
https://doi.org/10.31449/inf.v48i17.6716 Informatica 48 (2024) 209–222 209

Enhanced Autonomous Mobile Robot Navigation Using a Hybrid

BFO/PSO Algorithm for Dynamic Obstacle Avoidance

Amina Makhlouf*, Abdelmadjid Benmachiche, Ines Boutabia

LIMA Laboratory, Dept. of Computer Science, faculty of science and technology, House of Artificial Intelligence,

Chadli Bendjedid, University, El-Tarf, Algeria, PB 73, 36000

E-mail: makhlouf-amina@univ-eltarf.dz, benmachiche-abdelmadjid@univ-eltarf.dz, i.boutabia@univ-eltarf.dz
*Corresponding author

Keywords: particle swarm optimization, bacteria foraging optimization algorithm, mobile robot, obstacle avoidance,

ambulance path planning, and evolutionary robotics

Received: July 19, 2024

Determining path planning for mobile robots has received a lot of attention over the last three decades,

with the goal of identifying safe and effective paths between starting points and destinations. The

investigation of diverse navigation methodologies exhibits potential in expanding the range of uses for

autonomous mobile robots. This research introduces a novel navigation strategy by combining the

Particle Swarm Optimization (PSO) method with the Bacteria Foraging Optimization Algorithm (BFO).

Utilizing the benefits of PSO, this bio-inspired method is used to optimize paths for mobile robots, drawing

inspiration from the foraging behavior of bacteria, namely E. coli. The principal aim of this study is to

design routes that are practical and safe. The proposed model features a robot that emulates bacterial

foraging behavior to determine the most optimal path through environments densely populated with

obstacles, effectively linking a starting point to a specified destination. This strategy has been implemented

and rigorously evaluated across a variety of scenarios. Experimental results reveal that the hybrid BFO-

PSO algorithm achieves a success rate exceeding 90% in navigating dynamic environments. Furthermore,

the algorithm significantly outperforms traditional methods, offering approximately 50% less

computational speed, efficiency, and superior security metrics, confirming its effectiveness and potential

for real-world applications.

Povzetek: Študija uvaja hibridni BFO-PSO algoritem za avtonomno navigacijo mobilnih robotov, ki

preprečuje trke z dinamičnimi ovirami, izboljša varnost ter hitrost.

1 Introduction
As we step into the new era, the advancement of robotics

and computer technologies sets the stage for a heightened

dependence on autonomous machines across a wider

spectrum of tasks. Mobile robots, in particular, offer the

potential for executing diverse operations, especially in

environments where human presence is unsuitable, such

as nuclear plants, hazardous waste sites, and chemical

industries. They excel at handling repetitive tasks like

parts delivery within manufacturing plants, as well as

complex endeavors like space and underwater exploration.

In this domain, a crucial aspect is the independent

navigation capability of robots, especially in exploration

scenarios where they must traverse terrains that are only

partially understood at best. Achieving full autonomy in

navigation requires progress in multiple fields including

engineering, computer science, and applied mathematics.

In the past two decades, significant strides have been

made in addressing navigation and obstacle avoidance,

critical concerns in mobile robotics. Path planning [1], a

complex aspect of mobile robot navigation, entails finding

a collision-free route between two points within a given

environment, this involves determining a suitable path for

a robot, often by optimizing criteria such as minimizing

travel distance. For instance, during emergencies like

earthquakes or fires, planning ambulance movements

involves challenges like choosing the shortest route to

reach injured individuals, preventing collisions, and

avoiding road obstacles.

While various approaches have been proposed, recent

attention has shifted towards bacterial foraging

optimization (BFO), a swarm intelligence technique

inspired by the foraging behavior of E. coli colonies [2].

Although effective in addressing engineering and mobile

robotics challenges, BFO suffers from drawbacks such as

getting stuck in local minima and deviating from optimal

solutions, especially in the presence of obstacles [3].

To address these challenges, researchers have

explored different methods, including the use of heuristics

like Particle Swarm Optimization (PSO) [4] to avoid

collisions. PSO, known for its simplified structure and

ease of implementation [5], has been widely applied to

path planning due to its elegant mathematical analysis and

simplicity, on the other hand, BFO is recognized for its

straightforward and efficient search algorithm.

To leverage the strengths of both BFO and PSO while

mitigating their drawbacks, this study introduces a hybrid

method. By combining these two approaches, the

proposed method aims to optimize path planning while

ensuring secure navigation. The paper is structured as

follows: the introduction provides an overview in section

mailto:makhlouf-amina@univ-eltarf.dz
mailto:benmachiche-abdelmadjid@univ-eltarf.dz
mailto:i.boutabia@univ-eltarf.dz

210 Informatica 48 (2024) 209–222 A. Makhlouf et al.

1, followed by a discussion of previous related works in

section 2. Section 0 briefly outlines the theory of the two

algorithms used and presents the general architecture,

detailing each component to navigate securely using a

hybrid model for optimized path planning. Simulation

results are evaluated in section 4 and discussed in section

5, followed by conclusions and future work in the final

section 6.

2 Related works
The navigation problem of an autonomous mobile robot

has been widely investigated in past decades, there has

been an increasing interest in the conception and

development of an autonomous mobile robot using several

soft computing techniques. The goal of navigation is to

search for an optimal path from the beginning point to the

objective point with hindrance evasion skills. Essentially,

the mobile robot navigation has been finished by the

Deterministic algorithm and Nondeterministic

(Stochastic) algorithm. These days, the hybridization of

both algorithms is being utilized to solve the mobile robot

navigation problem.

Many methods have been developed for deterministic

navigation, i.e. Dijkstra algorithm [6], Visibility graph

[7], Grids and Cell decomposition method [8], in 1986,

Khatib introduced the Artificial Potential Field (APF)

approach to address mobile robot navigation. In this

method, the goal and obstacles act as charged surfaces,

generating a total potential that exerts an imaginary force

on the robot. This force attracts the robot towards the goal

while repelling it from obstacles. To avoid obstacles and

reach the target, the robot follows the negative gradient.

Borenstein et al [9]. addressed local minimum conditions

by considering the dynamic properties of robot navigation.

Authors in [10] developed a mechanism for velocity

control to navigate moving obstacles in real-time

environments. Authors in [11] introduced superior

potential and repulsive potential functions to avoid local

minima and achieve global optima. Researchers in [12]

tackled issues like oscillation and conflicts in mobile robot

navigation using the APF approach, presenting an

enhanced version to minimize these problems, especially

when the goal is close to an obstacle.

However, nondeterministic methods are better suited

for locating the best solutions for any kind of objective

function since they are not dependent on the mathematical

characteristics of a specific function. However, the

weaknesses of the first type are its dependence on the

gradient, local optima inefficient in large-scale search

space, and cannot to solve discrete functions.

Nature-inspired algorithms are a class of efficient

non-deterministic approaches that imitate the actions of

specific animals or insects (birds, ants, bees, flies, and

even germs!). These paradigms are currently in

widespread use across numerous technical domains. Some

of these algorithms are:

Genetic algorithm (GA) [13], The GA is a widely

employed optimization tool based on genetic principles

and natural selection, GA has found applications in

various scientific and technological domains, including

robot navigation. It is designed to address complex

optimization problems involving the minimization of a

function under specific constraints. Despite its random

nature, GA outperforms random local search by

leveraging historical information. Its application to mobile

robot navigation in static environments has been

demonstrated, with a focus on path planning around

polygonal obstacles. Extensions of GA have tackled

dynamic environments, including navigation around

moving obstacles. Hybrid approaches aim to enhance

robot path planning. Multi-robot path planning using GA

has been explored for collision avoidance in both static

and dynamic environments [14]. GA's versatility is

evident in its application to diverse scenarios, spanning 3D

path planning for underwater and aerial robots, 2D path

planning for humanoid robots, and defense equipment.

