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The accuracy and stability of real-time target detection in computer vision during basketball games 

has always been a challenge. Against this background, this study first examines the shortcomings of 

computer vision systems for target tracking and detection. On this basis, it also introduces the faster 

region convolutional neural network algorithm to optimize target detection. At the same time, to 

further improve the target tracking capability of the model, the study incorporates the improved 

pyramid optical flow algorithm and refines it by applying Kalman filtering. Finally, a breakthrough 

target detection and tracking model is proposed by integrating the optical flow algorithm and the 

faster region convolutional neural network. The experimental results indicated that among 3000 actual 

dataset samples, the newly proposed model in the study demonstrated relatively outstanding object 

tracking and positioning effects, with the error between the true trajectory and the tracking trajectory 

being less than 3%. Furthermore, the model proposed in the study demonstrated the highest scores in 

the testing of three indicators: object location accuracy, average of precision and recall, and object 

tracking accuracy. The model achieved an object location accuracy of 93.57% and an object tracking 

accuracy of 91.57%, with the highest average of precision and recall reaching 95.02%. In conclusion, 

the novel target detection and tracking model proposed in the study demonstrates the capacity to 

markedly enhance the detection and recognition performance of the existing target detection and 

tracking model. Furthermore, it offers substantial support for the advancement of optimization 

methods for evaluating basketball games. 

Povzetek: Predlagana metoda združuje algoritma Faster-RCNN in Lucas-Kanade (L-K) za 

optimizacijo sodniške presoje v košarki. Model omogoča izboljšano zaznavanje in sledenje v realnem 

času ter podporo pravičnosti in analizi tekem.

1 Introduction 

The interaction between computer vision (CV) 

technology and sports is becoming more and more 

intimate due to the rapid development of this field. 

Among them, basketball game is popular among the 

public for its frequent offensive and defensive contents. 

Therefore, the establishment of an efficient optimization 

method of basketball game judging has profound 

practical significance for the realization of scientific 

training methods and game fairness [1]. In basketball, 

game judging optimization methods generally need to 

satisfy both real-time recognition and real-time tracking 

of basketballs for decision making and judging. However, 

this involves complex CV and image processing (IP) 

problems, including target detection (TD), real-time 

requirements, and environment adaptability. Currently, 

TD algorithms such as you only look once (YOLO) 

algorithm and faster region convolutional neural 

networks (Faster-RCNN) algorithm have been widely 

used in the field of sports [2]. Based on the enhanced 

YOLO v5, Liu R et al. presented a target detecting 

system for basketball robots. The target identification 

approach that the study team presented reduced the 

number of floating-point operations by 48.13% at 1 

billion times per second, according to the testing results 

[3]. Fu X B et al. analyzed the feasibility of convolutional 

neural networks (CNNs) in real basketball sports 

scenarios. The study combined CNN with YOLO neural 

network to propose a camera-based basketball score 

detection method. The experimental results indicated that 

the method had good TD ability and has been used in 

several basketball courts in Beijing with good application 

results [4]. According to L Liu et al., technology limited 

the ability of traditional motion target recognition, 

making it impossible to obtain the desired outcomes 

while analyzing complex motion. Therefore, the research 

team combined Faster-RCNN and sports big data to 

propose a motion image target recognition detection 

system. The experimental results demonstrated that the 

TD system for difficult basketball movements proposed 

by the research team had a certain degree of effectiveness 
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and robustness, and the detection accuracy was high [5]. 

However, in basketball, players often undergo 

drastic changes in their motion postures during the 

scrambling process, resulting in collisions as well as 

occlusions, so pure TD algorithms cannot achieve 

effective tracking of image targets [6]. A technique called 

Lucas-Kanada (L-K) can track target motion information 

based on image brightness while avoiding the impact of 

the surrounding environment on target tracking (TT). It 

has been explored to varying degrees by many 

researchers [7]. Based on L-K, Xin C et al. created a 

markerless measuring technique. Based on the testing 

results, it was possible to measure the target motion 

effectively and correctly without spraying high-contrast 

markers or speckles on the surface of the reinforced 

concrete structure. It could quickly diagnose the 

reinforced concrete structures affected by earthquakes [8]. 

To address the shortcomings of radiation exposure of 

healthy tissues around the patient's tumor due to 

breathing motion and delays in the linear gas pedal 

system, Pohl M et al. successfully tracked the initial 3D 

image of the patient's tumor and the predicted 3D tumor 

image in real time using L-K with recurrent neural 

networks (RNNs). Experimental results indicated that the 

maximum prediction error of the method was only 1.51 

mm and the average cross-correlation between the 

original and predicted images was as high as 0.955 [9]. In 

their analysis of neurological illnesses resulting from 

reduced visual perception in adults, Jaiseeli C et al. 

combined the L-K approach with the effective 

subsampling optokinetic nystagmus (OKN) optical flow 

(OF) method. Experimental outcomes indicated that the 

OKN gain in most cases was equivalent to 1/4 of the 

subsampled image and was computationally efficient [10]. 

