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Underwater image enhancement and object detection has great potential for studying underwater envi-
ronments. It has been utilized in various domains, including image-based underwater monitoring and
Autonomous Underwater Vehicle (AUV)-driven applications such as underwater terrain surveying. It has
been observed that underwater images are not clear due to several factors such as low light, the presence
of small particles, different levels of refraction of light, etc. Extracting high-quality features from these
images to detect objects is a significant challenging task. To mitigate this challenge, MIRNet and the mod-
ified version of YOLOv3 namely Underwater-YOLOv3 (U-YOLOv3) is proposed. The MIRNet is a deep
learning-based technology for enhancing underwater images. while using YOLOv3 for underwater object
detection it lacks in detection of very small objects and huge-size objects. To address this problem proper
anchor box size, quality feature aggregation technique, and during object classification image resizing is
required. The proposed U-YOLOv3 has three unique features that help to work with the above specified
issue like accurate anchor box determination using the K-means++ clustering algorithm, introduced Spa-
tial Pyramid Pooling (SPP) layer during feature extraction which helps in feature aggregation, and added
downsampling and upsampling to improve the detection rate of very large and very small size objects. The
size of the anchor box is crucial in detecting objects of different sizes, SPP helps in aggregation of features,
while down and upsampling changes sizes of objects during object detection. Precision, recall, F1-score
and mAP are used as assessment metrics to assess proposed work. The proposed work compared with
SSD, Tiny-YOLO, YOLOv2, YOLOv3, YOLOv4, YOLOv5, KPE-YOLOv5, YOLOv7, YOLOv8 and YOLOv9
single stage object detectors. The experiment on the Brackish and Trash ICRA19 datasets shows that our
proposed method enhances the mean average precision for both datasets by 10% and 9%, respectively,
compared to the original YOLOv3 and other existing work. This enhancement demonstrates that our pro-
posed model is more appropriate for identifying submerged items and is also capable of recognizing closely
clustered, small, very large objects on the ocean floor.

Povzetek: Razvit je model U-YOLOv3, ki izboljšuje zaznavo podvodnih objektov z uporabo MIRNet za
izboljšanje slike, K-means++ za optimalno izbiro sidrnih okvirjev in SPP za združevanje značilnosti.

1 Introduction
The importance of underwater biology is increasing due to
the expansion of marine ecology and aquaculture. Current
research is increasingly focused on creating reliable algo-
rithms for underwater scenes and subsequently identifying
underwater species [1]. Underwater exploration is carried
out mainly via Remotely Operated Vehicle (ROV) [2] and
Autonomous Underwater Vehicle (AUV) [3] as underwater
environment is dangerous for humans. During underwater
object detection, image enhancement is a crucial step due
to the challenge of unclear images [4].
Traditional image processing techniques for enhanc-

ing underwater images include color correction algorithms
and contrast enhancement algorithms. The white balance
method [5], the grayworld hypothesis [6], and the gray edge

hypothesis [7] are typical color correction methods, and
contrast enhancement algorithms include histogram equal-
ization [8] and restricted contrast histogram equalization
[9]. The results produced by these technologies are in-
adequate for underwater vision when compared with con-
ventional image processing techniques. Contrast enhance-
ment is one of the most popular techniques for underwater
image enhancement. The contrast enhancement technique
is classified into local enhancement and global enhance-
ment techniques. Histogram Specification (HS) [10] is a
global approach that works on the whole image. The fuzzy
and image partition-based approach is also used for im-
age enhancement [11]. Ahmad Shahrizan et al. used local
and global contrast to improve underwater images. In this
paper, dual-intensity images are produced by global con-
trast correction and subsequently merged to yield contrast-
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enhanced final images. These images are then processed lo-
cally to improve details [12]. Generative Adversarial Net-
works (GANs) and Convolution Neural Networks (CNNs)
have recently shown impressive performance in a range of
image-to-image translation tasks, such as super-resolution,
dehazing, and image denoising. Li et al. [13] presented the
design of the WaterNet gated fusion network, which uses
images produced by three enhancement techniques to help
the network identify the most important aspects of the input
image. FSpiral-GAN, [14] which may significantly speed
up the processing of large-size images while preserving
the excellent quality of the improved images. The model
comprises N discriminators and one generator and is built
on a generative adversarial architecture. The author used
an encoder and decoder structure with equal upsampling
and downsampling blocks to create a lightweight generator
structure that would increase model efficiency and retain
high-quality generated images. UICE-MIRNet [15] is an
approach that improves the detection of underwater objects
by improving the quality of images. In this work, improve
the colorfulness of images which enables quality feature ex-
traction.
The Conventional object detectors are used to extract fea-

tures using artificial feature extractors, and then combine
those features with classifiers to produce the desired detec-
tion outcomes. Many moving object detection techniques
are successfully proposed by various researchers in last
few decades [16]. Recent advancements have been made
progress in the deep learning-based object detection sys-
tem like, deep convolution neural network (DCNN) which
is used for feature extraction. It is capable of extracting
a large amount of image details independently by learning
features at various layers. Object detectors are mainly cate-
gorised into two-stage detectors and single-stage detectors.
Region Convolutional Neural Network (RCNN) [17], Fast
R-CNN [18], Faster R-CNN [19], etc are commonly known
two-stage detectors. Using the sliding window technique or
the Regional Proposal Network (RPN) [20], the two-stage
detectors algorithm first creates a number of region propos-
als. Based on these proposals, it then classifies and locates
objects. Without generating further region suggestions, the
single-stage detectors perform object categorization and lo-
calization and work as an end-to-end network for object de-
tection. When compared to a two-stage detector, the second
scanning of images streamlines the detection procedure and
boosts detection effectiveness. Recently, some anchor-free
detection techniques have been proposed by researchers in
addition to the aforementioned anchor-based detectors.
Different single-stage detectors are Single Shot multi-