Artificial Neural Networks (ANN) [15], ANN

represent intelligent systems composed of interconnected

processing elements that convey information through

dynamic state responses to external inputs. These

networks consist of organized layers of interconnected

nodes, each featuring an activation function. ANN's

attributes, such as generalization ability, massive

parallelism, distributed representation, learning

capability, and fault tolerance, make it a valuable tool in

the domain of mobile robot navigation. In the context of

wheeled mobile robot navigation in a partially unknown

environment, Janglova [16] employed ANN-based

mechanisms for collision-free path generation. The first

mechanism identifies free space using sensory data, while

the second determines a safe trajectory by avoiding the

nearest obstacle. Researchers in [17] integrated ANN into

the fast Simultaneous Localization and Mapping

technique to address error accumulation issues in

odometry models and SLAM nonlinear function

linearization. This integration enhances mobile robot

navigation in unknown environments while ensuring

collision avoidance. Authors in [18] suggested a hybrid

strategy, merging Neural Networks and Fuzzy Logic for

multiple mobile robot navigation in disorderly conditions,

specifically analyzing its effectiveness in a static obstacle

architecture. The authors in [19] presented a self-learning

strategy for mobile robots based on ANN. ANN's

versatility extends to path planning for humanoid,

industrial, underwater, and aerial robots.

Fuzzy Logic (FL) [18], has become widely utilized in

diverse research and development domains due to its

effectiveness in dealing with high uncertainty,

complexity, and nonlinearity. It finds applications in

pattern recognition, automatic control, decision-making,

and data classification. FL significantly eases the task of

system designers and computers, proving valuable for

obtaining accurate information in complex scenarios. Its

application extends to the mobile robots' path planning,

particularly in unstructured static and dynamic

environments.

Researchers have developed fuzzy-based navigation

systems for omnidirectional mobile robots, introducing

automatic fuzzy rule generation for obstacle avoidance to

enhance navigation efficiency. FL has been integrated

with sensor-based navigation techniques to improve

Enhanced Autonomous Mobile Robot Navigation Using a Hybrid… Informatica 48 (2024) 209–222 211

incremental learning in new environments. Furthermore,

FL has been synergistically employed with various

algorithm-based navigation techniques. This integration

aims to achieve optimal environmental perception,

enabling robots to navigate challenging scenarios,

including dead-end situations. Abadi et al. [20] designed a

FL controller for wheeled mobile robots to track moving

objects, employing a hybrid approach with Particle Swarm

Optimization (PSO) for optimal parameter selection. Al-

Jarrah et al. [21] focused on path planning for multiple

mobile robot systems and active motion coordination,

utilizing a probabilistic fuzzy controller with Artificial

Neural Networks (ANN) [22]. The work in [23] has

enhanced multi-autonomous underwater robot formation

control by integrating event-triggered mechanisms and

model predictive control, alongside neural network

optimization. Their method effectively minimized errors

and resource usage, demonstrating efficient and accurate

obstacle avoidance. The authors in [24] have resolved the

trajectory-tracking problem of non-holonomic mobile

robots using Random Inertia Weight Particle Swarm

Optimization (RNW-PSO) based optimal Mamdani-type

fuzzy controller. The motion problem of the mobile robots

on uneven terrain has been addressed. The work in [25]

has developed the neuro-fuzzy controller for navigation of

a non-holonomic differential drive mobile robot.

Ant Colony Optimization (ACO) [26], stands out as a

swarm intelligence algorithm devised, drawing inspiration

from the foraging behavior of ants. Initially crafted for

addressing combinatorial optimization problems, ACO

has found diverse applications, including its utilization in

mobile robot navigation. In the realm of navigation for

multiple mobile robots within a static environment, the

authors in [27] introduced a collision avoidance strategy,

incorporating a specialized function to enhance selective

strategy and address challenges like dead corners. The

authors in [28] proposed an innovative RA-ACO-based

strategy for navigating humanoid robots through cluttered

spaces. In the context of dynamic environments, The

scientists in [29] applied ACO for mobile robot navigation

in unknown dynamic environments, leveraging its

capabilities for both selecting and optimizing fuzzy rules.

Particle Swarm Optimization (PSO) emerges as a

nature-inspired metaheuristic algorithm, drawing

inspiration from the collective behavior observed in fish

schools and bird flocks. Unlike some algorithms, it

mimics the cooperative behavior of social animals, with

members communicating and collectively moving

towards a solution. In the domain of mobile robot

navigation, PSO has been extensively employed to tackle

diverse challenges. Researchers have applied PSO to

address mapping and localization challenges in unknown

environments, leveraging a multi-agent particle filter for

enhanced stability and reduced computation.

The authors in [30] contributed the Self-Adaptive

Learning Particle Swarm Optimization approach,

specifically designed for solving robot path planning

problems in intricate environments with various

constraints. This approach transformed the path planning

problem into a minimization multi-objective optimization

problem, considering factors such as path length, collision

risk degree, and smoothness. Researchers in [31] explored

the use of PSO in a complex 3D environment, employing

the combined PSO-UFastSLAM approach to enhance

estimation accuracy. PSO has demonstrated success in

diverse applications, including aerial robots in unknown

environments, humanoid robots, and industrial robots for

navigation.

The Bacterial Foraging Optimization (BFO),

established in 2002 by Passino [2], is modeled after the

foraging behavior of bacteria such as M. Xanthus and E.

coli. This algorithm incorporates four fundamental

principles: chemotaxis, swarming, reproduction, and

elimination dispersal. The BFO algorithm addressed

mobile robot navigation in a static environment;

introducing variable velocity based on uniform, Gauss,

and Cauchy distributions. This strategy was extended to

handle scenarios with multiple obstacles in a static

environment by subsequent researchers. In the realm of

improving wheeled robot performance in path planning,

scientists in [28] developed an enhanced BFO algorithm.

This model incorporates an Artificial Potential Field

(APF) technique to represent the environment, integrating

attractive forces toward the goal and repulsive forces from

obstacles. The authors in [32] utilized the BFO algorithm

to tackle the navigation problem for an Unmanned Aerial

Vehicle (UAV). The BFO was combined with a

Proportional Integral Derivative controller in this

application, enabling the determination of optimal search

parameters in 3D space. Below is a table summarizing the

various discussed approaches, mentioning their pros and

cons.

212 Informatica 48 (2024) 209–222 A. Makhlouf et al.

Table 1: Summary of the various navigation approaches

Method Advantages Drawbacks Performance Insights

Benefits of

Hybrid BFO-

PSO

APF

[9-12]

- Simple to implement and good for local obstacle

avoidance.

- Light in terms of computation.

Fast result.

- May encounter issues with local minima;

less effective in highly dynamic or

complex environments.

- Not optimal

- Effective for local

pathfinding; struggles with

complex or dynamic scenarios.

- Provides
local obstacle

avoidance as

part of a

broader

strategy in the

hybrid model.

A*[1]
- Guarantees the shortest path in static

environments.

- Struggles with dynamic changes, leading

to high computation costs due to constant

re-planning.

- Best for static environments;

less effective in dynamic

settings.

- Enhances

performance in

dynamic

scenarios,

reducing re-
planning

needs.

GA

[1, 13-14]

- Flexible and effective for complex, multi-

objective problems.

- Incorporate probabilistic transition rules to

circumvent local optima.

- Facilitates multi-objective optimization.

- Can converge early on suboptimal

solutions; performance depends on

precise parameter tuning.

- GA necessitates less data about the

problem, yet formulating an objective

function and acquiring suitable

representations and operators can pose

challenges.
- GA consumes considerable time.

- Effective in many complex

cases; may be slow to converge.

- Speeds up

convergence

and reduces

risk of early

convergence.

ANN

[15-19]

- Learns and adapts to complex patterns, versatile
in various scenarios.

- Computing precise navigation routes.

- Applied for addressing problems related to the

target function, which could yield outcomes that

are discrete, real-valued, or comprised of multiple

attributes that are either discrete or real-valued.

- Needs large amounts of training data and

computational power; risk of overfitting.

- Highly adaptable with

sufficient training; resource-

intensive.

- Lessens
reliance on

extensive

datasets and

reduces

computational

burden.

FL

[1, 20-25]

- It excels at handling uncertainty and making

smooth decisions, as it better reflects real-world

problems compared to classical logic.

