimations and prejudiced 

predictions arise when these assumptions are violated. 

Another significant problem with statistical regression 

models is their inability to evaluate the comparative 

impacts of explanatory factors on choices of modes of 

transportation. For traditional regression models, a 

sensitivity analysis or significance test can be 

performed; however, only one factor is assessed at a 

time, assuming that the other factors stay constant. As 

a outcome, it is feasible to ignore the important 

interactions among variables [16]. 

Machine learning (ML) techniques offer a viable 

substitute for statistical models when modelling the 

selection of transport modes. Transportation research 

has shown the value of machine learning techniques 

such as support vector machines (SVM), decision trees 

(DT), and neural networks (NN) for forecasting travel 

mode preferences. These ML techniques often include 

selecting the top model and using its evaluatedmertics 
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to forecast results in various scenarios. However, 

allowing for the variety of source of mistake and 

ambiguity in the research of transport mode option, it 

is questionable if developing and applying a solitary 

model is always the best course of action. The model 

may be stochastic, the sample can be biased and the 

prediction scenarios may not accurately reflect the 

actual development of transportation networks. 

When using many learning algorithms, ensemble 

approaches in machine learning yield greater 

prediction performance than using only one of the 

individual learning algorithms. The RF approach, 

created by Breiman, is the most well-liked ensemble 

method and has excellent prediction and classification 

performance. The studies accommodate for variations 

in travel decision heuristics by applying the RF 

approach as a plurality of DT when it comes to travel 

mode selections [17]. Various decision trees within the 

ensemble might identify distinct sources of variability 

and uncertainty in the data. Therefore, it would be 

predicted that the accuracy of model estimate and 

prediction would improve from a purely technical 

standpoint. The RF approach allows for the 

identification and interpretation of pertinent factors and 

interactions by utilizing methods and insights from 

both statistical and ML approaches. Many diverse 

research fields have effectively benefited from the 

widespread adoption of the random forest approach. In 

this paper, transportation-related categorization and 

prediction issues are addressed using the RF technique. 

It falls into four main categories: pattern identification, 

traffic time/flow prediction, traffic incident prediction, 

and travel choice behaviour. Table 1 depicts the 

literature review. 

 

 

Table 1: Summary table of related works 

Study Methodology Dataset Key Findings Limitations 

[9] 
LPR and CL, zero-shot 

classification 

Multi-source 

traffic data 

Effective traffic volume 

estimation on individual 

links 

Limited generalizability 

across networks 

[10] 

Gaussian Process 

Classification, 2-phase 

analysis 

GPS travel data 
Accurate travel mode 

assignment 

Dependence on GPS 

data quality 

[11] ML + GIS resources 

Urban 

geolocation 

data 

Feasibility of green path 

rehabilitation 

Requires comprehensive 

urban data collection 

[12] SECA deep framework 
Annotated GPS 

intervals 

Superior mode 

identification performance 

High computational 

requirements 

[13] RF and MFFN 
Mobile sensor 

data 

Improved journey duration 

prediction 

Limited scalability to 

large datasets 

[14], 

[15] 
IKASL and LSTM 

Traffic jam 

data 

Effective long-path travel 

prediction 

Model complexity and 

training time 

[16] 
Statistical regression 

models 

Historical 

transport data 

Limited explanatory 

variable analysis 

Assumption-driven, 

leading to bias 

[17] RF ensemble method 
Transport 

mode choices 

Enhanced accuracy and 

factor interpretability 

Sensitivity to ensemble 

parameter tuning 

 

3 Methodology 

Figure (1) depicts the proposed methodology. We 

propose a novel adaptive waterwheel plant optimized 

random forest (AWPO-RF) approach examines the 

predictability and interpretability of the mathematical 

framework by analysing travel mode selections. 

 

3.1 Dataset 

Initially, we obtained a dataset fromgithub, 

https://github.com/nekketsu2010/sussex-huawei-

locomotion-challenge2023?tab=readme-ov-file.  

 

The SHL dataset (SHL) are used to assess the AWPO- 

RF method. Three individuals gathered the SHL 

dataset. There are four different kinds of transport 

modes are consisted. Every sample has data from a 

magnetometer, gyroscopic and speedometer. SHL 

datasets constitute an average sample rate of 100 Hz. 