box Detectors (SSD) [21] and YOLO [22] series. The dif-
ferent YOLO versions are YOLOv2, YOLOv3, YOLOv4,
YOLOv5 and YOLOv7 etc. YOLOv2 is popularly known
as YOLO9000 [22] which is a real-time object detection
technique capable of detecting 9000 categories of object but
not achieved good mean Average Precision(mAP). Joseph
Redmon et. al. [23] modified SSD to improve detection
speed and named the model as YOLOv3. The YOLOv3

is three times faster than SSD and the accuracy is same as
SSD. In the year 2020 Alexey Bochkovskiy et. al. pro-
posed a model for real-time object detection i.e. YOLOv4
[24] which is popular due to proper balancing of speed and
accuracy. YOLOv4 introduced some new approches like
Weighted-Residual-Connections (WRC), Crossmini-Batch
Normalization (CmBN), Cross-Stage-Partial-connections
(CSP), Mish-activation and Self-adversarial-training (SAT)
to achieve better accuracy. YOLOv5 [25] and YOLOv7
[26] is proposed to enable a real-time object identification
even on devices with limited resources. It keeps good pre-
cision while achieving high frame rates. All of these meth-
ods perform incredibly well on land images, but the indis-
tinct images provide a very difficult problem when it ap-
plied on underwater images. Feature extraction from un-
derwater images is challenging task due blur images so that,
Yong Liu et. al. [27] used ResNet101 [28] to enhance im-
age quality. The authors also added a compact and light-
weight Selective Kernel unit, which helps the CNN extract
features more effectively without adding more layers. The
algorithm also incorporates feature fusion for better shar-
ing of information. This article [29] suggests a low com-
putation deep underwater object detection network. Also
presenting a deep model for concurrently learning object
detection and color conversion for underwater images are
crucial. The purpose of the image color conversion module
is to convert color images into their equivalent gray scale
images in order to improve object detection performance
while reducing computational complexity. This solves the
issue of underwater color absorption. YOLO-Fish, [30] a
fish detection model powered by deep learning. Two mod-
els, namely YOLO-Fish-1 and YOLO-Fish-2, have been
proposed in this work by addressing the problem of up-
sampling step sizes to lessen the misdetection of small fish,
YOLO-Fish-1 improves YOLOv3 by incorporating Spatial
Pyramid Pooling into the initial model, YOLO-Fish-2 en-
hances the model even more and adds the capacity to iden-
tify fish appearance in those dynamic environments. An-
other model performs detection of underwater organism
from underwater images called U-YOLOv7 [31]. Initially
in U-YOLOv7, a network is built that combines an effective
squeeze-excitation module with CrossConv. This network
improves the network’s feature fusion and increases the ex-
traction of channel information while decreasing parame-
ters. Secondly, prior to feature fusion, additional seman-
tic information about underwater images are obtained us-
ing a lightweight Content-Aware ReAssembly of FEatures
(CARAFE) operator. A similar kind of work is used for
coral reef detection by JingyaoWang et. al. [25]. This work
modified YOLOv5 model incorporates multiple stages of
CSP and channel attentionmechanism. KPE-YOLOv5 [32]
is an approach which enables small object detection. Shen-
ming Qu et. al. [33] proposed a model which modifies the
original upsamplingmethod used inYOLOv8 and proposed
a new upsampling technique, CARAFE which improves in
small object detection. To lessen the effect of underwater
image quality problems on the detection job, the Qiming Li
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et. al. [34] proposed an image improvement module. They
also suggested GEBlock with YOLOv8, an attention-based
fusion module that suppresses noise from lower-level fea-
ture layers and gathers long-range contextual information.
But when comes to underwater object detection, it be-

comes very challenging as the underwater image back-
ground contains different organisms, including plankton,
starfish, and schools of fish etc. As background and ob-
jects are sometimes having similar colors, the detection
of various sizes of objects is a challenging task. Table 1
presents some works on underwater object detection using
YOLOv3. It is also found that YOLOv3 is a robust architec-
ture to detect underwater objects. Still, the work mentioned
above in Table 1 lacks in small objects, dense objects from
underwater images. The contribution of the work includes:

a. The underwater images are not clear because of the
presence of multiple particles and insufficient light.
To improve the visibility of images, MIRNet image
enhancement is used to improve the quality of images.

b. The selection of anchor box sizes is a challenging issue
during object detection. Usually K-means clustering is
applied for selection of anchor box sizes but it selects
centroid randomly, which may lead to sub-optimal so-
lution. By addressing the problem of random initial-
ization, K-means++ improves upon the original K-
means method. The initial centroids in K-means++
are chosen to guarantee that they are evenly dispersed
throughout the dataset.

c. YOLOv3 may have difficulty accurately identifying
small items, particularly when they are collected. To
address this problem, extracted features need to be ag-
gregated. So, the feature aggregation layer, namely
the Spatial Pyramid Pooling (SPP) layer, added to the
existing work after feature extraction.

d. To improve detection accuracy, the proposed work
modified the classification layer of YOLOv3. Detec-
tion of very large objects improves by incorporating
downsampling in large object prediction layer where
as upsampling added in small object detection layer to
improve small object detection accuracy.