The current microparticle tracking velocimetry method 

has the disadvantage of being computationally expensive 

or requiring a large amount of instrumentation when 

recording video clips of microfluidic flow. Devasagayam 

J et al. used the L-K OF feature tracking technique to 

create a microparticle tracking velocimetry application in 

order to solve this issue. The program was shown to be 

very dependable and computationally efficient for 

pressure driving and end of file (EOF) in microfluidic 

devices based on experimental data [11]. In light of the 

aforementioned pertinent studies, Table 1 provides a 

comprehensive overview of the research theme, principal 

index methods, and limitations of the relevant studies. 

 
Table 1: Summary of relevant information of relevant studies. 

Author Research theme Main index Insufficient Method improvement 

Liu R et al. [3] 

Improved YOLO v5 

Basketball Robot 

Target Detection 

Algorithm 

Increased inference speed, 

reducing the number of 

floating-point operations 

per second by 48.13% 

Performance is limited 

in small object 

detection and complex 

backgrounds 

Introduced Faster-RCNN and 

multi-scale feature extraction 

to enhance the accuracy of 

small target detection 

Fu X B et al. 

[4] 

CNN-YOLO 

basketball scoring 

detection method 

Good target detection 

capability, already applied 

in multiple basketball 

courts 

There is a higher rate 

of false detections for 

targets moving at high 

speeds 

Combined L-K optical flow 

algorithm with KF (Kalman 

Filter) to enhance the tracking 

effect of high-speed moving 

targets 

L Liu [5] 

Faster R-CNN neural 

network and motion 

big data detection 

system 

Demonstrates excellent 

performance in detecting 

high-difficulty 

movements, with a high 

detection accuracy 

Exhibits poor 

detection stability 

when dealing with 

occlusions and 

changes in lighting 

Improved robustness by 

introducing ECO (efficient 

convolutional operator) for 

efficient convolutional 

computations and triangular 

algorithms 

Xin C et al. [8] 

Markerless vibration 

measurement method 

based on the L-K 

optical flow 

algorithm 

Capable of efficient 

measurement under 

markerless conditions 

The edge tracking for 

high-speed moving 

targets is not smooth 

enough 

Improved to a pyramid L-K 

optical flow algorithm, and 

combined with a Kalman 

filter to enhance tracking 

effects 

Pohl M et al. 

[9] 
L-K-RNN 

Achieved real-time 

tracking of tumors with a 

prediction error of less 

than 1.51mm 

Sensitive to 

environmental lighting 

changes, leading to 

unstable tracking 

effects 

Combined the L-K optical 

flow algorithm with 

Faster-RCNN, using Kalman 

filtering to enhance the 

stability of optical flow 

tracking 

Jaiseeli C et al. 

[10] 

Subsampled OKN 

optical flow 

algorithm 

Improved computational 

efficiency, suitable for the 

detection of neurological 

diseases 

Limited recognition 

capability for complex 

movements 

Enhanced the recognition 

capability for complex 

movements by integrating the 

pyramid L-K optical flow 

algorithm 
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Devasagayam 

J et al. [11] 

Microparticle 

tracking velocimetry 

program (L-K optical 

flow algorithm). 

Demonstrates excellent 

performance in 

microfluidic systems, 

with high reliability and 

computational efficiency 

When dealing with 

high-speed moving 

targets, the 

computational 

complexity is high 

Improved L-K algorithm to a 

pyramid optical flow 

algorithm, reducing 

computational complexity 

and increasing processing 

speed. 

 

To summarize, existing TT and TD methods still 

face many challenges. Especially in coping with the loss 

problem induced by the high-speed motion of the target, 

and the situation where the target suffers from occlusion 

during the motion. Although various studies have tried to 

enhance TD and TT in images by integrating YOLO 

neural network and Faster-RCNN algorithm (FRCNNA), 

as well as adopting new algorithms such as L-K, there is 

still a significant gap between the current TT and TD 

results and the expectations of people in real-world 

application scenarios such as basketball games. Therefore, 

the study innovatively adopts the FRCNNA with higher 

robustness for training and detection. Moreover, the 

pyramid L-K is improved by utilizing Kalman filtering 

(KF). The improved pyramid L-K is integrated with the 

FRCNNA, and finally an optimization method for 

judging basketball games based on CV and IP is proposed. 

The study aims to improve the accuracy, fairness, and 

real-time performance of TT and action evaluation in 

basketball games. This research is divided into three parts. 

The first part describes how the Faster-RCNN TT 

algorithm with L-K is improved and how the optimal 

design model is built, respectively. The second part is the 

performance test of the new model. The last part 

summarizes the article. 

2 Methods and materials 

Aiming at the existing problems of TT and action judging 

in basketball games, the study first introduces the basic 

framework of FRCNNA. Moreover, by introducing 

multi-scale features, the basketball in each camera 

viewpoint is detected in two dimensions. In addition, the 

study also adopts the pyramid L-K as the basis of the 

framework from the perspective of basketball game 

action judging, and introduces the KF for further 

optimization. With these improvements, the study finally 

proposes a novel optimization method for basketball 

game judging based on CV and IP. 