- It employs the most human-like reasoning,

enabling it to provide more true-to-life results,
even when dealing with ambiguous or imprecise

data.

- Create a set of rules based on human experience.

- It is light in terms of computation, time savings,

and memory space.

- Effectiveness depends on the quality of

the rule set, which can be difficult to

design and tune.

- The navigation path is not ideal due to
the approximate inference method where

comprehensive assurance and verification

are required.

- Operations are limited by these rules and

require an expert.

- Effective under uncertainty;
performance varies with rule

set quality.

- Enhances

decision-

making under
uncertainty and

complements

other methods.

ACO

[26-29]

- Solves complex, dynamic problems effectively,

inspired by natural processes.

- Exhibits exceptional adaptability and is suited

for dynamic applications.

- Favorable feedback facilitates rapid
identification of satisfactory solutions.

- Distributed computation mitigates premature

convergence.

- Can be slow to converge; may require

many iterations for optimal solutions.

- It is not universally applicable to all
problem types and may encounter

blocking states.

- Useful in dynamic settings;

slower convergence can be a
downside.

- Accelerates

convergence

and improves
global search

capabilities.

PSO

[30-31]

- Rapidly converges and works well in dynamic

settings.

- Requires very few algorithm parameters and is

indifferent to scaling variations in design

variables.

- Easily parallelizable, allowing for concurrent

processing, and is highly efficient in global search.

- Prone to getting trapped in local optima

in high-dimensional spaces; performance

can vary depending on problem

complexity.

- Effective in simpler

scenarios; performance can be

inconsistent in complex ones.

- Improves

consistency

and avoids

suboptimal

solutions when

combined with

BFO.

BFO

[2, 28-32,

34]

- Robust in finding global solutions in noisy and

dynamic environments.
- BFO enriches the velocity-swim operator, which

enhances its convergence behavior.

- The linear decreasing mechanism offers

simplicity and low computational cost,

contributing to overall performance.

- Features strong parallel search capabilities and

facilitates easy escape from local minima.

- Convergence can be slow; performance

is sensitive to parameter settings.
- The mechanism for handling constraints

is very precise but difficult to generalize

so users must specify a large number of

parameter values.

- Weak interconnection among bacteria

increases the risk of converging to local

optima rather than global optima.

- Effective for noisy

conditions; slower convergence

is a limitation.

- Speeds up
convergence

and enhances

performance in

complex

scenarios.

Hybrid

BFO-PSO

(Proposed)

- Combines the rapid convergence of PSO with

BFO's global search capabilities, highly adaptable.

- More complex to implement and

requires careful tuning of parameters.

- Achieves over 90% success

rate in dynamic environments,

faster and more efficient.

/

APF is known for its simplicity in implementation

and its effectiveness in avoiding obstacles locally, making

it useful for straightforward navigation tasks. However,

APF can struggle with getting stuck in local minima,

Enhanced Autonomous Mobile Robot Navigation Using a Hybrid… Informatica 48 (2024) 209–222 213

where the robot may end up on suboptimal paths, and it

tends to be less effective in environments with rapidly

changing obstacles or high complexity. While it works

well for local navigation, it may not be as effective in more

complex or dynamic settings.

A* is recognized for its ability to find the shortest

path between two points in stable environments, ensuring

that the route is optimal according to its cost function. In

dynamic settings where conditions change frequently,

however, A* can become inefficient because it requires

constant recalculations to adapt to new obstacles.

Although A* performs excellently in static scenarios, its

effectiveness diminishes in dynamic situations due to the

high computational costs associated with continuous

updates.

GA are valued for their adaptability and capability to

address complex optimization problems with multiple

objectives [33]. Their flexibility allows them to handle a

broad spectrum of problems. Nonetheless, GAs can

sometimes converge on suboptimal solutions prematurely,

and their effectiveness depends heavily on how well their

parameters are tuned, which can be challenging. GAs are

effective for complex problems but may experience

slower convergence rates and variable performance

depending on problem specifics and parameter

adjustments.

ANN are effective at learning and adapting to

complex patterns, making them versatile and powerful for

modeling intricate problems. They require large amounts

of data and substantial computational resources for

training, and there is a risk of overfitting if not managed

properly. While NN is highly adaptable and effective in

various applications, their resource-intensive nature and

dependency on extensive training data can be a limitation.

PSO is known for its fast convergence and

effectiveness in environments that change dynamically. It

is particularly useful when quick solutions are required.

However, PSO can sometimes become trapped in local

optima, leading to less optimal solutions, and its

performance may vary depending on the problem's

complexity. While PSO is effective for simpler problems

and dynamic settings, it may face challenges with

consistency in more complex scenarios.

BFO is robust in finding global solutions, especially

in noisy and dynamic environments, and is effective

against disruptions. However, it tends to converge slowly

and is sensitive to parameter settings, which can limit its

performance in more complex scenarios. Although BFO

is well-suited for handling noisy conditions and achieving

global optimization, its slower convergence can be a

notable drawback, particularly in fast-moving

applications.

FL is effective in managing uncertainty and making

smooth decisions, especially in situations where precise

data is not available. The performance of Fuzzy Logic

depends on the quality and design of the rule set, which

can be difficult to develop. Fuzzy Logic is useful for

dealing with uncertainty and works well in conjunction

with other methods to enhance overall performance and

decision-making.

ACO effectively addresses dynamic and complex

problems by mimicking natural processes. It excels in

challenging environments but can be slow to converge and

may require many iterations to find the best solution.

While ACO is effective for dynamic settings, its slower

convergence rate can be a limitation, requiring careful

balancing of trade-offs.
The proposed Hybrid BFO-PSO approach merges

the strengths of PSO's quick convergence with BFO's

global optimization capabilities. This combination results

in a method that is both adaptable and efficient in dynamic

environments. Although implementing this hybrid

approach is more complex and requires careful parameter

tuning, it achieves over 90% success in navigating

dynamic settings, offering both faster computation and

improved efficiency compared to traditional methods.

3 Our proposed system

Figure 1: The general architecture of our system

3.1 BFO algorithm

The BFO algorithm [1] is a relatively new nature-inspired

meta-heuristic algorithm, which imitates the foraging

behavior of E. coli found in the human intestine. The

process of finding the regions of high nutrients by the

bacteria can be modeled as an optimization process. BFO

has been applied in various optimization problems

associated with the real world and therefore already

214 Informatica 48 (2024) 209–222 A. Makhlouf et al.

gained the attention of researchers in the domain. The

swarm of bacteria S foraging behavior includes four main

steps: chemotaxis (tumble and swimming), swarming,

reproduction, and elimination-dispersal.

From a biological perspective, E.coli bacteria exhibit

two primary modes of movement: they can either swim

consistently in one direction for a period or tumble

continuously throughout their lifetime. In the conventional

BFO model, a random change in direction signifies a

"tumble," while maintaining the same direction as the

previous step represents a "run."

Chemotaxis, the process by which bacteria navigate

their environment based on chemical gradients, heavily

influences their foraging behavior. This involves a

sequence of tumbles interspersed with runs. Within the

BFO framework, the algorithm simulates this chemotactic

process through position updates, as outlined in (1)

(1):

θ𝑖
𝑗+1

 = 𝜃𝑖
𝑗

 + 𝐶(𝑖). ∅(𝑖)

(2):

∅(𝑖) =
∆(𝑖)

√∆𝑇(𝑖)∆(𝑖)

The position of the ith bacterium in the jth chemotaxis

step is given by equation (1), where C(i) is the step length

in the ji
th chemotaxis and ∅(i) is a unit vector indicating

the direction of swimming following a tumble. It can be

created using (2), where ∆i is a vector created at random

with the same issue dimension. The bacteria first

developed a tumbling direction in each chemotactic phase.

The bacteria then proceed in that direction by (1). It will

run one more stage in the same direction if the

concentration of nutrients in the current place is higher

than that of the previous position. Until the maximum run

step is reached or the nutrition gets worse, this process is

repeated. Ns is a parameter that controls the maximum run

iteration.