The organization of the work is as follows: Section 2 ex-
plains related work, while Section 3 provides an explana-
tion of the proposed methodology. Sections 4 and 5 contain
details of the description of the database and the assessment
method, respectively. Sections 5 and 7 provide an analysis
of the results and its discussions, respectively. Ultimately,
section 8 provide conclusion and explores potential future
paths.

2 Related works
In this section, an overview of the underwater image en-
hancement and object detection process is described. Here,

emphasis is placed on a brief architecture of YOLOv3 and
MIRNet. The sub-section 2.1 is dedicated for YOLOv3 and
a small description of MIRNet has been established in sub-
section 2.2, respectively.

2.1 YOLOv3 architecture

Joshep Redmon and Ali Farhadi created YOLOv3 [23] in
2018 proposed YOLOv3 is the third version of the YOLO
series. The YOLOv3 provides an end-to-end object detec-
tion framework. This algorithm predicts bounding boxes
with some probability value, depending upon these proba-
bility value objects classified. The following are the main
three steps to predict objects:
1. Feature extraction
2. Bounding-box prediction
3. Class prediction

2.1.1 Feature extraction

Feature extraction is most important phase of object de-
tection. After feature extraction based on these feature
performed bounding box prediction and classification of
objects. YOLOv2 used Darknet-19 for feature extrac-
tion whereas modified version of Darknet-19 is Darknet-53
which is used by YOLOv3. It has been established that this
network is more effective and potent than ResNet-101 or
ResNet-152. But Darknet-53 has several flaws like lacks
in detection of small objects and feature aggregation tech-
nique. So proposed work modified selection of anchor box
size which covers all size objects. Introduced new feature
aggregation layer into original Darknet53.

2.1.2 Bounding box prediction

The bounding box sizes in the YOLOv3 network are ob-
tained using the K-means clustering method. There are
nine clusters in all, and three fixed scales that are based
on ground truths as bounding box priors are chosen at ran-
dom. The network selects 4 co-ordinates for each anchor
box these are ax, ay, aw, ah. Top most corner of anchor
box is (tx, ty) , width and height is pw, ph respectively then
predicted bounding box co-ordinates are:

bx = f(ax) + tx (1)

by = f(ay) + ty (2)

bw = pw × eaw (3)

bh = ph × eah (4)

Total 9 bounding box are predicted, then for each of them
calculated sum square loss. YOLOv3 used logistic regres-
sion for prediction of bounding boxes. Depending on over-
lapping of ground truth and prediction, its gives score 1.
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Table 1: Some of the previous work used for underwater object detection based on YOLO

Authors Description of methodology Dataset mAP Limitations
K. Cai et al. [35] This study integrates YOLOv3 with Mo-

bileNetv1 for the purpose of detecting fish
in a live breeding farm environment.

self cre-
ated Real
fish farm
Dataset

78.3% The work is not tested on real
marine images where detec-
tion of objects are more diffi-
cult due to image quality.

H. Yang et al. [36] YOLOv3 and Faster R-CNN is compared
for detecting and recognizing targets in
underwater environment and it is found
YOLOv3 is suitable for real time object de-
tection.

URPC
dataset

76.1% Thework is comparative study
between two networks.

X. Li et al. [37] In this work the original anchor boxes
are adjusted by K-means clustering algo-
rithm to improve accuracy of the detection
model.

Own data
set of
garbage

84.1% Authors are considered the
surface images and suface im-
ages does not face the issue re-
lated to image clarity.

P. Athira et al.
[38]

This paper introduces a methodology that
employs the YOLOv3 architecture, cou-
pled with the Darknet framework and deep
learning.

Fish4
Knowledge

96.0% Authors have used YOLOv3
directly no modifications are
made on existing network.

Shenming Qu et
al. [33]

In order to maximize spatial feature extrac-
tion and greatly reduce redundant compu-
tation and storage needs, this work devised
a Lightweight Efficient Partial Convolu-
tion (LEPC) module that processes input
channels selectively.

URPC2021 84.2% The heightened feature extrac-
tion method causes YOLOv8-
LA to confront constraints, be-
cause it slows down the sys-
tem.

P. Sarkar et al.
[39]

This paper performs object detection us-
ing YOLOv3 and YOLOv4 on underwater
dataset and provide details of challenges
present during underwater object detec-
tion.

Roboflow
object
detection
dataset

40.5% Lacks in detection of dense
objects.

Kun Liu et al.
[40]

The TC-YOLO network is modification
of YOLOv5 and compared with YOLOv3.
To improve feature extraction, the new net-
work’s neck and backbone, respectively,
adopted transformer self-attention and co-
ordinate attention.

RUIE2020 45.6% The work does not incorpo-
rates detection of various size
of objects.

2.1.3 Classification of objects

Each anchor box predicts the class for an object. YOLOv3
does not use the Softmax function for the classification of
objects. The softmax function classifies a particular object
in one category but it’s not always true. YOLOv3 uses a
logistic regression classifier for the prediction of classes.
Each predicted anchor box must contain the probability
value of belongs to a particular class. YOLOv3 uses 106
layers for the detection of objects from an image. Out of
all the layers 82, 94, and 106 are object detection layers.
YOLO v3 predicts 9 anchor boxes for each object. Three
anchor boxes are predicted for each scale (13x13, 26x26,

52x52 strides). Finally calculates Intersection over Union
(IoU) to detect the objects.