 

2.1 Establishment of target detection 

algorithm based on Faster-RCNN 
The existing sports TD process is roughly sequenced as 

target feature extraction, target recognition, and target 

localization. Each link is interconnected and inseparable 

[12-13]. However, picture occlusion has always been a 

major challenge in the field of sports TD. Especially in 

basketball games, tracking targets often encounter 

temporary disappearance [14]. Therefore, how to 

effectively and reasonably recognize and detect the 

moving targets in the temporary disappearing state is the 

key point to overcome the occlusion problem during TT 

[15]. FRCNNA inherits the advantages of the 

first-generation regions with convolutional neural 

network (RCNN) features and the second generation 

based on Faster-RCNN, which has a powerful target 

recognition and TD capability [16-17]. Figure 1 depicts 

the FRCNNA structure. 

In Figure 1, the structure of the FRCNNA is 

composed of four main parts, namely the regional 

proposal network (RPN) layer, the convolutional layer, 

the classification and regression layer, and the region of 

interest pooling (ROI pooling) layer [18]. First, the 

convolutional layer performs feature extraction on the 

input motion image data to obtain the corresponding 

feature image data. Then, the RPN structure is utilized to 

generate candidate frames. Secondly, the ROI pooling 

layer solves the problem of inconsistent feature image 

sizes through the pyramid structure and utilizes the 

downsampling operation to change the different sized 

region proposals into the same sized output. Finally, the 

classification and regression layer transfer the adjusted 

feature maps to the fully-connected layer and obtains 

ROI 

pooling

Feature Map

3×3

1×1

1×1

18

36

Conv    Relu    Pooling

Softmax

Basketball 

sports images

Image resize

Downsampling

Resh

ape

Soft

max

Resh

ape

Prop

osal

 

Figure 1: Structure of the FRCNNA. 
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Figure 2: Flowchart of 2D inspection framework. 

 

the final prediction results through a series of 

fully-connected layer outputs. Equation (1) displays the 

formula for the convolution operation. 

 , ,

1 1

( )
n n

i i

x y x y

x y

g i f a W b
= =

 
=  + 

 
  (1) 

In Equation (1), ( )g i  is the convolution of the 

i th node of the output feature mapping matrix. ,x ya  and 

b  represent the pixel values and bias terms of the input 

image coordinates as ( , )x y , respectively. W  and f  

then represent the weights and Sigmoid activation 

function, respectively. The Sigmoid activation function is 

calculated as shown in Equation (2). 
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In Equation (2), e  represents the numerical value 

and x  represents the input of the fully connected layer. 

However, tracking balls in sporting events, such as 

basketball, soccer and table tennis, is a challenging task. 

Small-sized basketballs cannot be effectively 

distinguished from other small-sized objects such as 

sneakers, light reflection points, or spectators' heads with 

only a limited number of visible features due to their 

fewer surface features. In addition, the difficulty of 

accurate tracking will be further increased when the 

basketball is controlled by a player or obscured in motion 

[19-20]. Therefore, in order to solve such problems, the 

study introduces multi-scale features to improve the 

Faster-RCNN TD algorithm and performs 2D detection 

of basketballs. The flowchart of the 2D detection 

framework is shown in Figure 2. In Figure 2, the visual 

geometry group-16 (VGG 16) network in the 

Faster-RCNN TD algorithm is firstly divided into five 

layers. After layer-by-layer feature extraction, the output 

size of the last image layer is reduced to 1/16 of the 

original image size. Secondly, multiple features of 

different scales are then spliced and input into the RPN 

layer to obtain candidate features. Ultimately, the fully  

 

linked classification and regression layer outputs the 

findings. The feature value weight iw  is calculated as 

shown in Equation (3). 

 

i

j

d

i d

j R

e
w

e


=
  (3) 

In Equation (3), d  and R  represent feature maps 

and local regions, respectively. The eigenvalue weights 

ensure the transfer of important features. In the reverse 

transfer, the feature values in the region are predefined 

with a minimum gradient [21-22]. However, due to the 

effect of occlusion, there will still always be the condition 

of misdetection and missed detection. Efficient 

convolution operators (ECO) is an advanced convolution 

operation method, which can not only improve the 

efficiency of convolution operation, but also effectively 

deal with partial occlusion as well as short-time occlusion 

[23-24]. Therefore, the study introduces the ECO method 

to improve the Faster-RCNN TD algorithm. Furthermore, 

a TD algorithm based on Faster-RCNN, i.e., 

Faster-RCNN-ECO-TA, is proposed by fusing the 2D 

coordinates of basketball into 3D coordinates through 

triangle algorithm (TA). Figure 3 displays the TA 

schematic diagram. 

