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Determining path planning for mobile robots has received a lot of attention over the last three decades, 

with the goal of identifying safe and effective paths between starting points and destinations. The 

investigation of diverse navigation methodologies exhibits potential in expanding the range of uses for 

autonomous mobile robots. This research introduces a novel navigation strategy by combining the 

Particle Swarm Optimization (PSO) method with the Bacteria Foraging Optimization Algorithm (BFO). 

Utilizing the benefits of PSO, this bio-inspired method is used to optimize paths for mobile robots, drawing 

inspiration from the foraging behavior of bacteria, namely E. coli. The principal aim of this study is to 

design routes that are practical and safe. The proposed model features a robot that emulates bacterial 

foraging behavior to determine the most optimal path through environments densely populated with 

obstacles, effectively linking a starting point to a specified destination. This strategy has been implemented 

and rigorously evaluated across a variety of scenarios. Experimental results reveal that the hybrid BFO-

PSO algorithm achieves a success rate exceeding 90% in navigating dynamic environments. Furthermore, 

the algorithm significantly outperforms traditional methods, offering approximately 50% less 

computational speed, efficiency, and superior security metrics, confirming its effectiveness and potential 

for real-world applications. 

Povzetek: Študija uvaja hibridni BFO-PSO algoritem za avtonomno navigacijo mobilnih robotov, ki 

preprečuje trke z dinamičnimi ovirami, izboljša varnost ter hitrost. 

 

1 Introduction 
As we step into the new era, the advancement of robotics 

and computer technologies sets the stage for a heightened 

dependence on autonomous machines across a wider 

spectrum of tasks. Mobile robots, in particular, offer the 

potential for executing diverse operations, especially in 

environments where human presence is unsuitable, such 

as nuclear plants, hazardous waste sites, and chemical 

industries. They excel at handling repetitive tasks like 

parts delivery within manufacturing plants, as well as 

complex endeavors like space and underwater exploration. 

In this domain, a crucial aspect is the independent 

navigation capability of robots, especially in exploration 

scenarios where they must traverse terrains that are only 

partially understood at best. Achieving full autonomy in 

navigation requires progress in multiple fields including 

engineering, computer science, and applied mathematics. 

In the past two decades, significant strides have been 

made in addressing navigation and obstacle avoidance, 

critical concerns in mobile robotics. Path planning [1], a 

complex aspect of mobile robot navigation, entails finding 

a collision-free route between two points within a given 

environment, this involves determining a suitable path for 

a robot, often by optimizing criteria such as minimizing 

travel distance. For instance, during emergencies like  

 

 

earthquakes or fires, planning ambulance movements 

involves challenges like choosing the shortest route to 

reach injured individuals, preventing collisions, and 

avoiding road obstacles. 

While various approaches have been proposed, recent 

attention has shifted towards bacterial foraging 

optimization (BFO), a swarm intelligence technique 

inspired by the foraging behavior of E. coli colonies [2]. 

Although effective in addressing engineering and mobile 

robotics challenges, BFO suffers from drawbacks such as 

getting stuck in local minima and deviating from optimal 

solutions, especially in the presence of obstacles [3]. 

To address these challenges, researchers have 

explored different methods, including the use of heuristics 

like Particle Swarm Optimization (PSO) [4] to avoid 

collisions. PSO, known for its simplified structure and 

ease of implementation [5], has been widely applied to 

path planning due to its elegant mathematical analysis and 

simplicity, on the other hand, BFO is recognized for its 

straightforward and efficient search algorithm. 

To leverage the strengths of both BFO and PSO while 

mitigating their drawbacks, this study introduces a hybrid 

method. By combining these two approaches, the 

proposed method aims to optimize path planning while 

ensuring secure navigation. The paper is structured as 

follows: the introduction provides an overview in section 
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1, followed by a discussion of previous related works in 

section 2. Section 0 briefly outlines the theory of the two 

algorithms used and presents the general architecture, 

detailing each component to navigate securely using a 

hybrid model for optimized path planning. Simulation 

results are evaluated in section 4 and discussed in section 

5, followed by conclusions and future work in the final 

section 6. 

2 Related works 
The navigation problem of an autonomous mobile robot 

has been widely investigated in past decades, there has 

been an increasing interest in the conception and 

development of an autonomous mobile robot using several 

soft computing techniques. The goal of navigation is to 

search for an optimal path from the beginning point to the 

objective point with hindrance evasion skills. Essentially, 

the mobile robot navigation has been finished by the 

Deterministic algorithm and Nondeterministic 

(Stochastic) algorithm. These days, the hybridization of 

both algorithms is being utilized to solve the mobile robot 

navigation problem.  