2.2 MIRNet architecture
Learning enriched image enhancement technique MIRNet
[41] is used for image enhancement. MIRNet is convolu-
tion network-based architecture and works very well with
low resolution images. Underwater images are usually low-
light images so that the proposed work used MIRNet for
image enhancement. The special feature of the network is
it preserves contextual of images. In MIRNet used three
Recursive Residual Groups (RRG). Each RRG consists of
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multiple Multi-scale Residual Blocks (MRB). The MRB
has two major components Selective kernel Feature Fusion
(SKFF), Dual Attention Unit (DAU). Input image I is given
as input to Convolution layer which generates feature map
FM. The RRG blocks consists of three MRB for our pro-
posed work. The FM passed as parameter to the MRB
block. MRB extracts high contextual information from low
resolution areas. On FM applied down sampling and gen-
erates two more feature matrix FM1, FM2. This feature
matrix passes through SKFF and DAU multiple times to
consolidate high resolution features from low resolution ar-
eas as shown in Figure 1. Each SKFF consists of two op-
erations fuse and select. Fuse aggregates the features from
FM, FM1, FM2 i.e. F = FM+FM1+FM2. Select uses
softmax function to recalibrate multi-scale feature map F.
The DAU share information along the spatial and channel
domain. DAU has two components that work in parallel
manner. These two are used to suppress less needed fea-
tures and pass more informative features. Finally, MRB
returns the image to RRG block. This process will be re-
peated three times to generate enhanced image.

3 Proposed methodology
This section presents an approach for detecting underwater
objects. The AUV collected images onmarine environment
are unclear due to presence of small particles and lack of
lights in underwater images. So, one of the main compo-
nents of the proposed work is image enhancement. In this
work, first, the images were enhanced by using MIRNet
proposed in 2020 by Zamir et al. [41] It is also found that
small and dense object detection is one of the major issues
during object detection. To address these problems, the pro-
posed work modified YOLOv3 and named as Underwater-
YOLOv3(U-YOLOv3). Modifications are made based on
the anchor box selection technique and feature extraction
model. In enhanced images, U-YOLOv3 was applied to
perform real-time object detection. The work consists of
two main stages: image enhancement and item detection
utilizing the enhanced images.
Enhanced images are applied to U-YOLOv3 for object

detection. It is a single-stage object detector and a modified
version of YOLO9000. TheU-YOLOv3 used the following
steps:
1. Bounding-box size prediction by K-means++
2. Modified Darknet53
3. Modified Class Prediction

3.1 Bounding box size prediction by
K-means++

In this proposed work, K-means++ clustering is applied to
predict the sizes of anchor boxes. K-means++ clustering
is a modified version of K-means clustering. One of the
drawbacks of K-means algorithm is sensitive initialization
of centroid. If centroid is very far it may not include any

point into the cluster. K-means clustering has another issue
that always starts with arbitrary selection of centroid, which
may not be the best selection of centroid. The main reason
behind not selecting Gaussian Mixture Models(GMM) is
that, it is difficult to work with categorical features. So we
have selected K-means++ for bounding box size prediction.
K-means++ changed the technique of centroid selection and
improves the quality of centroid selection. K-means++ al-
gorithm as follows:

Algorithm 1 K-means++ Algorithm
Step1: Select an initial centre C1 from U.
Step2: Identify next centre Ci where Ci = Xnew ∈ U
with probability (D(Xnew))/(

∑
x∈U D(x)) where D(x) is

shortest distance from a data x from centre Ci .
Step3: Next choose K centre using step2.
Step4: After selecting initial centroid, sum square distance
to be calculated from each centroid.
Step5: Those points are close to a centroid are placed in
same cluster.
Step6: Then recalculate centroid for each cluster by aver-
aging all of the data points associated with each cluster. If
change occurs in centroid then in continue with step4 oth-
erwise stop.

The main objective of this clustering technique is to min-
imize the sum-squared distance between the centroid of the
cluster and all points. The objective function is shown in
equation 5.

dist =

k∑
i=1

n∑
j=1

| x(j)
i − cj |2 (5)

Where, j is the cluster number, n is the number of cluster
x
(j)
i is point belongs to jth cluster. cj is the centroid of the

jth cluster.

3.2 Modified Darknet53
Darknet53 used as backbone of YOLOv3 for feature ex-
traction. The input image size for all the images is
416 × 416 pixels and is used for feature extraction. Dark-
net53 is a modified version of Darknet19 which is used in
YOLO9000. The modified Darknet-53 is shown in Figure
2 in which the main components are Convolution, batch
normalization, and Leaky ReLU together known as CBL
with it modified Darknet-53 has residual blocks and the
Spatial Pyramid Pooling (SPP) layer. Convolution layers
are using either Leaky activation functions as it can over-
come vanishing gradient problem. The network applies dif-
ferent sizes of filter, i.e. 32, 64, 128, 256, 1024 during
object detection. The network also uses different sizes of
strides, which usually are 1× 1, 3× 3. A new layer SPP is
added at the end of Darknet53 for feature aggregation pur-
pose. It helps to get over the network’s fixed-size restriction
of images and allow processing of images of different sizes.
By using this pooling technique, the size of the image can be
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Figure 1: MIRNet architecture

reduced without losing important features. In the proposed
work, SPP has three maxpool layers, two CBL (convolu-
tion, batch normalization, LeakyRelu ) as shown in Figure
3. This layer receives features from the convolution layer.
SPP layer generates a fixed length representation from dif-
ferent sizes of features. The proposed work added SPP at
the end of Darknet53 to aggregate the generated features
generated from Draknet53 as depicted in Figure 2.

