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Detecting motor imagery from electrocardiographic (ECG) signals is complex but crucial in developing
advanced neuroprosthetic devices and brain-computer interface (BCI) systems. In most cases, linear mod-
els applied using conventional methods are not appropriate for the time-varying and non-linear nature
represented by the ECG characteristics, resulting in weak performances. This research addresses this
problem, combining Wavelet Packet Decomposition and Multi-Scale Convolutional Neural Networks to
improve the feature extraction mechanism and classification accuracy. ECG data is pre-processed from
the PhysioNet EEG Motor Movement/Imagery Dataset to remove noise and standardize signals. WPD is
thus applied to decompose the signals into detailed frequency components to be input as features in the
proposed Multi-Scale CNN. Different kernel sizes are implemented in these parallel convolutional layers
to learn complicated features at various hierarchical resolutions. The proposed architecture is evaluated
using performance parameters such as accuracy 92%, precision 89%, recall 93%, F1 score 91%, and ROC-
AUC 95%. These results showed that the model outperformed the earlier-used traditional methods, such
as Support Vector Machines (SVM) and Random Forests, better-detecting motor imagery. This research
emphasizes the integrative power of advanced signal processing techniques with deep learning in analyzing
biomedical signals, providing a powerful solution to advancing neuroprosthetic and BCI technologies.

Povzetek: Študija dokazuje učinkovitost kombinacije obdelave signalov in globokega učenja za analizo
biomedicinskih signalov. Uporabljena je valčna paketna dekompozicije in večskalna konvolucijska nevron-
ska mreža za detekcijo motorične imaginacije v signalih EKG.

1 Introduction

1.1 Background on motor imagery in ECG
signals

Motor imagery is a cognitive process by which one in-
ternally represents motion without physically carrying it
out [1]. This mental process class engages neural pathways
closely related to those involved during actual movements,
a fact that can be picked up in various physiological signals.
For example, in electrocardiogram (ECG) signals, motor
imagery detection can provide insights into neural activity
related to motor functions [2]. Since ECG signals, unlike
other neurophysiological signals, are mainly used for mon-
itoring cardiac health, they find interest in detecting motor
imagery based on their accessibility and non-invasiveness
in the recording.

1.2 Importance of accurate detection and
classification

Accurately detecting and classifying motor imagery from
ECG signals are essential for various emerging technolo-
gies, particularly neuroprosthetics and brain-computer in-

terfaces [3]. Neuroprosthetic devices work best when
the intended motor actions are accurately detected, so the
machine works appropriately to aid a person with motor
deficits. At the same time, BCIs must provide this intended
signal from brain activities accurately into control signals of
high precision to guarantee reliability and user satisfaction.
Faulty interpretations and actionsmay occur if the detection
needs to be more accurate, making the advantages of such
highly developed systems irrelevant. Thus, robust methods
for detecting motor imagery in ECG signals are required to
improve these technologies further.

1.3 Introduction to wavelet packet
decomposition (WPD)

Wavelet Packet Decomposition (WPD) is an advanced
method of processing signals that decompose a signal in
its constituent frequency components [4]. It further de-
composes in detail compared to the conventional wavelet
transform, which focuses on a specific set of frequency
bands. The advantages of WPD include multiresolution
analysis with both approximation and detail coefficients de-
composed at every level, hence being very useful for ana-
lyzing non-stationary signals like ECG, where signal prop-
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erties can change over time. The baseline model used in
this study combinesWavelet Packet Decomposition (WPD)
and a Multiscale Convolutional Neural Network (CNN),
where WPD decomposes ECG signals into multiple fre-
quency bands to extract features across various scales and
resolutions, and the multiscale CNN processes these fea-
tures to capture patterns of different sizes and temporal fre-
quencies for improved classification accuracy. Themodel’s
performance is evaluated using metrics such as accuracy,
sensitivity, specificity, and F1-score, providing a basis for
comparison with modified versions of the model to assess
the impact of each component. This ablation study aims
to determine the contribution of Wavelet Packet Decompo-
sition (WPD) when used with a Multiscale Convolutional
Neural Network (CNN) for motor imagery classification in
ECG signals. By systematically removing or altering the
WPD component, we aim to understand its significance and
how it enhances the performance of the Multiscale CNN.