In Figure 3, the points in two different camera 

planes can be identified as one 3D spatial point. Among 

them, points 
'

1p  and 
'

2p  represent the 

counter-projection points of 12p  in different cameras, 

respectively. Their distances from the original points 2p  

and 1p  are referred to as the back-projection errors. The 

study takes the average of these two back-projection 

distances as the error of the 3D coordinate points 

obtained by the TA. The expression for calculating the 

3D coordinates of the basketball is shown in Equation 

(4). 

 
1 ,

1
( )ij ij

t t t

i j n

p p e
N


 

=   (4) 
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In Equation (4), tp  represents the 3D coordinate 

fusion result of the basketball at the t  moment. N  

represents the number of all camera-matched pairs with 

inverse projection error less than the threshold  . 
ij

tp  

and 
ij

te  represent the 3D coordinates and the inverse 

projection error calculated by TA, respectively. The 

probability maximization 
^

m  expression is shown in 

Equation (5). 

 
^

1

( )arg max ( , )t t t t t

i i i j N im p X x Y Y I+

= = =  (5) 

In Equation (5), 
t

iX  and 
t

ix  represent the 

presence or absence of a basketball player and are taken 

as 0 or 1. 
t

iY  and 
1

( )

t

j N iY +

  represent the appearance 

characteristics of the basketball player. The flow 

framework diagram of Faster-RCNN-ECO-TA TD 

algorithm is shown in Figure 4. 
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Figure 3: Schematic diagram of the TA. 
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Figure 4: Process framework diagram of Faster-RCNN-ECO-TA target detection algorithm. 

 

In Figure 4, the flow of the Faster-RCNN-ECO-TA 

TD algorithm proposed by the study is mainly divided 

into four phases, that is, the basketball 2D detection phase, 

the basketball 2D tracking phase, the basketball 3D 

coordinate fusion phase and the basketball 3D trajectory 

smoothing phase. The study firstly detects the basketball 

in 2D based on the Faster-RCNN TD algorithm. Then, 

ECO efficient convolutional operation is used to track the 

basketball in different camera views in 2D. Next, TA is 

employed to effectively fuse multiple 2D coordinates into 

one 3D coordinate. Finally, the optimal linear state 

estimation method is utilized to process to obtain a 

smooth 3D trajectory of the basketball. 

 

2.2 Modeling of target detection and tracking 

based on L-K and Faster-RCNN 
Although the Faster-RCNN-ECO-TA TD algorithm can 

provide accurate information about the initial position of 

the target for player TT operations, it is not yet able to 

effectively solve the excessive interference due to 

changes in ambient lighting. L-K can calculate an object's 

motion information between adjacent frames, mitigating 

the impact of changes in ambient lighting [25-26]. The 

expression for calculating the conditional constraint 
Egw  of L-K is shown in Equation (6). 

 

 
E dx E dy

Egw
x dt y dt

 
 = +

 
 (6) 

 

In Equation (6), 
dx

dt
 and 

dy

dt
 denote the moving 

components of the OF in the x  horizontal and y  

vertical directions, respectively. E  represents the 

corresponding point brightness. However, when L-K 

tracks a fast-moving target, the OF at the edge of the 

object tends to be unsmooth, which leads to 
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unsatisfactory TT results [27-28]. To address this 

situation, the pyramid OF algorithm is introduced into the 

L-K sparse OF algorithm to reduce the computational 

complexity. The structure of the L-K pyramid optical 

flow algorithm (L-K-POFA) is shown in Figure 5. 

Downsampling
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Figure 5: Structure of the L-K-POFA. 
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Figure 6: KF-L-K-POFA flow structure. 

 

In Figure 5, the L-K-POFA employs continuous 

downsampling of images to form a collection of images 

from all the image data and processes the images using a 

multi-resolution approach [29]. It promotes the highest 

image resolution at the bottom and the lowest resolution 

at the top. In this way, the fast-moving targets can be 

reduced with the resolution to finally meet the calculation 

range, which makes the detection and TT effect of fast 

and displaced targets to be improved substantially. The 

expression for calculating the OF ( )I x  of a pixel point 

is shown in Equation (7). 

 ( )( ) / 2L LI x I x u= +  (7) 

In Equation (7), L  and u  represent the 

neighborhood and mobile components, respectively. The 

horizontal and vertical bias formulas are shown in 

Equation (8). 

 
 
 

( 1, ) ( 1, ) / 2

( , 1) ( , 1) / 2

x

y

I I x y I x y

I I x y I x y

 = − − + +


= − − + +
 (8) 

In Equation (8), yI  and xI  represent the OF 

deflections in the vertical and horizontal directions, 

respectively. The spatial gradient matrix G  is calculated 

as shown in Equation (9). 
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=  
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In Equation (9), xW  and yW  represent the weight 

functions of each pixel in the window in the horizontal 

and vertical neighborhoods, respectively. The error vector 

*b  for two consecutive image frames is calculated as 

shown in Equation (10). 

 *
yx

x y

xWW

x W y W

y

I I

b

yI I




=− =−

 
 

=  
 
 

   (10) 

In Equation (10),   represents the image gray 

value, and the rest of the algebraic meanings are the same 

as before. In order to meet the real-time requirements 

when tracking moving targets, the study also introduces 

the KF to improve the L-K-POFA. The flow structure of 

the improved KF-L-K-POFA is shown in Figure 6. 