3.3 Modified class prediction
The classes of a bounding box must be predicted after the
bounding box prediction process to provide the classifica-
tion information of the object. There are three prediction
layers available for object detection. 13 × 13 is used for
large object detection, 26 × 26 is used for medium-sized

object prediction, and 52x52 is used for small-sized object
detection. If a very large object exists in an image, it is
very difficult to accommodate in predicted bounding box
size similarly for very small objects until unless the size of
the of object increases. To address this issue, we modified
the existing YOLOv3 classification of objects technique.
In layer 13× 13, we have used downsampling so that very
large objects can also be accommodated again in the 52x52
layer, adding upsampling four times to increase the size of
very small objects, as shown in Figure 2. In this way, the
proposed work helps to improve small and large objects.
During object prediction, a multilevel approach is in-

troduced. A logistic regression classifier is used to de-
tect the probability value or the objectness score for each
of the bounding boxes. An approach to binary classifica-
tion, called logistic regression, determines the likelihood
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Figure 2: Underwater-YOLOv3 architecture

Figure 3: Spatial pyramid pooling layer

that an input will fall into a particular class. For class pre-
diction in YOLOv3, independent logistic regression classi-
fiers are employed rather than softmax classifiers, which
enable multi-class classification. YOLOv3 is capable of
handling complicated datasets with overlapping labels due
to the use of logistic classifiers. Formula for logistic regres-
sion:

log[p(X)/(1− p(X))] = α0 + α1X1 +…+ αpXp (6)

where,Xj is jth predictor variable and αj coefficient for
jth variable.
For class predictions, YOLOv3 employed binary cross-

entropy (BCE) loss during training. It is a binary classifier
that is used to measure the difference between ground truth
and predicted probabilities. BEC is as follows:

BEC = −[x ∗ log(p) + (1− x) ∗ log(1− p)] (7)

where, x is the ground truth value and p is the predicted
probability value so that the ground truth is 1. For each of
the boxes, some probability value is used for the selection

of the best anchor box. However, selecting the maximum
probability value for an object might result in incorrect de-
tection in the case of multiple objects of the same type. In-
tersection over Union (IoU) is used to choose the perfect
anchor box.

IOU = Intersectarea/UnionArea (8)

4 Dataset description
Two open-source data sets, the Brackish Underwater
Dataset [42] and the Trash ICRA19 Dataset [43] are used
to perform experiments. The motivation behind selecting
these two dataset is covering all different size and densely
packed objects. Also, the dataset is consists of all real im-
ages not artificial images.
The Brackish dataset contains 14,674 images. This is the

first publicly available European underwater image dataset
with bounding-box annotations of fish, crabs, small fish,
etc. The second dataset consists of trash images collected
byMarine Earth Science and Technology (JAMSTEC). The
underwater videos are collected between the year 2000 to
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2017. This dataset contains 5,720 images. Majorly this
dataset is classified into plastic (like a bottle, plastic bags,
etc.), Remotely Operated Vehicle (ROV), bio (plants, fish
other leaving organism).

5 Assessment method
The proposed work has two major components: image en-
hancement and underwater object detection. The quality
of the enhanced images is evaluated using two parameters
Underwater Image Quality Measure (UIQM) [44] and Un-
derwater Color Image Quality Evaluation (UCIQE) [45].
Precision, recall, mean Average Precision(mAP) are used
for measuring the quality of object detection.

5.1 Underwater image quality measure
(UIQM)

Underwater Image Quality Measure (UIQM) [44] is one
of the most basic performance metrics that does not need
any reference images. The UIQM has three underwater
image component measures: the underwater image color-
fulness measure (UICM), the underwater image sharpness
measure (UISM), and the underwater image contrast mea-
sure (UIConM).

UIQM = c1∗UICM+c2∗UISM+c3∗UIConM (9)

where, c1 = 0.0282, c2 = 0.2953, c3 = 3.5753. A big-
ger value of UIQM represents better good quality of the
enhanced image and vice-versa.

5.2 Underwater color image quality
evaluation (UCIQE)

Another most popular underwater image enhancement met-
ric is UCIQE [45]. It is based on contrast, standard devia-
tion, and saturation of the image. The formula for calculat-
ing UCIQE is as follows:

UCIQE = c1 ∗ Sd+ c2 ∗ Col + c3 ∗ Sat (10)

whereSd is the standard deviation,Col is the contrast of lu-
minance and Sat is the average of saturation, and c1, c2, c3
are weighted coefficients.

5.3 Object detection assessment methods
Object detection assessment is done using precision, recall,
F1-score, Intersection over Union(IoU) and mAP. Preci-
sion, recall, IOU, F1-score are calculated as follows:

Precision =
TP

TP + FP
(11)

Recall =
TP

TP + FN
(12)

IOU =
AreaofIntersection

AreaofUnion
(13)

F1− score =
2× Precision×Recall

Precision+Recall
(14)

Category-wise Average Precision is computed as equation
(15)

AP (Ci) = (1/n)× (

n∑
i=1

Pi) (15)

where Pi is ith the image of the Ci category and n is
number of iterations.