1.4 Motivation for using multiscale CNN
Thus, Wavelet Packet Decomposition coupled with a Mul-
tiscale CNN represents a practical approach to best deal
with the feature extraction task. CNNs are among the most
prevalent and well-known models for automatically learn-
ing features in a hierarchical fashion from raw data that can
handle complicated pattern recognition tasks with supreme
grace [5]. The proposed multiscale technique of CNN is a
multiple-parallel convolutional layer with different kernel
sizes simultaneously to take up the features of multiple res-
olutions. This bears a specific benefit in dealing with the
variability in ECG signals, as it allows learning fine and
coarse features. The proposed method combinesWPDwith
the multiscale CNN to utilize the advantages of these two
techniques toward a maximized level of classification ac-
curacy in detecting motor imagery from ECG signals.

1.5 Contributions
This research makes several critical contributions to the
field of biomedical signal processing and brain-computer
interface (BCI) systems:

1.5.1 Novel methodology

Wavelet packet decomposition, coupled with multiscale
convolutional neural networks, is a new concept in motor
imagery detection from ECG signals. This approach ef-
fectively combines the WPD-based multiresolution analy-
sis with CNN’s automatic feature learning capabilities for
improved classification performance.

1.5.2 Improved detection of motor imagery

The present study extends the horizon of motor imagery
detection to ECG signals compared with the conventional
EEG-based approaches. The findings have demonstrated
that an ECG signal can be a suitable alternative for detecting

motor imagery and provides a noninvasive, accessible way
of developing neuroprosthetic devices and BCI systems.

1.5.3 Comprehensive evaluation

The proposed detailed experimental evaluation includes
preprocessing steps, feature extraction, model training,
and performance assessment; such a roadmap could be
handy for implementing and validating similar methodolo-
gies. Multiple metrics used for assessment and comparison
against traditional methods will ensure the robustness and
comprehensiveness of the evaluation for the proposed ap-
proach.

2 Related work and SOTA
experiment

2.1 Previous approaches to motor imagery
detection

Although most of the research has been on detecting mo-
tor imagery with electroencephalogram (EEG) signals, re-
cently, an emerging interest has been in using the noninva-
sive and easily obtainable ECG signal [6]. Priori methods
have thus focused on feature extraction for detecting motor
imagery from the ECG signal, followed by classification
using machine learning algorithms.
Time-domain, frequency-domain, and time-frequency

analysis techniques have been applied to extract pertinent
features from ECG signals. These techniques generally an-
alyze the amplitude and duration characteristics of the ECG
signal. Some features that they use are mean, variance,
skewness, and kurtosis of the signal segments. However,
such features severely affect noise and will fail to capture
the underlying patterns associated with motor imagery.
Frequency-domain methods involve transforming the

ECG signal from its time domain into its frequency domain,
for which techniques like the Fourier Transform have been
used [7]. Extracted features such as power spectral den-
sity and spectral entropy have been used. Though these ap-
proaches can be informative about the signal’s frequency
components, the transient characteristics of motor imagery
should be noticed.
Short-time Fourier Transform (STFT) and Wavelet

Transform are prevalent in motor imagery detection. These
techniques offer a compromise by giving information about
time and frequency. However, STFT gives a fixed res-
olution; thus, it is limited to various cases that present
effectively different frequency contents. Wavelet Trans-
form gives multiscale analysis and is more suited for non-
stationary signals like the ECG.
The machine learning techniques in support vector ma-

chines, k-NN, and random forests are among the classifiers
used in this work on classifying motor imagery based on
feature extraction. Although this approach has proven to
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be quite promising in practice, its performance depends on
the feature extraction quality and a set of hyperparameters.

2.2 Use of wavelet transforms in ECG
analysis

Wavelet transforms have widely been applied to ECG sig-
nal processing because they can analyze non-stationary sig-
nals [8]. A wavelet transform decomposes a signal into
frequency components related to a defined scale. This de-
composition can then serve as a detailed analysis of the
signal’s time-frequency characteristics. Wavelet transforms
are used for various tasks such as denoising, feature extrac-
tion, and classification in ECG analysis.
Most ECG signal processing operations involve denois-

ing, which eliminates as many noise artifacts as possible
without changing the critical information content of sig-
nals. Wavelet-based denoising is performed by decompos-
ing an ECG signal into wavelet coefficients, thresholding
the noisy coefficients, and reconstructing the signal from
the modified coefficients. This method has proven effec-
tive in denoising ECG to reduce noise while keeping the
salient features intact.
Wavelet transforms in feature extraction embrace mul-