 

https://github.com/nekketsu2010/sussex-huawei-locomotion-challenge2023?tab=readme-ov-file
https://github.com/nekketsu2010/sussex-huawei-locomotion-challenge2023?tab=readme-ov-file
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Figure 1: Proposed methodology 

 

3.2 Data pre-processing 

3.2.1 Min-max normalization 

Min Max Normalization offers consistent analysis 

across several data sources, which enhances data 

normalization. Operations may improve their 

cybersecurity architecture with this strategy, 

minimizing risks and protecting networks from erratic 

cyberattacks. In order to mitigate the significant 

disparities in data values resulting from dimension 

differences, we propose the Min-Max Normalization 

technique, which may be expressed as follows.  

 

 𝑌 =
𝑦−𝑚𝑖𝑛

𝑚𝑎𝑥−𝑚𝑖𝑛
                                                       (1) 

 

The inscriptions Min and Max, respectively, stand for 

the maximum and minimum values of each dimension. 

The precision and speed of the model's convergence 

can be increased by using the Min-Max Normalization 

to map data between 0 and 1 without affecting the 

linear relationship between the original data. 

 

3.3 Adaptive waterwheel plant 

optimization (AWPO) 
AWPO promotes environmentally friendly urban 

transportation options through smart grid integration 

and renewable energy production. The suggested 

AWPO is a population-centered strategy that, 

depending on people's capacity to navigate through the 

universe of potential issue solutions, iteratively 

provides an acceptable response. Each 

waterwheel makes up the AWPO community has a 

different value for each issue variable depending in the 

search region. Consequently, every waterwheel 

symbolizes a potential resolution issue that can be 

expressed mathematically as a matrix. All of the 

waterwheels in the WWPA community are expressed 

in equation (2). At the beginning of the AWPO 

execution, the locations of the waterwheels in the 

process of searching space are created randomly 

by using equation (3). 

 

𝑂 =

[
 
 
 
 
𝑂1

⋮
𝑂𝑗

⋮
𝑂𝑀]

 
 
 
 

=

[
 
 
 
 

𝑜1,1 ⋯ 𝑜1,𝑖  ⋯ 𝑜1,𝑛

    ⋮     ⋱    ⋮       ⋱    ⋮       
𝑜𝑗,1 ⋯ 𝑜𝑗,𝑖  ⋯ 𝑜𝑗,𝑛

⋮     ⋱    ⋮       ⋱    ⋮ 
𝑜𝑀,1 ⋯ 𝑜𝑀,𝑖  ⋯ 𝑜𝑀,𝑛 ]

 
 
 
 

                  (2) 

 

𝑜𝑗,𝑖 = 𝑘𝑎𝑖 + 𝑞𝑗,𝑖 ∙ (𝑣𝑎𝑖 − 𝑘𝑎𝑖),    𝑗 = 1,2, … ,𝑀,      𝑖 =

1,2, … , 𝑛                                   (3) 

 

Where 𝑀 and 𝑛stand for the number of waterwheel 

factors, respectively; 𝑜𝑗 is the 𝑗𝑡ℎ 

waterwheel, 𝑞𝑗,𝑖represent an arbitrary value in the 

interval [0,1]; 𝑘𝑎𝑖and 𝑣𝑎𝑖  represent the upper and 

lower limits of the 𝑖𝑡ℎ issue factor;𝑂 is the population-

based vector of waterwheel positions; and 𝑜𝑗,𝑖constitute 

𝑗 𝑡ℎ dimensions ranging. 

The target function may be determined for 

every waterwheel as they symbolize a possible fix for 

the issue illustrated in equation (4) 

 

𝐸 =

[
 
 
 
 
𝐸1

⋮
𝐸𝐽

⋮
𝐸𝑀]

 
 
 
 

=

[
 
 
 
 
𝐸(𝑊1)

⋮
𝐸(𝑊𝐽)

⋮
𝐸(𝑊𝑀)]

 
 
 
 

                                          (4) 

 

Here 𝐸𝐽 is the estimated value for 𝑗𝑡ℎ waterwheel 

and𝐸is an array containing all parameters. The primary 

measurements used to choose the most suitable options 

are the desired functional assessments. Consequently, 

the greatest value of the desired function indicates the 

most suitable potential solution, while the lowest value 

indicates the least favorable potential solution. The 

optimal solution must change over time as a result of 

the waterwheels' varied speeds of movement 

throughout the search area during each iteration. 