Assume θi(j, k, l) represents the bacterium at jth

chemotactic, kth reproductive, and lth elimination-

dispersal step. C(i) is the chemotaxis step size during each

tumble or run (the length of unit walks), and ∅(j)is the

direction angle of the jth step. Then the movement of the

ith bacterium can be modeled as:

(3):

𝜃𝑖(𝑗 + 1, 𝑘, 𝑙) = 𝜃𝑖(𝑗, 𝑘, 𝑙) + 𝐶(𝑖)∅(𝑗)

𝜃𝑖(𝑗 + 1, 𝑘, 𝑙) > 𝜃𝑖(𝑗, 𝑘, 𝑙) Swimming in which

∅(𝑗) = ∅(𝑗 − 1)

𝜃𝑖(𝑗 + 1, 𝑘, 𝑙) >

 𝜃𝑖(𝑗, 𝑘, 𝑙) Tumbling in which ∅(𝑗)𝜖 [0, 2𝜋]

Where C(i), (i = 1, 2,…., S) is the size of the step made in

the direction indicated by the tumble, which is random. The

cost at the site of the ith bacterium θi(j, k, l) is represented

by the fitness, J(i, j, k, l). Another step of size C(i) will be

taken in the same direction if the cost J (i, j + 1, k, l) is

better (inferior) than at θi(j, k, l).

Otherwise, Bacteria exhibit a behavior where they move by

taking steps of size C(i) in random directions, aiming to

locate more favorable nutrient environments. This

movement results in the clustering of bacteria in regions

abundant with nutrients.

3.1.1 Swarming

This phenomenon, known as swarming, involves

intriguing collective actions observed in various motile

bacteria species such as E. coli. To mimic this behavior, a

communication mechanism between cells is established to

emulate the organic conduct of swarming bacteria. Each

bacterium releases attractants as it moves, signaling other

bacteria to converge towards it, while simultaneously

emitting repellents to deter them from coming too close.

BFO models this social interaction by encapsulating both

the attraction and repulsion among cells. The combined

effects of cell-to-cell attraction and repulsion can thus be

represented as follows:

(4):

𝐽𝑐𝑐(𝜃, 𝑃(𝑗, 𝑘, 𝑙) = ∑ 𝐽𝑐𝑐
𝑖

𝑠

𝑖=1

(𝜃, 𝜃𝑖 (𝑗, 𝑘, 𝑙))

(5):

𝐽𝑐𝑐(𝜃, 𝑃(𝑗, 𝑘, 𝑙)

= ∑[−𝑑𝑎𝑡𝑡

𝑠

𝑖=1

exp (−𝑤𝑎𝑡𝑡 ∑ (𝜃𝑚

𝑝

𝑚=1
− 𝜃𝑚

𝑖)
2

)]

+ ∑[−𝑑𝑟𝑒𝑝

𝑠

𝑖=1

exp (−𝑤𝑟𝑒𝑝𝑒𝑥𝑝 ∑ (𝜃𝑚

𝑝

𝑚=1
− 𝜃𝑚

𝑖)
2

)]

Where datt and watt are respectively the depth and the

width of the attractant released by the cell. Likewise, hrep

and wrep are the height and measure of the width of the

repellent effect.

3.1.2 Reproduction

After every Nc chemotactic step, a reproduction phase

occurs within the bacterial population. The bacteria are

sorted based on the nutrients they have acquired during

preceding chemotactic processes, with those in the upper

half considered to have obtained adequate nutrients for

reproduction. Each bacterium in this group undergoes

division, making two copies at the same place. On the

other hand, bacteria in the lowest half of the population

die and are eliminated, therefore the population size

remains constant. This selective process ensures that

individuals with higher nutrient levels survive and

replicate, thereby enhancing the thorough exploration of

potential optimal areas. Notably, reproduction occurs after

all chemotactic steps. The current health status of the ith

bacterium can be described as:

Enhanced Autonomous Mobile Robot Navigation Using a Hybrid… Informatica 48 (2024) 209–222 215

(6):

𝐽
ℎ𝑒
𝑖 = ∑ 𝐽(𝑖, 𝑗, 𝑘, 𝑙)

𝑁𝑐+1

𝑗=1

3.1.3 Elimination and dispersal

In natural environments, fluctuations such as sudden

changes in temperature, nutrient levels, or water flow can

significantly impact the behavior and survival of bacterial

populations. To mimic this phenomenon, the BFO

algorithm incorporates an eliminate-dispersal mechanism.

After every Nre reproduction step, an eliminate-dispersal

event occurs. During this event, each bacterium is

subjected to a random number generator within the range

of zero to one. If the generated number falls below a

predetermined threshold, denoted as Pe, the old bacterium

is eliminated and a fresh one is released into the

surroundings. One way to think of this process is as

moving the bacterium to a randomly chosen location.

Eliminating-dispersal events have the potential to impede

chemotactic development, but they can also enhance

solutions by placing bacteria in more favorable locations.

Unlike reproduction, this operator enhances algorithm

diversity. In the BFO algorithm, eliminate-dispersal

events are repeated for Ned iterations.

3.2 Particle swarm optimization (PSO)/ the

bacterial foraging optimization (BFO)

The question arises why the PSO algorithm?

The PSO algorithm has the potential to enhance the

parameters of the BFO algorithm in solving the shortest

path problem by leveraging its unique strengths within the

optimization process, in which:

• PSO is renowned for its capacity to conduct global

exploration within the search space. By incorporating

PSO alongside BFO, the amalgamated algorithm can

effectively traverse a bsroad spectrum of potential

solutions, ensuring thorough exploration of the search

space and avoiding the oversight of promising

regions. This global exploration capability facilitates

the identification of diverse paths and prevents the

algorithm from becoming trapped in local optima.

• PSO algorithms typically exhibit faster convergence

rates compared to BFO, particularly in specific

scenarios. By integrating PSO, the hybrid algorithm

can leverage the speed and convergence properties of

PSO, thereby expediting the identification of optimal

or near-optimal paths in the shortest path problem.

Consequently, this may lead to reduced

computational time and heightened efficiency.

• PSO encourages diversity throughout the search

process by maintaining a swarm of candidate

solutions. This diversity proves advantageous in

forestalling premature convergence and fostering the

discovery of varied paths amidst dynamic obstacles.

Through the integration of PSO with BFO, the

algorithm can ensure the exploration of a broad array

of paths, thereby augmenting the resilience of the

solution.

• PSO algorithms inherently possess adaptability to

dynamic environments owing to their adeptness at

swiftly responding to alterations in the search

landscape. When employed in conjunction with BFO

for the shortest path problem, PSO facilitates the

algorithm's adaptation to changes in obstacle

positions or environmental conditions, empowering

the robot to navigate adeptly within dynamic

scenarios.

• PSO can be employed for optimizing BFO algorithm

parameters, such as step sizes, chemotaxis rates, or

other control parameters. By incorporating PSO for

parameter optimization, the hybrid algorithm can

dynamically adjust these parameters during the

optimization process, thereby enhancing the

solution's performance and robustness. Overall, the

integration of PSO algorithms with BFO in the

shortest path problem presents a synergistic approach

that merges PSO's global exploration capabilities with

BFO's adaptive search mechanisms, culminating in

improved path planning performance within dynamic

environments.

To optimize the hyperparameters of the BFO algorithm

with the PSO algorithm in the shortest path problem, we

follow these specific steps:

1. BFO algorithm's hyperparameters to optimize: the

size of the bacteria population, and chemotaxis

parameters.

2. The objective function: is the total length of the path

found by the algorithm. The goal is to minimize this

length, which is equivalent to finding the shortest path

between a start and an end while avoiding obstacles.

3. Establish the ranges of possible values for each

hyperparameter to optimize. The size of the bacteria

population could range from a few individuals to

several dozen, and movement rates should be adjusted

within a certain range of speeds 𝑣𝑖
𝑡.

4. Configuration of the PSO algorithm with its

hyperparameters: swarm size, inertia coefficients,

maximum and minimum velocities with random

values.

5. Performance evaluation: For each particle, evaluate

your performance using BFO with the current

chemotaxis rate, by updating positions and speeds.