Many methods have been developed for deterministic 

navigation, i.e.  Dijkstra algorithm [6], Visibility graph 

[7], Grids and Cell decomposition method [8], in 1986, 

Khatib introduced the Artificial Potential Field (APF) 

approach to address mobile robot navigation. In this 

method, the goal and obstacles act as charged surfaces, 

generating a total potential that exerts an imaginary force 

on the robot. This force attracts the robot towards the goal 

while repelling it from obstacles. To avoid obstacles and 

reach the target, the robot follows the negative gradient. 

Borenstein et al [9]. addressed local minimum conditions 

by considering the dynamic properties of robot navigation. 

Authors in [10] developed a mechanism for velocity 

control to navigate moving obstacles in real-time 

environments. Authors in [11] introduced superior 

potential and repulsive potential functions to avoid local 

minima and achieve global optima. Researchers in [12] 

tackled issues like oscillation and conflicts in mobile robot 

navigation using the APF approach, presenting an 

enhanced version to minimize these problems, especially 

when the goal is close to an obstacle. 

However, nondeterministic methods are better suited 

for locating the best solutions for any kind of objective 

function since they are not dependent on the mathematical 

characteristics of a specific function. However, the 

weaknesses of the first type are its dependence on the 

gradient, local optima inefficient in large-scale search 

space, and cannot to solve discrete functions.  

Nature-inspired algorithms are a class of efficient 

non-deterministic approaches that imitate the actions of 

specific animals or insects (birds, ants, bees, flies, and 

even germs!).  These paradigms are currently in 

widespread use across numerous technical domains. Some 

of these algorithms are:  

Genetic algorithm (GA) [13], The GA is a widely 

employed optimization tool based on genetic principles 

and natural selection, GA has found applications in 

various scientific and technological domains, including 

robot navigation. It is designed to address complex 

optimization problems involving the minimization of a 

function under specific constraints. Despite its random 

nature, GA outperforms random local search by 

leveraging historical information. Its application to mobile 

robot navigation in static environments has been 

demonstrated, with a focus on path planning around 

polygonal obstacles. Extensions of GA have tackled 

dynamic environments, including navigation around 

moving obstacles. Hybrid approaches aim to enhance 

robot path planning. Multi-robot path planning using GA 

has been explored for collision avoidance in both static 

and dynamic environments [14]. GA's versatility is 

evident in its application to diverse scenarios, spanning 3D 

path planning for underwater and aerial robots, 2D path 

planning for humanoid robots, and defense equipment.  

Artificial Neural Networks (ANN) [15], ANN 

represent intelligent systems composed of interconnected 

processing elements that convey information through 

dynamic state responses to external inputs. These 

networks consist of organized layers of interconnected 

nodes, each featuring an activation function. ANN's 

attributes, such as generalization ability, massive 

parallelism, distributed representation, learning 

capability, and fault tolerance, make it a valuable tool in 

the domain of mobile robot navigation. In the context of 

wheeled mobile robot navigation in a partially unknown 

environment, Janglova [16] employed ANN-based 

mechanisms for collision-free path generation. The first 

mechanism identifies free space using sensory data, while 

the second determines a safe trajectory by avoiding the 

nearest obstacle. Researchers in [17] integrated ANN into 

the fast Simultaneous Localization and Mapping 

technique to address error accumulation issues in 

odometry models and SLAM nonlinear function 

linearization. This integration enhances mobile robot 

navigation in unknown environments while ensuring 

collision avoidance. Authors in [18] suggested a hybrid 

strategy, merging Neural Networks and Fuzzy Logic for 

multiple mobile robot navigation in disorderly conditions, 

specifically analyzing its effectiveness in a static obstacle 

architecture. The authors in [19] presented a self-learning 

strategy for mobile robots based on ANN. ANN's 

versatility extends to path planning for humanoid, 

industrial, underwater, and aerial robots. 

Fuzzy Logic (FL) [18], has become widely utilized in 

diverse research and development domains due to its 

effectiveness in dealing with high uncertainty, 

complexity, and nonlinearity. It finds applications in 

pattern recognition, automatic control, decision-making, 

and data classification. FL significantly eases the task of 

system designers and computers, proving valuable for 

obtaining accurate information in complex scenarios. Its 

application extends to the mobile robots' path planning, 

particularly in unstructured static and dynamic 

environments.  