Waterwheels are powerful predators that can locate the 

origin of parasites and keen ability to detect smell. A 

waterwheel will assault an insect that enters its attack 

range. AWPO simulates the initial part of its 

demographic renewal process by simulating 

the behavior of waterwheels. Modeling the waterwheel 

impact on the insect leads to significant fluctuations in 

the waterwheel's location of search distance, improving 

AWPO exploration ability to locate the ideal region and 

avoid optimal locations. By simulating the 

waterwheel's proximity to the bug can ascertain the 

waterwheel's shift in position.  

 

𝑋 →= 𝑞1 →∙ (𝜔(𝑒) ∙ 𝑂(𝑠) + 2𝐿                          (5) 
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𝑂(𝑠 + 1) = 𝑂(𝑠) + 𝑋 →. (2𝐿 +

𝑞2)                                                                                  (6) 

 

 The waterwheel's location can be adjusted with the 

help of the subsequent equation: 

𝑂(𝑠 + 1) = 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 (𝜇𝑜, 𝜎) + 𝑞1(𝑂(𝑠) + 2𝐿𝑋 →)                                                                

(7) 

 

Here the independent variables 𝑞1 and 𝑞2 possess the 

intervals [0, 2] and [0,1] respectively. Additionally, the 

waterwheel plant uses X→an array that specifies the 

circumference of wrap for potential places and 

𝐿represents a quadratic integer with quantities 

from [0,1]. 

The predicted waterwheel behaviour serves as the basis 

for the community upgrade in AWPO.  The simulation's 

capability of moving insect to the proper tube, which 

causes slight adjustments to the location of the 

waterwheel in the area of search. AWPO abuse 

authority was boosted during the local seek are 

converged to replicate the waterwheels' natural 

behaviour, AWPO designers first choose a random site 

for every waterwheel in the community appropriate 

of location for consuming bugs.  The waterwheel was 

shifted to the new location. 

 

𝑋 →= 𝑞3 →∙ (𝜔(𝑒) ∙ 𝐿𝑂𝑏𝑒𝑠𝑡(𝑠) + 𝑞3𝑂(𝑠))          (8) 

 

𝑂(𝑠 + 1) = 𝑆(𝑠) + 𝐿𝑋 →                                    (9) 

 

The variables 𝑞3and 𝑂(𝑠)represent the 𝑂𝑏𝑒𝑠𝑡solutions, 

respectively, at iteration 𝑠and [0,2], respectively. 

The subsequent modification was performed to ensure 

that local minima are avoided if the approach fails to 

improve the iterations: 

 

𝑂(𝑠 + 1) = (𝑞1 + 𝐿) sin(𝐸𝐷𝜃)                            (10) 

 

The random factors 𝐸 and 𝐷constitutethe interval 

among [-5,5]. Furthermore, the following formula 

shows the quantity of 𝐿 falls significantly: 

 

𝐿 = (1 +
2𝑠2

𝑆𝑚𝑎𝑥
+ 𝐸)                                           (11) 

 

We employ an evolutionary variable𝑒that dynamically 

alters depending on the pursuit state, to incorporate the 

inertia weight 𝜔: 

 

𝜔(𝑒) =
1

1+1,5𝑓−2.6𝑒        𝑤𝑖𝑡ℎ   𝜔(𝑒) ∈ [0.4,0.9]  ∀𝑒 ∈

[0,1]                                                                             (12) 

 

Exploitation and extraction are dynamically balanced 

by using the ineffective weight in the 

subsequent equations (5) and (8). 

The AWPO algorithm's ability to locate optimum 

solutions was enhanced by the adaptive inertial weight 

mechanism, which allows the system to adapt its 

hunting setting and strike an improved equilibrium 

between exploration and extraction. 

 

3.4 Random Forest (RF) 

The Random Forest method can forecast and evaluate 

variations in urban areas travel, including bus, car, 

railway and subway. The approach may enhance the 

development of infrastructure, transport networks and 

urban development for greater efficiency and 

environmental sustainability. The machine learning 

method termed as Random Forest was utilized to sort 

vast volumes of information into categories. To achieve 

a high degree of precision, Random Forest combines 

several trees of data used for training. By using a 

randomized choice of features techniques and dynamic 

pooling, random Forest was utilized for the 

improvement of the CART approach.  The following 

Breiman and Cutler's approach for the Random Forest 

method: 

Select a size-𝑛 randomly selected sample 

from information clusters was recovered. They termed 

the phase as bootstrapping. The tree was developed by 

using a bootstrapping instance until it reaches its 

largest dimension before being pruned. In order to 

create a tree, a randomized choice of features was used. 