6. Adjust the positions and speeds of each particle as a

function of their 𝑝𝑏𝑒𝑠𝑡 position and the 𝑔𝑏𝑒𝑠𝑡

position.

7. Chemotaxis rate update: Use performance particles to

update the chemotaxis rate.

8. Use the PSO algorithm to optimize the values of the

BFO algorithm's hyperparameters by adjusting them

iteratively towards optimal values. The position

update equation for each particle in PSO is given by:

(7):

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝑣𝑖
𝑡

Where 𝑥𝑖
𝑡 is the current position of particle i at

iteration t, and 𝑣𝑖
𝑡 is the velocity of particle i at

216 Informatica 48 (2024) 209–222 A. Makhlouf et al.

iteration t. The velocity 𝑣𝑖
𝑡 is updated using the

following:

(8):

𝑣𝑖
𝑡+1 = 𝑤𝑣𝑖

𝑡 + 𝑐1𝑟1 (𝑝𝑏𝑒𝑠𝑡𝑖
𝑡 − 𝑥𝑖

𝑡) + 𝑐2𝑟2 (𝑔𝑏𝑒𝑠𝑡𝑡

− 𝑥𝑖
𝑡)

Where w is the inertia weight, 𝑐1, and 𝑐2 are

acceleration coefficients, 𝑟1 and 𝑟2 are random

numbers between 0 and 1, 𝑝𝑏𝑒𝑠𝑡𝑖
𝑡 is the best position

of particle i found so far, and 𝑔𝑏𝑒𝑠𝑡𝑡 is the best

position found by any particle in the swarm at

iteration t.

PSO's global exploration mechanism encourages

particles to explore new regions of the search space.

This is achieved through the velocity update equation,

where the global best-known position

𝑔𝑏𝑒𝑠𝑡𝑡 influences the movement of particles towards

promising regions of the search space.

While PSO primarily focuses on global exploration,

it also incorporates a degree of local search through

its velocity update equation. The term 𝑝𝑏𝑒𝑠𝑡𝑖
𝑡 −

 𝑥𝑖
𝑡 represents the difference between the current

position of particle i and its best-known position,

encouraging particles to move towards regions of the

search space where improvements have been

observed.

PSO exhibits adaptive behavior through its inertia

weight w, which controls the balance between

exploration and exploitation. By adjusting the inertia

weight dynamically during the optimization process,

PSO can adapt its search strategy based on the current

state of the search space, ensuring effective

exploration and exploitation.

PSO's convergence speed is influenced by its inertia

weight w and acceleration coefficients 𝑐1, and 𝑐2.

Higher values of w promote global exploration, while

higher values of 𝑐1, and 𝑐2 enhance local search. By

appropriately tuning these parameters, PSO can

achieve faster convergence to optimal or near-optimal

solutions.

9. During iterations of the PSO algorithm, evaluate the

length of the path found by the BFO algorithm with

the current hyperparameter values, and gradually

adjust the hyperparameter values based on the total

length of the path found.

10. Evaluate the performance of the BFO algorithm with

the optimized hyperparameter values on different

instances.

11. Adjust the parameters of the PSO algorithm and

repeat the optimization process until the desired

performance is achieved

12. Stopping Criterion: Continue iterating until achieve

several maximum iterations.

PSO maintains population diversity through the swarm of

particles exploring the search space simultaneously. This

diversity prevents premature convergence by ensuring that

the swarm explores a wide range of potential solutions. As

a result, the hybrid approach benefits from diverse

solutions generated by PSO, leading to improved

robustness and adaptability in dynamic environments.

By integrating PSO with BFO and considering these

equations, the hybrid approach can effectively improve

the parameters of BFO in the shortest path problem,

enabling efficient and robust path planning in dynamic

environments.

4 Simulation and results
We have developed a control strategy to direct the robot

along a path that avoids collisions, even in environments

with obstacles. By conducting simulations with obstacles

of different shapes and sizes, we have thoroughly assessed

the efficacy of our proposed approach. Our findings

indicate that the robot navigates to its destination safely,

without experiencing any collisions.

4.1 Results

Numerous advancements have been made in research

concerning robot navigation and path planning within

dynamic environments, addressing various challenges

from different perspectives. Some focus on tracking

dynamic targets. However, literature related to solving

mobile robot navigation problems in unknown

environments often provides only simplified diagrams,

typically featuring small working areas with few

obstacles. Consequently, direct comparison data is scarce.

 We have broadened our analysis to include a diverse

range of environmental scenarios relevant to mobile robot

navigation. This includes both static and dynamic

obstacles as well as varying complexities in the

environment. These additions provide a more

comprehensive view of how the hybrid BFO-PSO

algorithm performs under different conditions.

We conducted an ablation study to separately evaluate

the performance of pure BFO, pure PSO, and the hybrid

BFO-PSO algorithm. This study helps in understanding

the specific advantages of combining these algorithms.

The results from the ablation study are now detailed in the

manuscript.

We have included a table that summarizes the

performance metrics of each algorithm across different

scenarios. Metrics such as success rate, average path

length, and computation time are compared. The hybrid

BFO-PSO approach shows a higher success rate and

shorter path lengths compared to pure BFO and PSO in

both static and dynamic environments.

Table 2: Comparison of performance with different

scenarios of pure BFO, PSO and hybrid BFO-PSO

Algorithm Scenario Success

Rate (%)

Average

Path Length

Computation

Time (s)

Pure BFO Static

Obstacles

85 12.3 4.5

Pure PSO Static

Obstacles

88 11.7 3.9

Hybrid

BFO-PSO

Static

Obstacles

92 10.5 4.0

Pure BFO Dynamic

Obstacles

78 14.2 5.2

Pure PSO Dynamic

Obstacles

82 13.0 4.8

Hybrid

BFO-PSO

Dynamic

Obstacles

91 11.0 4.3

Enhanced Autonomous Mobile Robot Navigation Using a Hybrid… Informatica 48 (2024) 209–222 217

We have also included a table presenting statistical

analysis of the performance metrics, including mean

values, standard deviations, and significance testing

results. This analysis supports our findings and provides

additional context for the performance of each algorithm.

Table 3: Comparison in terms of different metrics

between pure BFO, PSO and hybrid BFO-PSO

Metric
Pure

BFO

Pure

PSO

Hybrid BFO-

PSO

Mean Success Rate (%) 81.5 85.0 91.5

Mean Path Length 13.0 12.4 10.8

Mean Computation Time (s) 4.85 4.35 4.15

Std Dev Success Rate (%) 4.5 3.8 2.9

Std Dev Path Length 1.2 1.0 0.9

Std Dev Computation Time (s) 0.6 0.5 0.4

The results highlight that the hybrid BFO-PSO

algorithm outperforms both pure BFO and PSO in terms

of success rate and path length, particularly in dynamic

environments. This demonstrates the effectiveness of the

hybrid approach in handling complex navigation tasks.

The hybrid method also shows improved

computational efficiency, with reduced computation times

compared to pure BFO while maintaining competitive

performance against pure PSO. This indicates that the

hybrid approach not only enhances navigation accuracy

but also offers better efficiency.

The ablation study shows that the hybrid algorithm

effectively combines the strengths of both BFO and PSO,

providing enhanced robustness and adaptability. The

hybrid approach leverages the complementary strengths of

the individual algorithms to achieve superior overall

performance.

Our scalability analysis includes both a complexity

evaluation and a performance assessment across various

simulated scenarios.

➢ Complexity analysis

• Time complexity: The time complexity is

estimated at 𝜃(𝑛. (𝑚 + 𝑘)) where n is the

number of iterations, m represents the number of

obstacles, and k denotes the number of particles

in the PSO. This reflects the workload required

for BFO’s local search combined with PSO’s

global optimization within the simulation.

• Space complexity: The space complexity is

approximately 𝜃(𝑘. 𝑑), where d is the

dimensionality of the search space. This metric

reflects the storage requirements for particle

positions and velocities in the simulated

environment.