tiscale analysis, capturing both high-frequency details and
low-frequency trends. Features like wavelet coefficients,
entropy, and wavelet energy have been extracted from this
time series data and used for classification tasks. Such fea-
tures characterize both the spectral and temporal character-
istics of the ECG signal.
The Wavelet Packet Decomposition (WPD) generalizes

theWavelet Transform technique so that decomposition can
be performed on approximation and detail coefficients at
every level [9]. ECG signal processing uses WPD to ex-
tract very informative features of classification tasks. By
implementing the WPD technique, detecting the subtle pat-
tern associated with motor imagery is improved by analyz-
ing the signal at different scales and frequencies.

2.3 Convolutional neural networks in
biomedical signal processing

Convolutional neural networks (CNNs) are the break-
through in biomedical signal processing because they can
automatically learn hierarchical features from raw data.
CNNs consist of convolutional, pooling, and fully con-
nected layers. Each layer takes the input signal and extracts
increasingly complex features, helping the network catch
intricate patterns.
CNNs have been broadly applied in the analysis of ECG

signals for arrhythmia detection, ischemia detection, and
the classification of several other cardiac diseases. One
of the significant advantages of CNNs is the automatic
feature-extraction feature; therefore, the need to perform
manual feature engineering can be ruled out. This is
very useful in biomedical signal processing since extract-

ing meaningful features from such signals might be chal-
lenging.
The conventional convolutional neural networks applied

to ECG signals are usually composed of 1D convolutional
layers. In this case, local patterns in the signal are collected
by sliding filters over the signal. The pooling layers sum up
these patterns, reducing dimensionality and capturing only
the most salient features. At the network’s end, fully con-
nected layers take these features and make the final classi-
fication.
CNNs’ efficacy in processing biomedical signals comes

from their capability to handle massive datasets and learn
robust features [10]. However, designing a highly effec-
tive CNN architecture requires consideration of network
depth, filter size, and other hyperparameters. CNN design
is hyperparameter-specific, not only computationally ex-
pensive but also requiring abundant training data for per-
formance.
Some strategies developed to counter this and related

challenges of sparsely labeled data include transfer learn-
ing and data augmentation. Transfer learning involves us-
ing a pre-trained network that has been previously trained
on tasks similar to the one at hand and fine-tuning it to the
target task. This paradigm borrows knowledge from the
source task to reduce the quantity of labeled data needed.
Data augmentation techniques, including adding noise and
shifting and scaling the signal, are included to add some
degree of variability in the training data, thus improving
generalization capacity within a given network.
A study incorporating CardiacNet was conducted to

identify and categorize cardiac arrhythmia based on ECG
signals and elaborate on the constraints of traditional pre-
diction systems and AI methods to identify arrhythmia due
to poor feature extraction correctly. The approach applied
pre-processing on ECG data by eliminating non-linearities,
feature extraction using unsupervised machine learning-
based PCA (UML-PCA), and feature selection with im-
proved Harris Hawk’s Optimization (IHHO). CCNN was
then used to classify and yield impressive quantitative mea-
sures such as accuracy of 97.57%, sensitivity of 98.29%,
and MCC value of 98.17% [11].
An essential step in raw ECG signal preprocessing is

noise and artifact removal, which may affect classification
model performance. Other processes in the preprocessing
stage were baseline wandering removal, noise filtering, and
normalization.
A high-pass filter technique was employed to remove

Baseline wandering as it consists of low-frequency compo-
nents [12]. Bandpass filtration removed noise and retained
only the frequency components relevant to the ECG signals.
It was done to normalize the ECG signals into a standard
range of values—that is, every sample was uniform.