Mean Average Precision is calculated as equation (16)

mAP = (1/N)×
n∑

i=1

AP (Ci) (16)

where N is number of classes.

6 Experimental results
This section presents the results of the image enhancement
and object detection experiments in various scenarios: (1)
quantitative analysis of the MIRNet image enhancement
technique; (2) qualitative analysis of theMIRNet image en-
hancement technique; (3) results of object detection using
the proposed work and detailed analysis of it.
The results obtained byMIRNet image enhancement and

object detection are reported in this section. The exper-
iment is carried out on the Brackish and Trash ICRA19
datasets. To evaluate the quality of enhanced images used
average UIQM and UCIQE performance metrics and re-
sults are shown in Table 2.
Table 2 tabulated data regarding quantitative analysis

image enhancement by MIRNet for both datasets. From
Table 2 we can conclude that after image enhancement,
UIQM and UCIQE improved by 3 − 5%. MIRNet gener-
ates high-resolution images and preserves contextual infor-
mation. This unique property of MIRNet helps to achieve
better UIQM and UCIQE values.
Figures 4 and 5 show the qualitative analysis of MIRNet

in two different diagrams. It is evident from the enhanced
images that resolution and visibility have improved in both
data sets. Since MIRNet is built on deep learning meth-
ods, it is more stable to obtain image enhancement methods
based on it.
The experiments for object detection models are tested

with CUDA version 11010, cuDNN 7.6.5, and OpenCV
3.2.0 on a GPU runtime in the Google Colab environment.
To make the experiment unbiased, all the models are eval-
uated in the same environment and for the same number
of iterations. Details of the hyper parameters are shown
in Table 3. Experiments are conducted through training of
dataset and pre-trained weights are not used. The models in
the existing work used to compare with U-YOLOv3 trained
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Table 2: Average UIQM and UCIQE of the original and enhanced dataset

Parameter Brackish Dataset Trash ICRA19

Original Image Enhanced Image Original Image Enhanced Image
Average UIQM 0.19 0.23 0.21 0.34
Average UCIQE 4.86 4.91 3.86 4.12

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4: (a-d) original images, (e-h) enhanced images with MIRNet for Brackish underwater dataset

Table 3: Hyper-parameter for performing experiments

Parameters Specification
Training-Test split ratio 7:3
Batches 64
Steps 9600, 10800
Final layer filters 32
Classes 6
Iterations 8000
Learning Rate 0.001
Momentum 0.9
Channels 3
Classes 6

using the same dataset and parameters only the number of
epochs are different as we wait until the mAP are steady.
Underwater images suffer from blurring effects, low con-

trast, and grayed-out colors because of the absorption and
scattering effects under water. So we have enhanced the
images before object detection to increase the visibility of
the image. We can observe from Table 4 that the proposed
U-YOLOv3 gives 20% precision, 8% recall, 14% F1-score
and 7% Average IoU better performance than YOLOv3 for
the Brackish data set. Reported data from Table 5 show
that 2% precision, 6% recall, 4% F1-score, and 14% Av-
erage IoU improved than YOLOv3 for the proposed work
while using Trash ICRA19 dataset.

Tables 6 and 7 demonstrate the statistical analysis of the
proposed work. We have performed a paired t-test between
YOLOv3 and U-YOLOv3 to validate the performance of
the proposed works. The parameters used to perform sta-
tistical analysis are mean, Standard Deviation (SD), Stan-
dard Error of Measurement (SEM) and p-value. We have
assumed YOLOv3 as the null hypothesis, U-YOLOv3 as an
alternative hypothesis, and the significance level 5%. From
Table 6 and 7, it is clear that all p-values are less than 5%
hence alternate hypothesis is accepted and null hypothesis
is rejected.
Tables 8 and 9 contain class-wise average precision for

Brackish dataset and Trash ICRA19 dataset respectively. In
most of the cases, the average precision increased, but only
in one case the average precision value decreased after us-
ing the enhanced dataset. This is because during enhance-
ment, some images lose their contextual information.
Training for this study is conducted on a GPU platform

using an 8000 iteration setting. The indicators of the ex-
perimental ablation network are shown in Table 10. Pre-
cision increased by 10%, recall increased by 6%, F1-score
increased by 9%, and mAP increased by 4% after employ-
ing K-means ++ and image enhancement for the Brackish
dataset. After inclusion of SPP for feature aggregation, pre-
cision improved by 4%, recall improved by 1%, F-1 score
improved by 2%, mAP improved by 3%. Then finally, after
modification of the classification layer, we got an improve-
ment of 4% in precision, 1% in recall, 3% in F1-score and



96 Informatica 49 (2025) 87–102 P. Sarkar et al.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5: (a-d) original images, (e-h) enhanced images with MIRNet for Trash ICRA19 dataset

Table 4: Performance comparison of YOLOv3 and proposed U-YOLOv3 for Brackish underwater dataset

Iterations YOLOv3 U-YOLOv3

Precision Recall F1-Score Avg IoU Precision Recall F1-score Avg IoU
2000 0.32 0.52 0.42 0.32 0.44 0.56 0.49 0.49
4000 0.62 0.74 0.68 0.51 0.83 0.77 0.80 0.71
6000 0.67 0.78 0.72 0.60 0.82 0.89 0.85 0.71
8000 0.68 0.79 0.73 0.67 0.88 0.87 0.87 0.74