First, the basketball game image in Figure 6 

determines the target player's starting position. All the 

images are formed into an image collection by the 

mechanism that the 
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Figure 7: L-K and Faster-RCNN based model structure flow. 

 

image pyramid can continuously downsample the original 

image. Secondly, the target image tracking is performed 

using L-K-POFA, and the KF filter enhances the OF 

tracking effect. Finally, the TT results are output. The 

state equation kx  and observation equation kZ  

computational expressions of KF are shown in Equation 

(11). 

 

 
1

1

k k k k

k k k k

x A x

Z H x v

−

−

= +


= +
 (11) 

 

In Equation (11), kA  and kH  represent the state 

transfer matrix and observation matrix, respectively. k  

and kv  represent the Gaussian noise covariance. The 

study synthesizes the improvements of the above modules 

and finally proposes a novel target detection and tracking 

model (TDTM) based on L-K and Faster-RCNN, aiming 

to provide new insights in the area of action evaluation in 

the field of basketball games. The flow structure of this 

TDTM is shown in Figure 7. 

In Figure 7, the proposed novel TDTM based on 

L-K and Faster-RCNN is mainly composed of four 

phases, i.e., video image preprocessing phase, labeling 

data and building dataset phase, TD phase and TT phase. 

Among them, the video image preprocessing stage is 

divided into video shot segmentation and video key frame 

extraction. First of all, the study adopts a clustering-based 

video lens segmentation algorithm to judge the boundary 

of the lens through the differences between consecutive 

frame images for segmentation. Furthermore, the study 

adopts the content-based key frame extraction method to 

reflect a number of key frames that reflect the main 

content of the current shot. Then, the acquired images are 

size normalized to build the dataset. Next, TD using 

Faster-RCNN-ECO-TA is performed to determine the 

initial position of the target player. Finally, real-time TT 

is experimented by the KF-L-K-POFA. A common 

evaluation metric for TT algorithms is multiple object 

tracking accuracy (MOTA) [30]. Equation (12) displays 

the formula for calculating MOTA. 

 

1 2 3( )

1
t t t

t

t

t

c fn c fp c idsw

MOTA
g

+ +

= −



(12) 

 

In Equation (12), 1c , 2c  and 3c  represent 

constants. tg  represents the true value. tfn , tfp  and 

tidsw  represent the missed detection, the false detection 

and the identity exchange, respectively. 

3 Results 

To validate the performance of the proposed 

Faster-RCNN-ECO-TA TD algorithm and the TDTM 

based on L-K and Faster-RCNN, the study firstly builds a 

suitable experimental environment and preprocesses the 

test data. A portion of the data is utilized to train the 

model. Secondly, the performance and simulation 

experiments are conducted to test the 

Faster-RCNN-ECO-TA TD algorithm and the TDTM 

based on L-K and Faster-RCNN, respectively. 

 

3.1 Performance test of 

Faster-RCNN-ECO-TA target detection 

algorithm 
The study utilizes the Ubuntu 16.04 LTS operating 

system, equipped with an Intel Core i7 CPU, NVIDIA 

GeForce GPU, 64GB of RAM, and programmed with 

TensorFlow-GPU. The iteration is set to 300, the IoU 

(Intersection over Union) threshold to 0.5, the learning 

rate to 0.001, and the batch size to 16. The Chinese 

basketball match live video image dataset and the NTU 

RGB+D60 dataset are selected as the sources of test data. 

The Chinese basketball match live video image dataset 

contains a total of 3000 images. The NTU RGB+D60 

dataset, introduced by Nanyang Technological University 

in Singapore, is a multimodal behavior recognition 

collection that includes 60 types of action categories. It is 

particularly suitable for the analysis of human skeletal 

motion, covering daily activities and sports actions 

including basketball. The research divides these datasets 

into training and testing sets in an 8:2 ratio. Furthermore, 

the test set is evenly divided into three categories: Test 
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Set 1 is for images under normal lighting and clarity 

conditions. Test Set 2 is for increased image blurriness 

with constant lighting. Test Set 3 is for changed lighting 

intensity with constant image blurriness, including strong 

and weak light conditions. To verify the impact of each 

module in the Faster R-CNN-ECO-TA object detection 

algorithm on the overall performance, the study first 

conducted an ablation test using the object detection 

accuracy as the metric. The results are shown in Figure 8. 

Figure 8(a) shows the detection accuracy curve of 

each module in the Faster-RCNN-ECO-TA TD algorithm 

in the TrS. Figure 8(b) shows the detection accuracy 

curve of each module in the Faster-RCNN-ECO-TA TD 

algorithm in the TeS. The FRCNNA alone performs 

poorly, with the highest detection accuracy close to 92%. 