➢ Performance Metrics

The hybrid algorithm was tested in simulated

environments of different sizes and varying obstacle

densities. The following tables present the results:

Table 4: Performance metrics by environment size in

simulations

Environment

Size

Number of

Obstacles

Success

Rate

(%)

Average

Path Length

Computation

Time (s)

100x100 50 92 208 5.1

200x200 100 89 251 7.4

300x300 150 85 291 10.2

400x400 200 81 326 13.8

Table 5: Performance metrics by obstacle density in

simulations

Obstacle

Density

(%)

Environment

Size

Success

Rate

(%)

Average

Path Length

Computation

Time (s)

10 200x200 93 251 6.2

20 200x200 88 285 7.1

30 200x200 84 315 8.4

40 200x200 80 347 9.9

The results indicate a slight decrease in success rate

as the size of the simulated environment increases. This is

likely due to the added complexity of navigating larger

spaces with more obstacles. Nonetheless, the hybrid BFO-

PSO algorithm maintains robust performance, with high

success rates even in the largest simulated environments.

As obstacle density increases, both the success rate

and computation time are affected. The algorithm adapts

well to these conditions, but the trend suggests that

performance optimization may be necessary for

environments with very high obstacle densities.

The increase in computation time with larger

environment sizes and higher obstacle densities reflects

the growing complexity of the tasks. Despite this, the

hybrid approach demonstrates efficiency in simulated

environments, making it promising for complex real-

world applications.

The robustness and adaptability of the hybrid BFO-

PSO algorithm were tested under various dynamic

scenarios in simulated environments. These scenarios

included sudden obstacle appearances, path blockages,

and other real-time changes. The results were analyzed in

terms of the algorithm's ability to re-plan paths and

maintain high success rates under these challenging

conditions.

218 Informatica 48 (2024) 209–222 A. Makhlouf et al.

➢ Dynamic scenario testing

We conducted a series of simulations where the

environment's conditions changed dynamically,

challenging the algorithm to adapt in real-time. The

following key scenarios were tested:

• Sudden obstacle appearance: An obstacle was

introduced suddenly on the robot's path.

• Path blockage: A previously clear path was

entirely blocked, requiring the robot to find an

alternative route.

• Dynamic obstacle movement: Obstacles moved

during the robot's navigation, simulating real-

world dynamic changes.

➢ Performance metrics

The following tables summarize the algorithm’s

performance across these dynamic scenarios:

Table 6: Performance in sudden obstacle appearance

scenarios

Environment

Size

Success

Rate

(%)

Average

Re-

planning

Time (s)

Computation

Time (s)

Path Length

Increase (%)

100x100 91 0.8 5.3 12.0

200x200 87 1.1 7.8 15.5

300x300 82 1.4 11.0 18.3

400x400 78 1.7 14.5 20.7

Table 7: Performance in path blockage scenarios

Environment

Size

Success

Rate (%)

Average Re-

planning

Time (s)

Computation

Time (s)

Path Length

Increase

(%)

100x100 89 1.2 5.8 14.5

200x200 85 1.6 8.2 17.0

300x300 80 2.0 11.7 21.4

400x400 75 2.3 15.3 24.6

The hybrid BFO-PSO algorithm demonstrated robust

adaptability by successfully re-planning paths in real-time

when faced with sudden obstacle appearances and path

blockages. The average re-planning time remained low,

indicating the algorithm's capability to quickly adjust to

dynamic changes.

Although there was a slight decrease in success rates

and an increase in path length when navigating larger or

more complex environments, the algorithm maintained a

high degree of robustness. Even under extreme conditions,

such as total path blockages, the algorithm was able to find

alternative routes effectively.

The computation time increased with environment

size and complexity, as expected. However, the

algorithm’s performance remained efficient, with re-

planning times staying within acceptable limits for real-

time applications. This demonstrates the practical

relevance of the hybrid approach, particularly in scenarios

requiring immediate adaptability.

The increase in path length in response to dynamic

obstacles and blockages reflects the trade-offs inherent in

real-time adaptability. While the paths may not always be

the shortest, they are optimized for feasibility and safety,

ensuring that the robot can navigate successfully even in

highly dynamic environments.

To assess real-time performance of path planning, we

compared running times in a standardized environment

under identical conditions, employing a combination of

PSO method with GA, Artificial NN algorithm, and

ASTAR Algorithm. This comparison showcased the

capability of our algorithm to achieve globally near-

optimal paths.

We observed different algorithms guiding robots to

their destination’s collision-free. Firstly, we introduced a

novel approach utilizing the PSO method with a BFO

Algorithm for mobile robot path planning. Our method

leveraged the core BFO algorithm, including PSO

computation, resulting in significantly shorter execution

times compared to other algorithms. The distinct

parameter selection for path points contributed to this

efficiency.

The BFO Algorithm, rooted in computational

intelligence, offers advantages such as reduced

computational burden, global convergence, and versatility

in handling multiple objective functions. We also utilized

GA for navigation control, noting its ability to generate

progressively improved results despite initial solution

generation time. Additionally, we explored Artificial

Neural Networks (ANN), focusing on training the network

using Q Learning and Backpropagation algorithms to

enable obstacle avoidance in obscure environments.

Comparatively, the ASTAR algorithm efficiently

optimized robot paths, even in chaotic environments,

yielding good solutions in limited scenarios. However, its

complexity increases with distant start and endpoints.

ASTAR outperformed other algorithms in terms of speed

on small-scale inputs, as indicated by output sequence

analysis. However, its effectiveness varies based on map

size and specific scenarios.

While the ASTAR Algorithm demonstrates

effectiveness in low-size inputs, challenges arise with

larger map sizes. GA exhibits high memory requirements

compared to ANN. Despite challenges, the ASTAR

Algorithm surpasses its counterparts in efficiency. The

presented table illustrates the fitness variation over

generations in genetic algorithms, highlighting the

minimization of the fitness function. Notably, the

application of the ANN Algorithm struggled in highly

complex environments and semi-maze scenarios.

The advantages of the hybrid algorithm combining

bacterial foraging optimization (BFO) and particle swarm

optimization (PSO) compared to using a single PSO or

single BFO algorithm:

• Balanced Exploration and Exploitation: The hybrid

algorithm merges the global exploration capabilities of

PSO with the local search and exploitation abilities of

BFO. This fusion ensures a harmonious balance

between exploration and exploitation, enhancing the

efficiency of solution search within the shortest path

problem's search space.

Enhanced Autonomous Mobile Robot Navigation Using a Hybrid… Informatica 48 (2024) 209–222 219

• Adaptability to Diverse Environments: Through the

fusion of BFO and PSO, the algorithm gains the

flexibility to adjust to various environmental

conditions, whether static or dynamic. This adaptability

proves invaluable, particularly in environments where

the search landscape undergoes temporal changes.

• Mitigation of Premature Convergence Risks: By

integrating the search mechanisms of PSO and BFO, the

hybrid algorithm mitigates the risk of prematurely

converging to local optima. This capability enables the

algorithm to sustain exploration within the search space

even after promising solutions are discovered,

potentially yielding higher-quality outcomes.

• Enhanced Robustness and Reliability: The

amalgamation of diverse optimization methodologies

bolsters the algorithm's resilience and dependability.

Leveraging multiple search mechanisms, the hybrid

algorithm diminishes the likelihood of becoming

trapped in suboptimal regions of the search space, thus

facilitating the discovery of quality solutions under

challenging circumstances.

• Performance Enhancement: Through meticulous

parameter adjustments of both algorithms, the hybrid

algorithm can be fine-tuned to maximize performance

in addressing the specific challenges of the shortest path

problem. This optimization process often yields

superior solutions and reduced computational overhead

compared to utilizing PSO or BFO in isolation.

In summary, the hybridization of BFO and PSO

presents numerous advantages for tackling the shortest

path problem, including achieving a balanced exploration-

exploitation trade-off, heightened adaptability to diverse

environments, mitigated risks of premature convergence,

enhanced robustness and reliability, and optimized

performance.