2% in mAP.
We have performed similar experiments on the trash

ICRA19 dataset shown in 11. After using K-means++ for
anchor box size detection and using enhanced images in the
base model, the precision improved by 6%, recall improved
by 1%, the F-1 score improved by 4% , mAP improved
by 8%. After inclusion of SPP for the aggregation of fea-
tures, precision improved by 1%, recall improved by 2%, F-
1 score improved by 1% , mAP improved by 0.4%. Lastly,
after incorporation of modifications into the classification
layer 1% improvement in precision, recall, F1 score, and 1.
6% improvement in mAP.
The article highlights the difficulties in identifying small

objects in highly opaque and blurry underwater landscapes,
such as fish, jellyfish, shrimps, crabs, and jellyfish. It is
very clear from Figure 6 that the proposed work can also de-
tect small and dense objects from underwater images with
higher recognition precision. U-YOLOv3 can identify the
two fish that are significantly dense as shown in Figure 6 (d)
and (h) with good precision. It is also challenging for the
human eye to discriminate between different objects in such
images with complicated backgrounds. The U-YOLOv3
suggested in this study performs exceptionally well, cor-
rectly recognizes the items in the images, particularly the
small object and large objects, and is more equipped to han-
dle the difficulties associated with underwater detection. It
is also shown in Figure 6 that the sizes of the anchor box

are perfect and incorporate entire objects.

7 Discussions

In this section the performance of proposed work is as-
sessed, with respect respect to popular single-stage object
detectors. U-YOLOv3 compared with other current state-
of-the-art and the results are shown in Tables 12 and 13.
Ten different object detection networks SSD, Tiny-YOLO,
YOLOv2, YOLOv3, YOLOv4, YOLOv5, KPE-YOLOv5,
YOLOv7, YOLOv8, and YOLOv9, were compared with
the proposed U-YOLOv3. The comparison is made for the
trash ICRA19 and the Brackish dataset. The assessment
carried out based on the mAP achieved by different mod-
els. Each network was derived using an image size of 416
× 416 and it is found that the proposed work achieved 2-
10% better mAP than the existing work. The underwater
images contains small particles because this light gets re-
flected multiple times as a result images captured in the un-
derwater environment are not clear. The extraction of qual-
ity features from underwater images is very difficult, so we
have used MIRNet to improve the image resolution. An-
other important issue during object detection is the selection
of the bounding box instead of K-means the proposed work
used K-means++ during object detection and gives a better
result than original YOLOv3 as shown in Table 10 and 11.
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Table 5: Performance comparison of YOLOv3 and proposed U-YOLOv3 for trash ICRA19 dataset

Iterations YOLOv3 U-YOLOv3

Precision Recall F1-Score Avg IoU Precision Recall F1-score Avg IoU
2000 0.32 0.06 0.10 0.31 0.37 0.19 0.25 0.43
4000 0.46 0.56 0.43 0.44 0.52 0.60 0.53 0.50
6000 0.64 0.61 0.62 0.47 0.71 0.73 0.71 0.59
8000 0.66 0.75 0.70 0.57 0.74 0.79 0.76 0.69

Table 6: Paired t-test between YOLOv3 and U-YOLOv3 for Brackish dataset

YOLOv3 U-YOLOv3

Parameter Mean SD SEM Mean SD SEM p-value
Precision 0.5575 0.1665 0.0802 0.7425 0.2034 0.1017 0.0074
Recall 0.7075 0.1269 0.0634 0.7725 0.1511 0.0755 0.0390
F1-Score 0.6375 0.1466 0.0733 0.7525 0.1775 0.0887 0.0051
AverageIoU 0.5250 0.1525 0.0758 0.6625 0.1159 0.0579 0.0182

Feature reduction without losing significant information of
object detection is necessary, so we have introduced SPP in
Darknet-53. In addition, we have incorporated down sam-
pling during large objects detection and up sampling during
small objects detection, which improvesmAP for object de-
tection.
The proposed work selected two different datasets

Brackish data set consists mostly dense and small objects
and Trash ICRA19 mostly consists of large, medium size
objects. It is found from Table 8 that for all the differ-
ent classes U-YOLOv3 performed better than YOLOv3
with small objects. From Table 12 it is also clear that U-
YOLOv3 performed better than other existing techniques
for the Brackish dataset with respect to precision recall,
IOU, F1-score and mAP. The ICRA19 trash data set con-
sists of 5,700 images, and it is clear from Table 13 with
a smaller number of training images the proposed work
achieved a mAP of more than 4% better than the existing
work. In addition, it successfully detects large andmedium-
size objects. In addition, it is evident from Figure 6 (d)
and (h) that the proposed work detects small dense objects
with good precision. Similarly, for large and medium-sized
objects, they are also perfectly detected as shown in Fig-
ure 6 (e), (f) and (g). We have tried to make a general-
ized model which helps in detection in both the datasets.
To make the proposed model generalized, added image en-
hancement which is a requirement of underwater images
due to clarity of images with it tried to achieve detection of
all size including dense objects.
The main limitation of the proposed work is that train-

ing time is higher than other existing techniques and taining
time is almost similar as YOLOv9. U-YOLOv3 works with
almost 63.25 million parameters, so it takes a long time to
train the images, but the object detection time from an im-
age is 22 ms. In the future, a model can be designed in such
a way that it can balance training time with precision.