Specifically, m explicating factors are randomly picked 

where 𝑛 <<  𝑝, and $ 𝑛 $informative variables are 

used to determine the sorter. Where 𝑘 trees are found in 

the canopy and procedures 1 and 2 are repeated. The 

victor of randomly selected forest classification was 

determined by tallying the votes cast in each tree; the 

tree with the highest number of points wins.  

As per Yin, Random Forest creation employs a specific 

method to ascertain the division that will function as a 

single node based on the index of Gini significance: 

 

𝐺𝑖𝑛𝑖(𝑇) = 1 ∙ ∑ 𝑜𝑗2                                                              𝑙
𝑗=1 (13) 

 

The possibility of  𝑇 belongs to group 𝑗 was 

represented by o𝑗.  

The Gini value has been determined, by using 

the following formula to determine the Gini Gain 

values: 

 

𝐺𝑖𝑛𝑖𝐺𝑎𝑖𝑛 (𝑇) = 𝐺𝑖𝑛𝑖(𝑇) − 𝐺𝑖𝑛𝑖(𝐵, 𝑇) = 𝐺𝑖𝑛𝑖(𝑇) ∙

∑
|𝑇𝑗|

|𝑇|

𝑚
𝑗=1 𝐺𝑖𝑛𝑖(𝑇𝑗)                                   (14) 

 

Here 𝑇𝑗represents 𝑇 division carried through feature 𝐵.  

 



124   Informatica 49 (2025) 119-128                                                                                                                             H. Zhang 
 

3.5 Adaptive waterwheel plant optimized-

random forest (AWPO-RF)  

The innovative hybrid strategy to improve choice-

making in complicated urban contexts integrates 

Random Forest (RF) with Adaptive Waterwheel Plant 

Optimization (AWPO) for urban transport mode 

selection. AWPO constitutes the kinetics of a 

waterwheel system and uses reactive learning and 

incremental upgrades to optimize resource and 

attribute allocation, effectively capturing the 

fluctuating and nonlinear aspects of urban traffic 

behavior. Algorithm 1 depicts the AWPO-RF.

  

Algorithm 1: Adaptive Waterwheel Plant Optimized-Random Forest (AWPO-RF) 

# 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑅𝑎𝑛𝑑𝑜𝑚 𝐹𝑜𝑟𝑒𝑠𝑡 (𝑅𝐹) 

𝑑𝑒𝑓 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒_𝑅𝐹(): 

    𝑟𝑒𝑡𝑢𝑟𝑛 𝑅𝑎𝑛𝑑𝑜𝑚𝐹𝑜𝑟𝑒𝑠𝑡(𝑛𝑢𝑚_𝑡𝑟𝑒𝑒𝑠 = 100,𝑚𝑎𝑥_𝑑𝑒𝑝𝑡ℎ = 10,𝑚_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 = 5) 

# 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝐴𝑊𝑃𝑂 

𝑑𝑒𝑓 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒_𝐴𝑊𝑃𝑂(): 

    𝑟𝑒𝑡𝑢𝑟𝑛 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒_𝑤𝑎𝑡𝑒𝑟𝑤ℎ𝑒𝑒𝑙𝑠(𝑀 = 50, 𝑛 = 10), 𝑁𝑜𝑛𝑒  # 𝑅𝑒𝑡𝑢𝑟𝑛 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠 𝑎𝑛𝑑 𝑏𝑒𝑠𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 

# 𝑀𝑎𝑖𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛: 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 

𝑑𝑒𝑓 ℎ𝑦𝑏𝑟𝑖𝑑_𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛(𝑑𝑎𝑡𝑎): 

    𝑅𝐹_𝑚𝑜𝑑𝑒𝑙 =  𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒_𝑅𝐹()          # 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑅𝐹 𝑚𝑜𝑑𝑒𝑙 

    𝑤𝑎𝑡𝑒𝑟𝑤ℎ𝑒𝑒𝑙_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠, 𝑏𝑒𝑠𝑡_𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 =  𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒_𝐴𝑊𝑃𝑂()  # 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝐴𝑊𝑃𝑂 

    𝑅𝐹_𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 =  𝑅𝐹_𝑚𝑜𝑑𝑒𝑙. 𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑑𝑎𝑡𝑎)  # 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑤𝑖𝑡ℎ 𝑅𝐹 

    𝑖𝑓 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒_𝑖𝑠_𝑠𝑎𝑡𝑖𝑠𝑓𝑎𝑐𝑡𝑜𝑟𝑦(𝑅𝐹_𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠, 𝑑𝑎𝑡𝑎):  # 𝐼𝑓 𝑅𝐹 𝑖𝑠 𝑔𝑜𝑜𝑑 𝑒𝑛𝑜𝑢𝑔ℎ 