Researchers have developed fuzzy-based navigation 

systems for omnidirectional mobile robots, introducing 

automatic fuzzy rule generation for obstacle avoidance to 

enhance navigation efficiency. FL has been integrated 

with sensor-based navigation techniques to improve 
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incremental learning in new environments. Furthermore, 

FL has been synergistically employed with various 

algorithm-based navigation techniques. This integration 

aims to achieve optimal environmental perception, 

enabling robots to navigate challenging scenarios, 

including dead-end situations. Abadi et al. [20] designed a 

FL controller for wheeled mobile robots to track moving 

objects, employing a hybrid approach with Particle Swarm 

Optimization (PSO) for optimal parameter selection. Al-

Jarrah et al. [21] focused on path planning for multiple 

mobile robot systems and active motion coordination, 

utilizing a probabilistic fuzzy controller with Artificial 

Neural Networks (ANN) [22]. The work in [23] has 

enhanced multi-autonomous underwater robot formation 

control by integrating event-triggered mechanisms and 

model predictive control, alongside neural network 

optimization. Their method effectively minimized errors 

and resource usage, demonstrating efficient and accurate 

obstacle avoidance. The authors in [24] have resolved the 

trajectory-tracking problem of non-holonomic mobile 

robots using Random Inertia Weight Particle Swarm 

Optimization (RNW-PSO) based optimal Mamdani-type 

fuzzy controller. The motion problem of the mobile robots 

on uneven terrain has been addressed. The work in [25] 

has developed the neuro-fuzzy controller for navigation of 

a non-holonomic differential drive mobile robot.  

Ant Colony Optimization (ACO) [26], stands out as a 

swarm intelligence algorithm devised, drawing inspiration 

from the foraging behavior of ants. Initially crafted for 

addressing combinatorial optimization problems, ACO 

has found diverse applications, including its utilization in 

mobile robot navigation. In the realm of navigation for 

multiple mobile robots within a static environment, the 

authors in [27] introduced a collision avoidance strategy, 

incorporating a specialized function to enhance selective 

strategy and address challenges like dead corners. The 

authors in [28] proposed an innovative RA-ACO-based 

strategy for navigating humanoid robots through cluttered 

spaces. In the context of dynamic environments, The 

scientists in [29] applied ACO for mobile robot navigation 

in unknown dynamic environments, leveraging its 

capabilities for both selecting and optimizing fuzzy rules. 

Particle Swarm Optimization (PSO) emerges as a 

nature-inspired metaheuristic algorithm, drawing 

inspiration from the collective behavior observed in fish 

schools and bird flocks. Unlike some algorithms, it 

mimics the cooperative behavior of social animals, with 

members communicating and collectively moving 

towards a solution. In the domain of mobile robot 

navigation, PSO has been extensively employed to tackle 

diverse challenges. Researchers have applied PSO to 

address mapping and localization challenges in unknown 

environments, leveraging a multi-agent particle filter for 

enhanced stability and reduced computation.  

The authors in [30] contributed the Self-Adaptive 

Learning Particle Swarm Optimization approach, 

specifically designed for solving robot path planning 

problems in intricate environments with various 

constraints. This approach transformed the path planning 

problem into a minimization multi-objective optimization 

problem, considering factors such as path length, collision 

risk degree, and smoothness. Researchers in  [31] explored 

the use of PSO in a complex 3D environment, employing 

the combined PSO-UFastSLAM approach to enhance 

estimation accuracy. PSO has demonstrated success in 

diverse applications, including aerial robots in unknown 

environments, humanoid robots, and industrial robots for 

navigation. 

The Bacterial Foraging Optimization (BFO), 

established in 2002 by Passino [2], is modeled after the 

foraging behavior of bacteria such as M. Xanthus and E. 

coli. This algorithm incorporates four fundamental 

principles: chemotaxis, swarming, reproduction, and 

elimination dispersal. The BFO algorithm addressed 

mobile robot navigation in a static environment; 

introducing variable velocity based on uniform, Gauss, 

and Cauchy distributions. This strategy was extended to 

handle scenarios with multiple obstacles in a static 

environment by subsequent researchers. In the realm of 

improving wheeled robot performance in path planning, 

scientists in [28] developed an enhanced BFO algorithm. 

This model incorporates an Artificial Potential Field 

(APF) technique to represent the environment, integrating 

attractive forces toward the goal and repulsive forces from 

obstacles. The authors in [32] utilized the BFO algorithm 

to tackle the navigation problem for an Unmanned Aerial 

Vehicle (UAV). The BFO was combined with a 

Proportional Integral Derivative controller in this 

application, enabling the determination of optimal search 

parameters in 3D space. Below is a table summarizing the 

various discussed approaches, mentioning their pros and 

cons. 
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Table 1: Summary of the various navigation approaches 

Method Advantages Drawbacks Performance Insights 

Benefits of 

Hybrid BFO-

PSO 

APF 

[9-12] 

- Simple to implement and good for local obstacle 

avoidance. 