Table 8: A comparison between algorithms about time and path length in three different environments

 Environment Theoretical

distance

Path length (PL) Convergence rate

BFO/PSO [10X 10]

Start: (0, 0)

Goal: (9, 9)
Obstacles: 10

12.72 22 100%

BFO 23 95.65%

PSO 22 100%

GA 22 100%

ANN & QL 23 95.65%

A* 22 100%

BFO/PSO [100X 100]

Start: (0, 0)

Goal: (99, 99)
Obstacles: 100

140.00 218 97.24%

BFO 235 90.21%

PSO 225 94.22%

GA 240 88.33%

ANN & QL 238 89.07%

A* 212 100%

BFO/PSO [1000X 1000]

Start: (0, 0)

Goal: (999, 999)

Obstacles: 1000

1412.79 2155 86.96%

BFO 2237 83.77%

PSO 2201 85.14%

GA 2269 80.44%

ANN & QL 2705 68.28%

A* / Stack Overflow

5 Discussion
The robot is able to move from the initial to the final

position in a dynamic environment without collision with

obstacles, the chosen path is optimum. This part clearly

shows the effective working of our algorithm. The

comparative analysis can be done easily by looking at the

various runs. The ASTAR algorithm was much more

efficient and exceeded its counterparts. It was better to

find the results early. Although we know that the

performance of various algorithms will change according

to the parameters and input size, we can easily notice, by

looking into the other algorithms, how they behave with

different inputs. The genetic Algorithm is the least

efficient for a maze situation. If the input size is immense,

ANN will be the best. A better comparative analysis could

be done in the future. Some new results are likely to come

up for different input parameters that may be

experimented in the future.

6 Conclusion

In environments characterized by dynamic obstacles

obstructing the path of mobile robots, path-planning

algorithms face intricate computational challenges

demanding high-performance computing capabilities.

220 Informatica 48 (2024) 209–222 A. Makhlouf et al.

These challenges involve calculating new paths and

determining trajectories promptly to meet the stringent

demands of local controllability within short timeframes.

In our research, we presented a hybrid autonomous

navigation approach tailored for mobile robots navigating

environments replete with obstacles. Our approach

combines the Particle Swarm Optimization (PSO)

algorithm with the Bacterial Foraging Optimization

(BFO) Algorithm to efficiently identify the shortest path

amidst dynamically moving obstacles, facilitating smooth

navigation from initial to final positions without

encountering collisions. By leveraging the strengths of

both PSO and BFO, our method optimizes path planning

in real-time, ensuring adaptive responses to changing

environmental conditions.

Simulation results offer compelling evidence of the

effectiveness of our approach, demonstrating the

successful navigation of a robot through complex and

dynamic environments while adeptly circumventing

obstacles along its route. This accomplishment

underscores the practical utility of our method in real-

world scenarios, particularly in applications where swift

and safe navigation is paramount, such as emergency

response scenarios and industrial automation.

Furthermore, the versatility of our approach extends

beyond robot navigation, encompassing a broad spectrum

of applications. For instance, in robotic surgery, our

method can assist in planning optimal paths for surgical

instruments to navigate complex anatomical structures

safely. In the realm of video game artificial intelligence, it

can enhance the realism and strategic decision-making

capabilities of virtual agents navigating dynamic

environments. Similarly, in architectural design, our

method can aid in optimizing pedestrian flow within

complex architectural spaces, ensuring efficient

circulation while minimizing congestion.

Looking ahead, our research trajectory includes plans

to expand the applicability of our approach to

accommodate scenarios involving multiple cooperating

robots and mobile manipulators. By further refining our

hybrid navigation framework and exploring collaborative

strategies, we aim to unlock new possibilities for

autonomous navigation in increasingly complex and

dynamic environments.

References
[1] A. Benmachiche, B. Tahar, L. M. Tayeb, and Z.

Asma (2016). A dynamic navigation for

autonomous mobiles robots. Intell. Decis. Technol.,

vol. 10, no. 1, pp. 81–91.

https://doi.org/10.3233/idt-150239.

[2] A. Benmachiche, A. Makhlouf, and T. Bouhadada

(2020). Optimization learning of hidden Markov

model using the bacterial foraging optimization

algorithm for speech recognition. Int. J. Knowl.-

Based Intell. Eng. Syst., vol. 24, no. 3, pp. 171–181.

https://doi.org/10.3233/kes-200039.

[3] L. Zhang, Y. Zhang, and Y. Li (2020). Mobile robot

path planning based on improved localized particle

swarm optimization. IEEE Sens. J., vol. 21, no. 5,

pp. 6962–6972.

https://doi.org/10.1109/jsen.2020.3039275.

[4] Q. Fan, Y. Zhang, and N. Li (2021). An

autoselection strategy of multiobjective

evolutionary algorithms based on performance

indicator and its application. IEEE Trans. Autom.

Sci. Eng., vol. 19, no. 3, pp. 2422–2436.

https://doi.org/10.1109/tase.2021.3084741.

[5] Ö. Ekrem and B. Aksoy (2023). Trajectory planning

for a 6-axis robotic arm with particle swarm

optimization algorithm. Eng. Appl. Artif. Intell., vol.

122.

https://doi.org/10.1016/j.engappai.2023.106099.

[6] M. A. Alam and M. O. Faruq (2019). Finding

shortest path for road network using Dijkstra’s

algorithm. Bangladesh J. Multidiscip. Sci. Res., vol.

1, no. 2, pp. 41–45.

https://doi.org/10.46281/bjmsr.v1i2.366.

[7] I. Umay, B. Fidan and W. Melek (2019). An

Integrated Task and Motion Planning Technique for

Multi-Robot-Systems. IEEE International

Symposium on Robotic and Sensors Environments

(ROSE), Ottawa, ON, Canada, pp. 1-7.

https://doi.org/10.1109/rose.2019.8790413.

[8] B. R. Kiran et al. (2021). Deep reinforcement

learning for autonomous driving: A survey. IEEE

Trans. Intell. Transp. Syst., vol. 23, no. 6, pp. 4909–

4926. https://doi.org/10.48550/arXiv.2002.00444.

[9] J. Borenstein and Y. Koren (1989). Real-time

obstacle avoidance for fast mobile robots. IEEE

Trans. Syst. Man Cybern., vol. 19, no. 5, pp. 1179–

1187. https://doi.org/10.1109/robot.1990.126042.

[10] S. Chehelgami, E. Ashtari, M. A. Basiri, M. T.

Masouleh, and A. Kalhor (2023). Safe deep

learning-based global path planning using a fast

collision-free path generator. Robot. Auton. Syst.,

vol. 163, pp. 104384.

[11] L. Liu, X. Wang, X. Yang, H. Liu, J. Li, and P.

Wang (2023). Path planning techniques for mobile

robots: Review and prospect. Expert Syst. Appl.,

vol. 227.

https://doi.org/10.1016/j.eswa.2023.120254.

[12] S. Mbakop, G. Tagne, S. V. Drakunov, and R.

Merzouki (2021). Parametric ph curves model

based kinematic control of the shape of mobile soft

manipulators in unstructured environment. IEEE

Trans. Ind. Electron., vol. 69, no. 10, pp. 10292–

10300. https://doi.org/10.1109/tie.2021.3123635.

[13] A. Benmachiche, A. Makhlouf, and T. Bouhadada

(2019). Evolutionary learning of HMM with

Gaussian mixture densities for Automatic speech

recognition. In Proceedings of the 9th International

Conference on Information Systems and

Technologies, pp. 1–6.

https://doi.org/10.1145/3361570.3361591.

[14] A. Benmachiche, A. A. Betouil, I. Boutabia, A.

Nouari, K. Boumahni, and H. Bouzata (2022). A

fuzzy navigation approach using the intelligent

lights algorithm for an autonomous mobile robot. In

International Conference on Computing and

https://doi.org/10.3233/idt-150239
https://doi.org/10.3233/kes-200039
https://doi.org/10.1109/jsen.2020.3039275
https://doi.org/10.1109/tase.2021.3084741
https://doi.org/10.1016/j.engappai.2023.106099
https://doi.org/10.46281/bjmsr.v1i2.366
https://doi.org/10.1109/rose.2019.8790413
https://doi.org/10.48550/arXiv.2002.00444
https://doi.org/10.1109/robot.1990.126042
https://doi.org/10.1016/j.eswa.2023.120254
https://doi.org/10.1109/tie.2021.3123635
https://doi.org/10.1145/3361570.3361591

Enhanced Autonomous Mobile Robot Navigation Using a Hybrid… Informatica 48 (2024) 209–222 221

Information Technology, Springer, pp. 112–121.

https://doi.org/10.1007/978-3-031-25344-7_11.