2.4 Wavelet packet decomposition
This work has decomposed preprocessed ECG signals into
frequency components using the Wavelet Packet Decom-



118 Informatica 49 (2025) 115–126 K.H. Ali

Figure 1: Sample ECG signal from the PhysioNet EEG motor movement/imagery dataset

Figure 2: Wavelet packet decomposition of an ECG signal showing decomposition levels and corresponding frequency
components

position technique (WPD). WPD can give a better analysis
than the traditional wavelet transformation because it de-
composes approximation and detail coefficients at all lev-
els. Due to its multiresolution property, this is essential in
capturing the transient characteristics of the motor imagery
signals.

and MCC value of 98.17% [11]. CardiacNet uses a dif-
ferent technique to detect motor imagery from recorded
ECG signals. By integrating the Wavelet Packet Decompo-
sition (WPD) with the Multiscale CNN, the present study
seeks to optimize the classification of dynamic and non-
linear signal features previously unexplored and additional
ECG uses beyond cardiac health.

3 Methodology

3.1 Data acquisition and preprocessing

The database used for this study was obtained from the
PhysioNet database, specifically the EEG Motor Move-
ment/Imagery Dataset. The dataset includes a set of ECG
recordings of multiple subjects carrying out motor imagery
tasks. Each record is annotated concerning whether or not
there was motor imagery—these were used as ground truth
against which the classification task results were compared.
The choice of wavelet function and the decomposition

level are the most basic but essential parameters in WPD.
The Daubechies 4 wavelet was chosen to do this because it
was best suited for the analysis of ECG signals. Following
the same thesis, it is decomposed to level 4, giving an ade-
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Figure 3: Flowchart of the proposed model from data acquisition to performance comparison

quate compromise between the complexity of computations
and the level of detail.
Wavelet-packet decomposition is based on decomposing

any ECG signal into a set of wavelet coefficients at differ-
ent resolutions. These wavelet coefficients represent the
ECG signal at various resolutions. The obtained coeffi-
cients were used as features for the classification model.
A feature set includes the mean, variance, and energy of
wavelet coefficients at each level of decomposition, which
gives a representative of ECG.

3.2 Multiscale convolutional neural network
(CNN)

The Multiscale Convolutional Neural Network constitutes
the core part of the methodology, which aims to increase
feature extraction from the granularities, from fine-grained
to coarse ones. After the convolutional layer, the follow-
ing layer used for representation is a pooling layer respon-
sible for reducing the dimensionality of the features while
retaining the most salient parts. The outputs of these par-
allel pathways are multiple kernel sizes, enabling the net-
work to capture features at different resolutions. The mul-
tiscale CNN is designed with three parallel convolutional
pathways. The first layer in each path is a 1D convolutional
layer. Kernel sizes of 3, 5, and 7 were applied to extract fea-
tures at different scales, then concatenated and input into a
few fully connected layers for the final classification. This
neural network uses ReLU-activated hidden layers and con-
volutional layers with a sigmoid-activated output layer, per-

forming binary classification for motor imagery.

3.3 Implementation details
Implementation was done in Python and its associated li-
braries, including the PyWavelets library used in wavelet
packet decomposition and the TensorFlow/Keras library for
modeling and training. Figure 3: Flowchart of the proposed
model from data acquisition to performance comparison.
The CNN. The ECG signals were pre-processed using

Wavelets and decomposed after in the CNN [13]. The MS-
CNN was trained using a Binary cross-entropy loss func-
tion and Adam optimizer because of its high performance
and efficiency. The training was split into dataset training-
validation sets, and early stopping was implemented to
avoid overfitting. The accuracy, precision, recall, and F1
score metrics assessed model performance.

3.4 Algorithm and flowchart
The proposed model for motor imagery detection in ECG
signals starts by acquiring data from the PhysioNet EEG
Motor Movement/Imagery dataset. The raw ECG signals
are then pre-processed, followed by baseline wandering re-
moval using a high-pass filter, noise filtering using a band-
pass filter, and, lastly, normalization to standardize the sig-
nal range. Next, the Wavelet Packet Decomposition pro-
cess uses level 4 of the Daubechies 4 (db4) wavelet func-
tions to decompose the ECG signals into sub-high, high,
and low-frequency bands. Features are then acquired from
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Figure 4: The architecture of the multi-scale CNN

wavelet coefficients at each level: mean, variance, and en-
ergy. These features would be given as input to a Multi-
Scale Convolutional Neural Network designedwith parallel
convolutional layers of filter sizes 3, 5, and 7. The output
of each conv layer is ReLU activated and then subjected to
max-pooling. The subsequent is shown in Figure 3.
Two outputs are concatenated and passed through fully

connected layers into a sigmoid-activated output layer to
implement the final binary classification. Using the Adam
optimization algorithm, the network trains against these
data with binary cross-entropy loss in the back end; it has
preactivation stops concerning the loss of the hold-out set.
Performance evaluation metrics include accuracy, preci-
sion, recall, F1-score, and ROC-AUC, with comparisons to
highlight its superior performance over traditional methods
such as SVM and Random Forest.