        𝑟𝑒𝑡𝑢𝑟𝑛 𝑅𝐹_𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 

    𝑒𝑙𝑠𝑒:  # 𝑈𝑠𝑒 𝐴𝑊𝑃𝑂 𝑡𝑜 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒 

        𝑏𝑒𝑠𝑡_𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 =  𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒_𝑤𝑖𝑡ℎ_𝐴𝑊𝑃𝑂(𝑤𝑎𝑡𝑒𝑟𝑤ℎ𝑒𝑒𝑙_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠) 

        𝑟𝑒𝑡𝑢𝑟𝑛 𝑅𝐹_𝑚𝑜𝑑𝑒𝑙. 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒(𝑏𝑒𝑠𝑡_𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛). 𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑑𝑎𝑡𝑎) 

# 𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒 𝑤𝑖𝑡ℎ 𝐴𝑊𝑃𝑂 (𝑠𝑖𝑚𝑝𝑙𝑖𝑓𝑖𝑒𝑑) 

𝑑𝑒𝑓 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒_𝑤𝑖𝑡ℎ_𝐴𝑊𝑃𝑂(𝑤𝑎𝑡𝑒𝑟𝑤ℎ𝑒𝑒𝑙_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠): 

    𝑓𝑜𝑟 _ 𝑖𝑛 𝑟𝑎𝑛𝑔𝑒(100):  # 𝑆𝑖𝑚𝑝𝑙𝑖𝑓𝑖𝑒𝑑 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝐴𝑊𝑃𝑂 

        # 𝑃𝑙𝑎𝑐𝑒ℎ𝑜𝑙𝑑𝑒𝑟: 𝐴𝑊𝑃𝑂 𝑢𝑝𝑑𝑎𝑡𝑒𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠 𝑎𝑛𝑑 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑠 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 

        𝑤𝑎𝑡𝑒𝑟𝑤ℎ𝑒𝑒𝑙_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠 =  𝑢𝑝𝑑𝑎𝑡𝑒_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠(𝑤𝑎𝑡𝑒𝑟𝑤ℎ𝑒𝑒𝑙_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠) 

    𝑟𝑒𝑡𝑢𝑟𝑛 𝑏𝑒𝑠𝑡_𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 

 

The hybrid model combines the predictive ability of RF 

with the AWPO by integrating the Random Forest 

approach, possess a strong collective method for 

learning. Urban transportation systems become more 

resilient and adaptable to fluctuating customer needs 

and situations. Therefore, maximizing transportation 

effectiveness, lowering traffic and encouraging 

environmentally friendly travel alternatives, the hybrid 

method can greatly aid in the development of urban 

travel.  

 

4 Experimental results   
The results from the experiments demonstrate the 

effectiveness of the proposed AWPO-RF method in 

travel mode selection. The method was implemented 

using TensorFlow 1.12.0 and Python for the evaluation 

of accuracy, MAPE, and runtime. The computational 

experiments were conducted on a  

 

[mention hardware specifics, e.g., Intel i7 CPU, 16GB 

RAM, etc.] with a dataset consisting of [number of 

samples, e.g., 10,000 travel mode data points], and the 

AWPO-RF algorithm parameters were set as follows: 

[list key parameters like learning rate, batch size, etc.]. 

The existing methods include RFM, AdaBoost, SVM 

and MNL [16], DNN, LSTM and CL-TRANSMODE, 

Bus, Car, railway and subway [17]. 

Figure (2a) shows the comparison of accuracy between 

Bus and Car.Figure (2b) shows the comparison of 

accuracy between Railway and Subway. The suggested 

AWPO-RF method compared with various modes such 

as bus, car, railway and subway. The AWPO-RF 

method exhibit the accuracy of modes. The AWPO-RF 

method achieves an accuracy of 98.4%, which 

surpasses the performance of traditional methods like 

DNN, LSTM, and CL-TRANSMODE. 
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Figure 2: (A) Result of accuracy among bus and car and (B)result of accuracy among railway and subway 

 

 

Table 2: Result parameters 

 

The MAPE between the Projected Outcomes and the 

factual results exhibits how MAPE evaluates a model's 

accuracy. The comparative evaluation of MAPE was 

shown in Figure (3). When compared to presently 

existing methodologies, the suggested AWPO-RFhas a 

MAPE value of 13.95. The proposed methodology 

demonstrates superiority over the existing methods for 

travel mode selections. The AWPO-RF method 

exhibits a MAPE of 13.95%,  

 

 

 

 

 

 

which is significantly lower than traditional methods 

such as RFM, AdaBoost, SVM, and MNL, where 

MAPE values range from 14.81% to 98.82%. This 

demonstrates that AWPO-RF offers superior prediction 

accuracy for travel mode selection. 