The inclusion of the TA 3D coordinate fusion module and 

the ECO efficient convolution module greatly enhances 

the algorithm's overall performance. Compared to 

Faster-RCNN or ECO-TA, the performance is improved 

by about 6%. The research proposed 

Faster-RCNN-ECO-TA has the best overall performance. 

Its best performance in the TrS is 98.28% and in the TeS 

is 98.51%. In summary, ECO has demonstrated excellent 

performance in handling partial and temporary occlusions 

encountered in basketball motion, which has significantly 

improved the model's TD capabilities. In addition, TA's 

integration and upgrade of the basketball's 

two-dimensional coordinate data to three-dimensional 

coordinates further improved the model's accuracy and 

reliability. Each component of the modules proposed by 

the research had a positive impact on the final model, 

effectively improving the accuracy of the recognition 

model. This comprehensive optimization approach has 

proven to be effective in improving model performance, 

especially in terms of target recognition accuracy. In 

addition, in order to verify the performance difference 

between the research-proposed Faster-RCNN-ECO-TA 

TD algorithm and the more popular algorithms of the 

same type, the study introduces adaptive boosting 

(Adaboost), YOLO TD algorithm and RCNN TD 

algorithm with the average detection time as a reference 

index. The comparison results of each algorithm in the 

TrS and TeS are shown in Figure 9. 
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Figure 8: The performance impact of different modules on the model. 
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Figure 9: Detection time comparison results of different target detection algorithms. 

 

Figure 9(a) shows the detection time comparison 

results of different TD algorithms in the TrS. Figure 9(b) 

shows the detection time comparison outcomes of 

different TD algorithms in the TeS. The proposed 

Faster-RCNN-ECO-TA TD algorithm has the least 

detection time. Its average running time is 5.6s, 7.1s, 

10.2s, and 11.8s for 1000, 2000, 3000 and 4000 iterations, 

respectively. Since the TeS has the fewest number of 

parameters, its corresponding running time is the shortest. 

However, the Adaboost TD algorithm takes the longest 

time to run, which is due to the fact that the Adaboost 

algorithm is susceptible to different degrees of 

interference from the complex environment during the 

detection process, which leads to a longer inference time. 

It can be concluded that the proposed 

Faster-RCNN-ECO-TA TD algorithm combines good 

operational efficiency with 
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Figure 10: Error performance of different algorithms. 

 
Table 2: Comparison test results of multiple indicators. 

Data set Algorithm P/% R/% F1/% Accuracy/% 

Test set 1 

Adaboost 72.58 70.05 67.98 63.87 

YOLO 74.67 74.27 75.28 76.75 

RCNN 79.09 77.27 76.87 76.41 

Faster-RCNN-ECO-TA 95.68 93.67 95.16 92.98 

Test set 2 

Adaboost 68.15 67.85 67.66 60.37 

YOLO 70.26 69.78 70.11 68.24 

RCNN 73.25 73.06 73.58 72.65 

Faster-RCNN-ECO-TA 92.65 91.09 92.88 92.03 

Test set 3 

Adaboost 65.58 64.37 65.87 58.68 

YOLO 66.89 65.26 66.32 60.07 

RCNN 69.78 70.01 69.54 66.37 

Faster-RCNN-ECO-TA 90.66 90.27 90.23 91.27 
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detection accuracy. To explore the error performance of 

different algorithms, the study also tested the four 

algorithms in terms of mean squared error (MSE) and 

mean absolute error (MAE), respectively. The test results 

are shown in Figure 10. 

Figure 10(a) shows the variation curves of MSE 

values for four TD algorithms with different samples. The 

MSE values of the four algorithms change with the 

increase of the samples. Among them, the proposed 

Faster-RCNN-ECO-TA TD algorithm has the smallest 

range of variation in MSE value, floating between 0.5 and 

0.9. The other three commonly used TD algorithms all 

have larger error variations. Figure 10(b) shows the 

variation curves of MAE values of the four TD 

algorithms with different samples. The MAE values of 

the four algorithms varied as the samples increased. 

Among them, the MAE value fluctuation of the 

Faster-RCNN-ECO-TA TD algorithm proposed in the 

study is also the smallest, fluctuating between 0.4 and 0.8. 

This indicates that the improved Faster-RCNN can have a 

more accurate measurement with less error impact. To 

quantify the performance comparison results of each TD 

algorithm more accurately, the study continues to test the 

above TD algorithms using precision, recall, F1-score, 

and accuracy as reference indexes. Table 2 displays the 

test results.In Table 2, both increasing blurring and 

stronger and weaker light reduce the precision of the TD 

algorithm. However, in the three datasets with different 

light intensities and blurring levels, the performance of 

the Faster-RCNN-ECO-TA TD algorithm proposed in the 

study performs optimally. Its P-value, R-value, and 

F1-score under normal illumination are 95.58%, 93.67% 

and 95.16%, respectively. Even when the blurring level 

increases and the light becomes stronger and weaker, its 

P-value, R-value, and F1-score decrease by less than 5%. 