4 Experiments and analysis

4.1 Ablation experiments
A series of experiments were conducted to evaluate the per-
formance of the proposed Wavelet Packet Decomposition-

based Multiscale CNN approach on motor imagery detec-
tion in ECG signals using a publicly available dataset. The
dataset consists of ECG recordings from several subjects
performing motor imagery tasks. From each ECG record-
ing, ground truths are available on the presence or absence
of motor imagery, which are the results to be achieved
within a classification task.
Dividing the data set into a training, validation, and test

set ensures the model’s evaluation is all-around. The data
consisted of 70% for training, 15% for the validation, and
15% for the test set. This partitioning would ensure that
models trained on a diversified set of samples are evalu-
ated on completely unseen data to estimate generalization
capability.

4.1.1 Experiment 1: removing wavelet packet
decomposition (WPD)

TheWPD step was removed in this experiment, and the raw
ECG signals were directly fed into the Multiscale CNN.
The expected impact was that without WPD, the model
processes only the raw signal, potentially missing critical
frequency-specific features. The multiscale CNN still at-
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tempts to capture features at different scales but lacks the
enriched input from WPD.

4.1.2 Experiment 2: using standard CNN instead of
multiscale CNN

In the second experiment’s model set-up, WPD was re-
tained, but the Multiscale CNN was replaced with a stan-
dard CNN that processes the signal at a single scale. The
expected impact was that the standard CNN may not fully
exploit the multiscale features provided byWPD, leading to
suboptimal feature extraction and classification. Themodel
might Figure 4: The architecture of the Multi-Scale CNN
perform better than the raw signal input but is expected to
underperform compared to the baseline multiscale CNN.

4.1.3 Experiment 3: combined removal of WPD and
multiscale CNN

This experiment removed WPD and the CNN’s multiscale
structure, producing a standard CNN processing raw ECG
signals. The experiment serves as a control, representing
the most straightforward model setup. The expected out-
come is the poorest performance, as the model needs more
enriched input fromWPD and the capability to process fea-
tures at multiple scales.

4.2 Data preprocessing
As given in the methodology section, raw ECG signals un-
derwent some preprocessing. A high-pass filter with a cut-
off frequency of 0.5 Hz was employed to remove baseline
wandering. A bandpass filter ranging from 0.5 Hz to 40
Hz was used for further filtering, which helped smooth the
high-frequency noise and retain important frequency com-
ponents [14]. Post-preprocessing, these signals were nor-
malized to a standard range of 0-1 to make them uniform.
The signal was preprocessed before running the Wavelet
Packet Decomposition up to level 4 with a Daubechies 4
wavelet. The obtained wavelet coefficients were used to
build feature vectors for each ECG segment. These are the
inputs of the Multiscale CNN, which treated these different
frequency components represented by ECG signal feature
vectors.

4.3 Model training
Multiscale CNN architecture for TensorFlow/Keras: three
parallel convolutional pathways with kernel sizes 3, 5, and
7, concatenated features after max-pooling, passed through
fully connected layers with the final output layer, which
uses a sigmoid activation function for binary classification.
This model was compiled using the Adam optimizer

and binary cross-entropy loss function. Training was done
through 100 epochs and a batch size of 32. Early stopping
with patience set at ten epochs was applied to avoid overfit-
ting bymonitoring the validation loss and stopping training.

4.4 Performance metrics

The effectiveness of the proposed method was evaluated
based on various metrics, such as accuracy, precision, re-
call, F1 score, and area under the Receiver Operating Char-
acteristic curve; these measures assessed how well the
model could discriminate motor imagery within ECG sig-
nals.
•Accuracymeasures howwell the model performs over-

all by calculating the true positives and negatives ratio
among all the predictions.
• Precision reflects the proportion of true positives to the

total number of optimistic predictions the model made [15].
•Recall (sensitivity) refers to the model’s ability to iden-

tify all relevant instances (true positives) accurately.
• F1-score is the harmonic mean of the precision and re-

call. It provides a single score that balances both concerns.
• ROC-AUC measures the model’s performance overall

classification thresholds; thus, higher values indicate better
discrimination.