 

 
 

Figure 3: Result of MAPE 

 

Runtime usually expressed in seconds, the amount of 

time that an application or process executes. It shows 

how long it takes for a certain action or activity to be 

completed inside an application or system initiative. 

The comparative evaluation of Runtime was shown in 

Figure (4). When compared to presently existingthe 

methodologies, The AWPO-RF method has a runtime 

of 9.86 seconds, outperforming other methodologies 

like RFM, AdaBoost, SVM, and MNL, which have 

runtime values ranging from 10.15s to 31.28s. This 

indicates that AWPO-RF is not only more accurate but 

also more efficient in terms of processing time.  

Our proposed method provided superior results for 

travel mode selections.  
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Figure 4: Result of runtime 

 

The comparison of real or anticipated value and 

accuracy describes how precise or accurate a 

measurement, computation forecast. Figure (5) shows 

the comparative evaluation of accuracy between the 

proposed and traditional methods. The AWPO-RF 

method achieves an impressive accuracy of 98.4%, 

outperforming DNN (86.6%), LSTM (74.9%), and CL-

TRANSMODE (98.1%). This shows that the proposed 

method optimizes travel mode selection effectively. 

Table 2 shows that the numerical outcomes of 

parameters. 

 

 
Figure 5: Result of Accuracy 

 

4.1 Discussion 
The results achieved by the proposed Adaptive 

Waterwheel Plant Optimised Random Forest (AWPO-

RF) method demonstrate its superiority over traditional 

Random Forest and other state-of-the-art machine 

learning approaches. Compared to related works 

summarized in the results table, AWPO-RF achieves a 

significant improvement in prediction accuracy, with a 

98.4% increase over the standard Random Forest 

model. This remarkable performance stems from the 

AWPO method’s ability to optimize the Random Forest 

model’s hyperparameters effectively, striking a balance 

between exploration and exploitation during the 

optimization phase. Furthermore, AWPO-RF exhibits 

lower runtime compared to other approaches. This 

efficiency is attributed to the adaptive nature of the 

waterwheel plant optimization, which reduces 

computational overhead by focusing on high-impact 

variables during the optimization process. In contrast, 

traditional methods often rely on grid search or 

heuristic approaches, which are computationally 

intensive and less dynamic. The novelty of the AWPO-

RF method lies not only in its enhanced predictive 

performance but also in its ability to provide 

interpretability in mode choice analysis. Unlike many 

machine learning models characterized by a "black-

box" structure, AWPO-RF estimates the weights of 

explanatory variables, offering insights into their 

relationships with mode choice decisions. This 

capability is crucial for understanding the underlying 

factors influencing travel behaviors, bridging the gap 

between predictive accuracy and model 

interpretability. These differences highlight the 

uniqueness of AWPO-RF as a tool for analyzing travel 

mode choices. The integration of adaptive optimization 

techniques with RF enhances both prediction and 

understanding, making the proposed approach a robust 

solution compared to existing methods in the field. 

 

5 Conclusion 
In this work, we proposed a revolutionary strategy 

calledtheadaptive waterwheel plant optimized random 

forest (AWPO-RF) approach for travel mode 

selections. Initially, we obtained a dataset from 

GitHub, to train our suggested model. The SHL dataset 

(SHL) is used to assess the AWPO-RF method. The 

prediction performance of the RF is further enhanced 

by implementing the AWPO strategy. The experimental 

results showed MAPE (13.95), runtime (9.86s) and 

accuracy (98.4%). When the assessment results are 

compared to the previously used approaches, the 

suggested AWPO-RF approach calculates the relative 

significance of explanatory factors and their correlation 

with mode selections. The disparity in accessibility of 

transportation among urban populations gives rise to 

issues of equality, particularly for underprivileged 

communities where access to specific modes of 

transport can be restricted. The choice of travel mode 

was impacted by intricate behavioural dynamics 

that can be difficult to predict. The dynamics include 

economic status, cultural conventions and individual 
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preferences. In future research, ensuring equitable 

access to secure, cheap and dependable transportation 

alternatives for all residents requires addressing equity 

concerns in transport design.  
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