Compared with the Adaboost TD algorithm, the P-value, 

R-value and F1-score of the proposed 

Faster-RCNN-ECO-TA TD algorithm under normal 

lighting conditions are improved by 23.10%, 23.62%, and 

27.18%, respectively. The above data indicate that the 

fast movement of players during basketball games can 

cause the performance of the TD algorithm to be affected 

to different degrees. Nonetheless, the 

Faster-RCNN-ECO-TA TD algorithm proposed in the 

study is almost unaffected and adapted to target 

localization recognition during basketball games. 

 

3.2 Simulation test of target detection and 

tracking model based on L-K and 

Faster-RCNN 
From the above test results, the Faster-RCNN-ECO-TA 

TD algorithm performs well in target localization and 

detection. However, the data is limited to image data 

collected from video, and the persuasiveness and 

feasibility of the results for dynamic video data still need 

to be further strengthened. Moreover, the performance of 

the proposed TDTM based on L-K and Faster-RCNN has 

not yet been verified. Therefore, the study attempts to test 

this using a homemade video dataset. The action samples 

in the homemade dataset include eight common 

basketball action patterns in basketball games: crotch 

dribbling, layup with the ball, hitting foul, pulling foul, 

resting the ball into the basket, dribbling behind the back 

(switching hands), and rebounding outside the basket 

with an airball and a long pass. The number of videos for 

each basketball maneuver is 180, totaling 2000 video 

sequences. Each video sequence has a frame rate of 25fps, 

a resolution of 160x120, and an average length of 25 

seconds. In accordance with the 6:4 ratio, it is further 

separated into TrS and TeS. Moreover, the off-threshold 

is set to 200cm, and the study first tests the model with 

tracking precision as a metric. Figure 11 presents the test 

findings. 
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Figure 11: 3D plot of the trajectory of the player's centroid position over time. 

 

over time in a basketball game. Figure 11(b) shows the 3D plot of the trajectory of the center point position of 



Optimized Method for Basketball Game Judging by Integrating Faster… Informatica 48 (2024) 17–32 27 

player 2 over time in a basketball game. The real and 

tracked trajectories of the proposed L-K and 

Faster-RCNN based TDTM have a high degree of 

overlap. The confrontation between the two players also 

does not affect the tracking and localization effects of the 

model, and the error between the true trajectory and the 

tracking trajectory is less than 3%. It shows that the 

proposed model of the study is robust to the phenomena 

of omission and misdetection that often occur in TD. The 

L-K-POFA mitigates tracking drift and achieves stable 

TT during basketball games. In addition, the study also 

introduces the same types of more popular TT models for 

comparison, such as visual object tracking (VOT), 

multiple object tracking (MOT), and multi-camera 

multi-object tracking (MCMOT). The classification effect 

of different basketball actions is tested with classification 

accuracy and classification efficiency as the reference 

index. The classification effect is shown in Figure 12. 

Figure 12(a) and 12(b) shows the classification 

performance of different models on basketball 

movements in the TrS and TeS, respectively. Both in the 

TrS and TeS, the TDTM based on L-K and Faster-RCNN 

proposed by the research performs the best, followed by 

MCMOT and MOT models, and VOT model performs 

the worst. The 
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Figure 12: Effectiveness of different models for classification of basketball movements. 
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Table 3: Comparison test results of multiple indicators. 

Data set Method MOTP/% IDF1/% MOTA/% 

Training set 

VOT 70.83 74.43 73.35 

MOT 75.64 75.18 76.98 

MCMOT 78.85 76.39 76.28 

Research model 91.27 93.58 89.76 

Test set 

VOT 73.73 76.66 76.87 

MOT 78.86 78.67 78.58 

MCMOT 80.09 80.11 79.99 

Research model 93.57 95.02 91.57 

 

classification accuracy of the TDTM, MCMOT model, 

MOT model, and VOT model based on L-K and 

Faster-RCNN in the TrS are 74.3%, 85.8%, 88.7%, and 

93.6%, respectively. The classification times are 22s, 21s, 

13s, and 7s, respectively. The above data indicates that 

the proposed method has certain effectiveness and 

performs better in models of the same type. The study 

also conducts tests using IDF1, which harmonizes the 

mean of accuracy and recall, as well as multiple object 

tracking precision (MOTP) and MOTA, which measure 

the accuracy of target location. Table 3 displays the test 

results. 

In Table 3, among the three indicators of MOTP, IDF1, 

and MOTA, the proposed object detection and tracking 

model based on L-K and Faster-RCNN has the highest 

overall performance score. The TrS and TeS also shows 

the best recognition performance of the proposed model. 

The highest MOTP value of the object detection and 

tracking model based on L-K and Faster-RCNN is 

93.57%. The highest IDF1 value is 95.02%, and the 

highest MOTA value is 91.57%. In summary, the 

proposed object detection and tracking model based on 

L-K and Faster-RCNN has certain feasibility and 

effectiveness in target recognition in basketball games, 

which can efficiently perform object detection and 

improve the efficiency of object detection. The research 

ultimately uses recognition accuracy, effectiveness, and 

fluency as reference indicators. Moreover, 24 evaluation 

results from 4 judges, including basketball experts, 

basketball coaches, and basketball players, are collected 

through expert scoring method. The average scores of 

each indicator are shown in Figure 13. 