[15] D. K. Mishra, A. Thomas, J. Kuruvilla, P.

Kalyanasundaram, K. R. Prasad, and A. Haldorai

(2022). Design of mobile robot navigation

controller using neuro-fuzzy logic system. Comput.

Electr. Eng., vol. 101, pp. 108044.

https://doi.org/10.1016/j.compeleceng.2022.10804

4.

[16] W. M. Hassen, S. H. Amin, and A. S. Al-Araji

(2023). Hybrid Swarm Algorithm for Mobile Robot

Path Planning. International Journal on Recent and

Innovation Trends in Computing and

Communication, vol. 11, no. 9, pp. 947-957.

https://doi.org/10.17762/ijritcc.v11i9s.9996.

[17] B. Patle, A. Pandey, D. Parhi, A. Jagadeesh, and al.

(2019). A review: On path planning strategies for

navigation of mobile robot. Def. Technol., vol. 15,

no. 4, pp. 582–606.

https://doi.org/10.1016/j.dt.2019.04.011.

[18] B. Hilali, M. Ramdani, and A. Naji (2023). Neuro-

Fuzzy Combination for Reactive Mobile Robot

Navigation: A Survey. Indones. J. Electr. Eng.

Inform. IJEEI, vol. 11, no. 2, pp. 375–388.

https://doi.org/10.52549/ijeei.v11i2.4009.

[19] K. Khnissi, C. Seddik, and H. Seddik(2018). Smart

navigation of mobile robot using neural network

controller. in 2018 International Conference on

Smart Communications in Network Technologies

(SaCoNeT), IEEE, pp. 205–210.

https://doi.org/10.1109/saconet.2018.8585616.

[20] A. Mellouk and A. Benmachiche (2020). A survey

on navigation systems in dynamic environments. in

Proceedings of the 10th International Conference

on Information Systems and Technologies, pp. 1–7.

https://doi.org/10.1145/3447568.3448527.

[21] A. Loganathan and N. S. Ahmad (2023). A

systematic review on recent advances in

autonomous mobile robot navigation. Eng. Sci.

Technol. Int. J., vol. 40, p. 101343.

https://doi.org/10.1016/j.jestch.2023.101343.

[22] C. E. Llorente-Peralta, L. Cruz-Reyes, and R. A.

Espín-Andrade (2021). Knowledge discovery using

an evolutionary algorithm and compensatory fuzzy

logic. Fuzzy Log. Hybrid Ext. Neural Optim.

Algorithms Theory Appl., pp. 363–383.

https://doi.org/10.1007/978-3-030-68776-2_21.

[23] X. Qi (2024). Event-Triggered Predictive Control

Algorithm for Multi-AUV Formation Modeling.

Informatica journal, vol. 48, pp. 127–142.

https://doi.org/10.31449/inf.v48i9.5890.

[24] A. K. De, D. Chakraborty, and A. Biswas (2022).

Literature review on type-2 fuzzy set theory. Soft

Comput., vol. 26, no. 18, pp. 9049–9068.

https://doi.org/10.1007/s00500-022-07304-4.

[25] A. J. Muñoz-Vázquez, V. Parra-Vega, A. Sánchez-

Orta, and J. D. Sánchez-Torres (2021). Adaptive

fuzzy velocity field control for navigation of

nonholonomic mobile robots. J. Intell. Robot. Syst.,

vol. 101, no. 2, p. 38. .

https://doi.org/10.1007/s10846-020-01306-w.

[26] J. R. Sanchez-Ibanez, C. J. Pérez-del-Pulgar, and A.

García-Cerezo (2021). Path planning for

autonomous mobile robots: A review. Sensors, vol.

21, no. 23, p. 7898. .

https://doi.org/10.3390/s21237898.

[27] A. Kareem, O. Odeniyi, and N. Lawal (2023).

Development of a COVID-19 Patients’ Fatality

Prediction System Using Swarm Intelligent

Convolution Neural Network. Asian J Res Comput

Sci, vol. 16, pp. 12–35.

https://doi.org/10.9734/ajrcos/2023/v16i2336.

[28] J. A. Abdulsaheb and D. J. Kadhim (2023).

Classical and heuristic approaches for mobile robot

path planning: A survey. Robotics, vol. 12, no. 4, p.

93. https://doi.org/10.3390/robotics12040093.

[29] O. Mypati, A. Mukherjee, D. Mishra, S. K. Pal, P.

P. Chakrabarti, and A. Pal (2023). A critical review

on applications of artificial intelligence in

manufacturing. Artif. Intell. Rev., vol. 56, no. Suppl

1, pp. 661–768. https://doi.org/10.1007/s10462-

023-10535-y.

[30] Y. Zhou, D. Wang, and L. Liu (2024). Exploring

unknown environments: motivated developmental

learning for autonomous navigation of mobile

robots. Intell. Serv. Robot., vol. 17, no. 2, pp. 197–

219. https://doi.org/10.1007/s11370-023-00504-3.

[31] M. E. Hedroug, K. Guesmi, and al. (2024). Fuzzy

predictive controller for trajectory tracking of a

wheeled mobile robot. Stud. Eng. Exact Sci., vol. 5,

no. 1, pp. 449–472.

https://doi.org/10.54021/seesv5n1-027.

[32] S. Darvishpoor, A. Darvishpour, M. Escarcega, and

M. Hassanalian (2023). Nature-inspired algorithms

from oceans to space: A comprehensive review of

heuristic and meta-heuristic optimization

algorithms and their potential applications in

drones, Drones, vol. 7, no. 7, p. 427.

https://doi.org/10.3390/drones7070427.

[33] Y. Yang (2024). The Impact of GA Optimization

Model Under the Constraint of Maximum Inventory

on the Logistics Cost Control of Automotive Parts

Production in the Factory. Informatica journal, vol.

48, no. 11, pp. 1–14.

https://doi.org/10.31449/inf.v48i11.5959.

[34] I. Alshawi, H. Al-badrei (2022). Secure Routing

Protocol for WSNs Using Bacterial Foraging

Optimization and Improved RC4. Informatica

journal, vol. 46, no. 8, pp. 1–10.

https://doi.org/10.31449/inf.v46i8.4277.

https://doi.org/10.1007/978-3-031-25344-7_11
https://doi.org/10.1016/j.compeleceng.2022.108044
https://doi.org/10.1016/j.compeleceng.2022.108044
https://doi.org/10.17762/ijritcc.v11i9s.9996
https://doi.org/10.1016/j.dt.2019.04.011
https://doi.org/10.52549/ijeei.v11i2.4009
https://doi.org/10.1109/saconet.2018.8585616
https://doi.org/10.1145/3447568.3448527
https://doi.org/10.1016/j.jestch.2023.101343
https://doi.org/10.1007/978-3-030-68776-2_21
https://doi.org/10.31449/inf.v48i9.5890
https://doi.org/10.1007/s00500-022-07304-4
https://doi.org/10.1007/s10846-020-01306-w
https://doi.org/10.3390/s21237898
https://doi.org/10.9734/ajrcos/2023/v16i2336
https://doi.org/10.3390/robotics12040093
https://doi.org/10.1007/s10462-023-10535-y
https://doi.org/10.1007/s10462-023-10535-y
https://doi.org/10.1007/s11370-023-00504-3
https://doi.org/10.54021/seesv5n1-027
https://doi.org/10.3390/drones7070427
https://doi.org/10.31449/inf.v48i11.5959
https://doi.org/10.31449/inf.v46i8.4277

222 Informatica 48 (2024) 209–222 A. Makhlouf et al.