5 Results

In Experiment 1, removing WPD from the model led to
a slight but noticeable decrease in performance measures.
This drop shows that WPD is critical in improving the qual-
ity of features fed into the Multiscale CNN to boost clas-
sification efficiency. This gap partially explains why the
model could not adequately reconstruct some frequency-
specific features when WPD was absent; this lack of dis-
tinction landed the model lower scores by failing to differ-
entiate motor imagery from other signal components.
Replacing the Multiscale CNN with a standard CNN

while maintainingWPD in Experiment 2 resulted in a mod-
erate decrease in performance. This implies that while
WPD may still provide helpful multi-resolution features to
be exploited, its usefulness greatly depends on the subse-
quent application of a Multiscale CNN, which training can
incorporate these features at suitable scales. Due to the
single-scale characteristic of the standard CNN, it was not
possible to fully utilize such features asWPD to provide the
best classification results.
The results of Experiment 3 revealed the most signifi-

cant decline in all performance metrics when both WPD
and the Multiscale CNN were removed, leaving a standard
CNN to process the raw ECG signals. Such a consider-
able decrease also underscores the importance of utilizing
WPD and a Multiscale CNN to improve MI detection ac-
curacy. The features extracted from WPD offer more en-
hancements, together with the capacity of the Multiscale
CNN to scrutinize the features at different scales, which is,
therefore, important for accurate and solid classification.
Table 1 shows the proposed method’s performance as

tested on the test set. Compared to traditional approaches,
Multiscale CNN better detected motor imagery from the
ECG.
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Figure 5: Bar chart showing the performance metrics

Table 1: Performance metrics

Metric Value
Accuracy 0.92
Precision 0.89
Recall 0.93
F1-Score 0.91
ROC-AUC 0.95

Themodel attained an accuracy of 92%, meaning it could
correctly classify 92% of samples. The obtained precision
and recall values were 89% and 93%, respectively, show-
ing that the model could correctly distinguished true posi-
tives and maintained a low false positive rate. The F1 Score
was 0.91, reflecting a good balance between precision and
recall. The ROC-AUC of 0.95 indicated excellent discrim-
ination ability across a range of classifications.
Figure 6 shows a confusion matrix that shows precisely

how the model performed—the quantity of true positive,
true negative, false positive, and false pessimistic predic-
tions. The confusion matrix depicted many accurate opti-
mistic and pessimistic predictions, with very few.
The ROC curve showed that the model could maintain

a high actual positive rate with a low false positive rate;
actually, 0.95 under the curve shows good performance.

5.1 Comparison with traditional methods
To further substantiate the efficacy of the approach, the per-
formance comparison of the false positives and negatives,
thus substantiating the model’s robustness.
The ROC curve in Figure 7 provided more information

on model performance, indicating a good separation be-

tween the actual positive rate and the false positive rate.
Multiscale CNN model was performed with that of the

traditional machine learning methods Support Vector Ma-
chines (SVM) and Random Forests (RF) on the same
dataset and preprocessing steps.
The summarized results in Table 2 pointed to the

supremacy of the Multiscale CNN. The table for multiple
models overview numerous metrics, including accuracy,
precision, recall, F1-score, specificity, and Matthews Cor-
relation Coefficient (MCC). This comparison also shows
how effective and efficient the proposed Multiscale CNN
with WPD is compared to other prevailing classifiers like
SVM and Random Forest.
High performance could be attributed to the Multiscale

CNN’s ability to automatically learn hierarchical features
of the wavelet coefficients, which represent fine-grained
and coarse patterns crucial for discriminating between mo-
tor imagery types [16].
The proposed approach addresses a significant gap in the

field of ECG-based signal processing by extending its ap-
plication from traditional cardiac health monitoring to mo-
tor imagery detection. Models such as CardiacNet are ac-
curate in detecting cardiac arrhythmias but are centered on
disease classification and not the detection of cognitive pro-
cesses like motor imagery. Non-invasive motor imagery
based on ECG signals is still unexplored and opens a vast
possibility for investigating cognitive processes using neu-
ral signals. This approach meets a significant requirement
in BCI and neuroprosthetics, where an efficient and cost-
effective identification ofmovement goals improves usabil-
ity and functionality.
Unlike traditional methods like Support VectorMachines