8 Conclusion
This research proposes an architecture which is a modi-
fied version of YOLOv3 and aims to detect underwater im-
ages. As underwater images are not clear the work included
a pre-processing step i.e. image enhancement before ob-
ject detection. Image enhancement is based on the deep
learning technique MIRNet that helps to improve the reso-
lution of images without losing contextual information, and
for object detection the proposed work proposed a modi-
fied version of YOLOv3 i.e. U-YOLOv3 which is suitable
for underwater object detection. U-YOLOv3 incorporates
three modifications on YOLOv3 first one is the proposal
of bounding box size by K-means++ clustering, the addi-
tion of SPP for feature aggregation, resizing of features
during classification of objects. Together, these changes
help us to improve mAP by increasing the detection rate
of very large, small, and dense objects. The entire experi-
ment is conducted on two datasets, that is, the Brackish and
Trash ICRA19 dataset. In both the dataset average UIQM
and average UCIQE values increased by 3-10%. These en-
hanced images are used for training purposes. The work
proposed U-YOLOv3 which concentrates on better selec-
tion of bounding box size which is capable of detection of
different size objects. Also proposed work includes an ef-
ficient feature aggregation technique, which enables reduc-
ing feature size. U-YOLOv3 achieved a better 1- 10%mAP
compared to existing work.
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Table 7: Paired t-test between YOLOv3 and U-YOLOv3 for Trash-ICRA19 dataset

YOLOv3 U-YOLOv3

Parameter Mean SD SEM Mean SD SEM p-value
Precision 0.5200 0.1608 0.0804 0.5850 0.1733 0.0867 0.0021
Recall 0.4950 0.3009 0.1505 0.5775 0.2702 0.1431 0.0441
F1-Score 0.4652 0.2669 0.1334 0.5625 0.2706 0.1153 0.0128
AverageIoU 0.4475 0.1072 0.0536 0.5525 0.1127 0.0563 0.0060

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6: (a-d) are object detection results for Brackish dataset and (e-h) are object detection results for Trash ICRA19
dataset by U-YOLOv3

Table 8: Class wise average precision for YOLOv3 and pro-
posed U-YOLOv3 for Brackish dataset

YOLOv3 U-YOLOv3
Class Avg Precision Avg Precision
Crab 0.43 0.87
Fish 0.62 0.64
Jellyfish 0.77 0.81
Shrimp 0.68 0.72
Small Fish 0.76 0.72
Starfish 0.99 1.00
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Table 9: Class wise average precision for YOLOv3 and pro-
posed U-YOLOv3 for Trash ICRA19

YOLOv3 U-YOLOv3
Class Avg Precision Avg Precision
Unidentified
Object 0.66 0.80

Bio 0.71 0.81
Plastic 0.73 0.78
Rov 0.42 0.58
Timestamp 0.82 0.94
Wood 0.50 0.58
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Table 10: Indicators for the ablation experiments for Brackish Dataset

Module Precision Recall F1-Score mAP@50:95
A:YOLOv3 0.68 0.79 0.73 71%
B:A+ Enhanced Images +K-means++ 0.78 0.85 0.82 75%
C:B+SPP 0.82 0.86 0.84 78%
D:C + Modified classification 0.88 0.87 0.87 80%

Table 11: Indicators for the ablation experiments for Trash ICRA19 Dataset

Module Precision Recall F1-Score mAP@50:95
A:YOLOv3 0.66 0.75 0.70 64%
B:A+ Enhanced Images +K-means++ 0.72 0.76 0.74 72%
C:B+SPP 0.73 0.78 0.75 72%
D:C+ Modified Classification 0.74 0.79 0.76 74%

Table 12: Comparison with other techniques for Brackish dataset

Network Precision(%) Recall(%) IOU(%) F1-score(%) mAP@50:95(%)
SSD [21] 52.1 73.2 65.6 60.0 68.39
Tiny-YOLO [46] 42.3 34.4 41.9 42.3 33.64
YOLOv2 [22] 58.6 57.9 65.0 57.6 52.54
YOLOv3 [23] 68.9 79.9 67.8 74.8 72.49
YOLOv4 [24] 82.3 71.1 68.7 76.8 78.23
YOLOv5 [47] 83.3 81.3 78.6 82.1 81.18
KPE-YOLOv5 [32] 48.6 47.4 47.0 46.2 47.47
YOLOv7 [26] 76.9 75.9 75.7 65.2 69.40
YOLOv8 [48] 87.3 86.7 86.6 79.3 73.30
YOLOv9 [49] 91.4 89.6 89.3 80.6 78.50
U-YOLOv3 88.2 87.5 78.1 87.6 80.39

Table 13: Comparison with other techniques for Trash-ICRA19 dataset

Network Precision(%) Recall(%) IOU(%) F1-score(%) mAP@50:95(%)
SSD [21] 66.1 71.8 68.6 68.1 66.47
Tiny YOLO [46] 48.2 47.2 45.7 47.2 46.95
YOLOv2 [22] 53.3 50.1 62.4 51.3 48.84
YOLOv3 [23] 66.1 75.9 67.6 70.0 69.33
YOLOv4 [24] 86.1 0.64 58.6 73.3 71.82
YOLOv5 [47] 56.0 45.2 45.5 44.4 46.96
KPE-YOLOv5 [32] 66.1 46.3 46.3 44.5 44.85
YOLOv7 [26] 48.2 46.2 46.7 55.6 44.65
YOLOv8 [48] 42.1 36.1 38.8 70.3 36.68
YOLOv9 [49] 46.5 45.6 45.5 57.9 45.36
U-YOLOv3 74.8 79.8 69.5 76.8 74.98
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