Figures 13(a) and 13(b) show the scoring results of 

the MCMOT and the model proposed in the research. The 

recognition accuracy of the MCMOT model is relatively 

high, but its recognition fluency score is low. This rating 

indicates that the model still faces challenges in terms of 

computational coherence and video frame processing 

when recognizing video actions. The three indicators of 

the model proposed in the research have relatively 

average scores. Among them, the highest score for 

recognition accuracy is 95 points, the highest score for 

effectiveness is 91 points, and the highest score for 

fluency is 90 points. In summary, the public has a higher 

preference for the model proposed in the research, with 

better applicability and model effectiveness. 
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Figure 13: Average rating results for each indicator. 
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4 Discussion 

The fairness and entertainment value of basketball games 

largely depend on the accuracy of the referees. Therefore, 

to achieve automatic tracking and detection of key events 

during basketball games, the research proposed a faster 

R-CNN-ECO-TA object detection algorithm using 

multi-scale features, efficient convolutional operators, 

and triangular algorithms. The Faster-R-CNN algorithm's 

superior detection speed and accuracy, in conjunction 

with the capacity of efficient convolutional operators to 

augment detection efficiency, have resulted in the 

proposed algorithm sustaining P-values, R-values, and F1 

scores above 90% even in the presence of increased blur 

and varying light intensities. The research proposed by 

Martin P E et al. also confirmed the powerful capability 

of the Faster-R-CNN algorithm in detecting small target 

ball sports, with an accuracy rate as high as 92.6% [31]. 

However, a single object detection algorithm still has 

limitations when dealing with rapid motion and occlusion 

issues in basketball games [32]. To address this issue, the 

research introduced a pyramid L-K OF algorithm 

integrated with a KF filter on the basis of the Faster 

R-CNN-ECO-TA object detection algorithm. This 

resulted in the proposal of a TD and tracking model based 

on L-K and Faster-R-CNN. By combining the player 

position information detected by Faster-R-CNN and the 

OF tracking of the L-K algorithm, the model could more 

accurately capture the motion state of players on the field, 

maintaining a high tracking accuracy even under 

conditions of rapid motion or partial occlusion. Thus, the 

research model achieved a 93.6% classification accuracy, 

with an error of less than 3% between the actual 

trajectory and the tracking trajectory. The research 

proposed by Fang N et al. also showed that the L-K 

algorithm achieved an action classification accuracy of 

88.9%, further verifying the advantage of the L-K OF 

algorithm in tracking effects. It can be concluded that the 

method proposed by the research not only provides a 

novel technical approach for the assessment of basketball 

games but also serves as a reference for other fields that 

necessitate the tracking of targets in a rapid and precise 

manner. With the continuous development and 

improvement of technology, automated sports game 

judging methods will play a greater role in the future. 

5 Conclusion 

With the popularization and popularity of basketball 

games, the demand for automated target action 

recognition is becoming increasingly urgent. However, 

due to the complexity and diversity of actions during 

basketball games, traditional action recognition 

algorithms face significant challenges in video evaluation 

of basketball games. In view of this, a design framework 

for object detection algorithm based on FRCNNA was 

studied. On this basis, a pyramid L-K fused with KF filter 

was introduced for precision adjustment and object 

tracking. Finally, a novel object detection and tracking 

model based on L-K and Faster-RCNN was proposed. 

The outcomes indicated that compared with similar object 

detection algorithms, the Faster-RCNN-ECO-TA object 

detection algorithm proposed in the research had the least 

detection time, with an average running time of only 5.6s 

at 1000 iterations. The MAE and MSE values of this 

algorithm also achieved the smallest range of variation, 

fluctuating only between 0.4-0.9. Even with an increase 

in blur level and a decrease in light intensity, the P-value, 

R-value, and F1 score of the Faster-RCNN-ECO-TA 

object detection algorithm did not exceed 5%. The 

simulation test outcomes revealed that the TDTM 

proposed in the research based on L-K and Faster-RCNN 

had a high degree of coincidence between the real 

trajectory and the tracking trajectory. The error between 

the real trajectory and the tracked trajectory was less than 

3%, and the accuracy of identifying and classifying 

different basketball movements reached 93.6%. In 

addition, after unanimous evaluation by professional 

basketball judges, it was found that the recognition 

accuracy, effectiveness, and fluency scores of the model 

proposed in the research were generally high, with the 

highest scores reaching 95 points, 91 points, and 90 

points, respectively. The results of this study are 

anticipated to propel the advancement of TD technology 

in basketball games to a new frontier, offering novel 

avenues for enhancing the precision of TT and action 

assessment in basketball games. However, this study 

employs a relatively limited set of scenarios. In the future, 

an expansion to more diverse and complex scenarios will 

be undertaken with the aim of further enhancing the 

universality and comprehensiveness of object detection 

and tracking. 
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