(SVM) and Random Forests, the proposed method offers
distinct advantages through its use of a Multiscale Con-
volutional Neural Network (CNN) combined with Wavelet
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Packet Decomposition (WPD). Furthermore, most ear-
lier traditional machine methods require feature extrac-
tion through experience, which may not artistically depict
the ECG signal’s subtle patterns, especially during the MI
detection phase. Instead, automatic hierarchical feature
learning of multiscale CNN and the WPD facilitates multi-
resolution signal analysis. Hence, the themodel can capture
high-level and low-level details at multiscale and multires-
olution, which improves the classification ofmotor imagery
tasks.
In addition, problems associated with the time and fre-

quency domains, like the Fourier Transform used conven-
tionally, are well addressed by the proposed method. Such
traditional methods fail to capture short-term features and
non-stationary aspects inherent in the signals used to imag-
ine motor control. Thus, the proposed WPD approach cap-
tures more refined time-frequency features by the multi-
scale CNN to distinguish motor imagery and signal noise
more accurately from other irrelevant components.

6 Discussion and future works

6.1 Discussion
The experiments reveal critical insights into the effective-
ness of combining Wavelet Packet Decomposition (WPD)
with a Multiscale Convolutional Neural Network (CNN)
for motor imagery detection in ECG signals. This substan-
tial degradation of performance indicates the importance of
WPD in extracting significant frequency band features from
ECG data required for classification. The characteristic of
WPD is that the signals can be analyzed at different reso-
lutions; this is beneficial when dealing with transient/non-
stationary signal characteristics that would typically go un-
noticed when utilizingmost of the conventional signal anal-
ysis techniques. Moreover, the combination of WPD and
the Multiscale CNN can be observed in better baseline
model performance.

Figure 6: The confusion matrix

Figure 7: ROC curve

WPD enhances the input features in that it gives pre-
cise frequency details. On the other hand, the Multiscale
CNN operates these features at different scales, thus im-
proving its ability to learn complex patterns that enhance
the classification result. The experiments also show that
standard CNN is suboptimal as it does not reproduce the
results even when WPD is applied. This implies that the
multiscale framework of using different kernel sizes to ob-
tain features of various scales is essential. Generally, these
results demonstrate that WPD is beneficial in detecting MI
from ECG signals, so it is for Multiscale CNN.

6.2 Generalizable capabilities

The generalization capabilities of a model are critical in as-
sessing its robustness and applicability across various sub-
jects and datasets. This study used independent dataset
validation to determine the model’s predictive accuracy on
new cases not part of the training dataset. The indepen-
dent dataset used for validation differed from the one used
in the training process, and there was no intersection be-
tween these two datasets. To check this, validation was
conducted using the k-fold cross-validation method, where
the data set was split into five sets (k=5) such that subjects
were distributed across all the five data splits. It contributes
to mitigating inter-subject variability, a significant issue in
motor imagery tasks, as different patterns of ECG signals
can influence a model. The performance was almost steady
across the folds, which shows the ability of the model to
perform well for new subjects in the dataset.
However, exercising the model with a validation tech-

nique other than K-fold cross-validation would be more
meaningful, for instance, testing themodel on a new data set
not used in the training phase. A validation approach with
an independent test set would also test the model’s ability to
generalize to highly different conditions if the independent
dataset differs in signal quality, subject characteristics, or
data acquisition techniques. For instance, using an exter-
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Table 2: Comparison with traditional methods

Metric Accuracy Precision Recall F1-Score ROC-AUC Recall
SVM 0.85 0.83 0.86 0.84 0.88 0.88

Random Forest 0.87 0.84 0.88 0.86 0.9 0.9
Multiscale CNN 0.92 0.89 0.93 0.91 0.95 0.95

MCC 98.17 - - - - -

Figure 8: Comparison with traditional methods

nal set we obtain from a different recording protocol would
help determine how much the proposed model hampers or
inspires adaptability for different data characteristics. If
loss occurs in these cases, it may show the aspects in which
the model has to be optimized to be generalized better.
To strengthen the evaluation, it is recommended to ex-

pand the main parameters, including accuracy, precision,
and relative, especially in cases of imbalance in collection.
It should be noted that using values such as specificity or
MCC will give a better picture of the effectiveness of the
examined model. Although MCC was not used in the cur-
rent study, it is a valuable metric considering true posi-
tives, false positives, and false negatives, thus offering in-
sight into the model’s performance in imbalanced condi-
tions. Future work could incorporate these additional met-
rics and further investigate techniques such as domain adap-
tation to enhance the model’s applicability across different
data sources.

6.3 Directions for future work

While the proposed methodology has made considerable
strides in motor imagery detection research, there are sev-
eral avenues of inquiry forward that would further enhance

and generalize these findings:

6.3.1 Exploration of alternative wavelet functions:

The Daubechies 4 dB4 wavelet was suitable for this work;
some studies on other wavelet functions and their impact on
the features extracted would addmore value. Other wavelet
functions capture unique characteristics in the signal that
could lead to further improvements in classification accu-
racy.

6.3.2 Multi-modal data fusion:

Such ECG signals can be combined with other physiologi-
cal signals, such as EEG and EMG, further to improve the
robustness and accuracy of motor imagery detection [17].
Multi-modal fusion methods combine complementary in-
formation from different sources to describe a motor imag-
inary event completely.

6.3.3 Advanced deep learning architectures:

Research about advanced deep learning architectures based
on RNN and attention mechanisms can achieve even better
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performance for motor imagery detection [18]. These ar-
chitectures have confounders of temporal dependencies and
contextual information that could improve the detection of
the subtle pattern of ECG signals.

6.3.4 Real-time implementation:

Based on the proposed methodology, designing real-time
systems for motor imagery detection must move the work
toward a practical application. Implementing the model
in time-real environmental systems and testing its perfor-
mance under dynamic conditions becomes crucial for de-
ploying the technology in neuroprosthetic devices and BCI
systems.

6.3.5 Large-scale validation:

Further large-scale validation is required to generalize the
findings and check the robustness of the proposed approach
with datasets and subjects under study. The model will be
tested experimentally across different populations, tasks,
and recording conditions to estimate its reliability and scal-
ability.

6.3.6 Transfer learning and domain adaptation:

If the model is adapted to different domains and tasks us-
ing transfer learning, it can be flexible. Domain adaptation
methods may alter the model’s capability towards gener-
alizing new data, at least with its reusability on minimal
retraining.

6.3.7 User-centric design:

Provisions for user feedback in the motor imagery detection
system and the development of user-centric interfaces will
likely improve its usability and acceptance [19]. Knowl-
edge of the desires and preferences of the end-user, such as
a person with a motor impairment, may guide the develop-
ment of more intuitive and effective BCI systems.

6.3.8 Ethical considerations and data privacy:

Ethical considerations and data privacy are paramount in
collecting, processing, and using physiological signals.
Frameworks on ethical data handling and compliance with
privacy regulations will be essential to ensure the respon-
sible deployment of technologies for motor imagery detec-
tion [20].

7 Conclusion
In conclusion, the ablation study confirms that Wavelet
Packet Decomposition and Multiscale CNN are integral
components of the proposed method. WPD provides a
rich, multi-scale representation of the ECG signals, which,
when processed by a Multiscale CNN, leads to superior

motor imagery classification performance. Removing ei-
ther component significantly declines model accuracy, il-
lustrating their combined importance in the overall frame-
work. This research presents a new motor imagery de-
tection scheme from ECG signals using Wavelet Packet
Decomposition and Multiscale Convolutional Neural Net-
works. The methodology indeed enhances the classifica-
tion accuracy to a large extent; hence, it needs no explicit
mention. The results also indicate that an ECG signal is fea-
sible in motor imagery detection as a noninvasive and eas-
ily accessed technique for developing neuroprosthetic de-
vices and BCI systems. These contributions help support
further studies in this area of research, which has enormous
room for further improvement and exploration. On the way
ahead, addressing the suggested directions for future work
will continuously advance the field and, eventually, achieve
more effective and dependable technologies related to mo-
tor imagery detection.
This study’s methodology will be open-sourced to en-

sure reproducibility for other research groups to extend and
continue their collaboration in biomedical signal process-
ing and brain-computer interface. In the future, with fur-
ther research in this area, the full potential of MI detection
using the ECG signal can be achieved to benefit people suf-
fering from motor impairments and progress in neuropros-
thetic/BCI capabilities.
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