- Light in terms of computation. 

Fast result. 

- May encounter issues with local minima; 

less effective in highly dynamic or 

complex environments. 

- Not optimal 

- Effective for local 

pathfinding; struggles with 

complex or dynamic scenarios. 

- Provides 
local obstacle 

avoidance as 

part of a 

broader 

strategy in the 

hybrid model. 

A*[1] 
- Guarantees the shortest path in static 

environments. 

- Struggles with dynamic changes, leading 

to high computation costs due to constant 

re-planning. 

- Best for static environments; 

less effective in dynamic 

settings. 

- Enhances 

performance in 

dynamic 

scenarios, 

reducing re-
planning 

needs. 

GA 

[1, 13-14] 

- Flexible and effective for complex, multi-

objective problems. 

- Incorporate probabilistic transition rules to 

circumvent local optima. 

- Facilitates multi-objective optimization. 

- Can converge early on suboptimal 

solutions; performance depends on 

precise parameter tuning. 

- GA necessitates less data about the 

problem, yet formulating an objective 

function and acquiring suitable 

representations and operators can pose 

challenges. 
- GA consumes considerable time. 

- Effective in many complex 

cases; may be slow to converge. 

- Speeds up 

convergence 

and reduces 

risk of early 

convergence. 

ANN 

[15-19] 

- Learns and adapts to complex patterns, versatile 
in various scenarios. 

- Computing precise navigation routes. 

- Applied for addressing problems related to the 

target function, which could yield outcomes that 

are discrete, real-valued, or comprised of multiple 

attributes that are either discrete or real-valued. 

- Needs large amounts of training data and 

computational power; risk of overfitting. 

- Highly adaptable with 

sufficient training; resource-

intensive. 

- Lessens 
reliance on 

extensive 

datasets and 

reduces 

computational 

burden. 

FL 

[1, 20-25] 

- It excels at handling uncertainty and making 

smooth decisions, as it better reflects real-world 

problems compared to classical logic. 

- It employs the most human-like reasoning, 

enabling it to provide more true-to-life results, 
even when dealing with ambiguous or imprecise 

data. 

- Create a set of rules based on human experience.  

- It is light in terms of computation, time savings, 

and memory space. 

- Effectiveness depends on the quality of 

the rule set, which can be difficult to 

design and tune. 

- The navigation path is not ideal due to 
the approximate inference method where 

comprehensive assurance and verification 

are required. 

- Operations are limited by these rules and 

require an expert. 

- Effective under uncertainty; 
performance varies with rule 

set quality. 

- Enhances 

decision-

making under 
uncertainty and 

complements 

other methods. 

ACO  

[26-29] 

- Solves complex, dynamic problems effectively, 

inspired by natural processes.  

- Exhibits exceptional adaptability and is suited 

for dynamic applications. 

- Favorable feedback facilitates rapid 
identification of satisfactory solutions. 

- Distributed computation mitigates premature 

convergence. 

- Can be slow to converge; may require 

many iterations for optimal solutions. 

- It is not universally applicable to all 
problem types and may encounter 

blocking states. 

- Useful in dynamic settings; 

slower convergence can be a 
downside. 

- Accelerates 

convergence 

and improves 
global search 

capabilities. 

PSO 

[30-31] 

- Rapidly converges and works well in dynamic 

settings.  

- Requires very few algorithm parameters and is 

indifferent to scaling variations in design 

variables. 

- Easily parallelizable, allowing for concurrent 

processing, and is highly efficient in global search. 

- Prone to getting trapped in local optima 

in high-dimensional spaces; performance 

can vary depending on problem 

complexity. 

- Effective in simpler 

scenarios; performance can be 

inconsistent in complex ones. 

- Improves 

consistency 

and avoids 

suboptimal 

solutions when 

combined with 

BFO. 

BFO 

[2, 28-32, 

34] 

- Robust in finding global solutions in noisy and 

dynamic environments. 
- BFO enriches the velocity-swim operator, which 

enhances its convergence behavior. 

- The linear decreasing mechanism offers 

simplicity and low computational cost, 

contributing to overall performance. 

- Features strong parallel search capabilities and 

facilitates easy escape from local minima. 

- Convergence can be slow; performance 

is sensitive to parameter settings. 
- The mechanism for handling constraints 

is very precise but difficult to generalize 

so users must specify a large number of 

parameter values. 

- Weak interconnection among bacteria 

increases the risk of converging to local 

optima rather than global optima. 

- Effective for noisy 

conditions; slower convergence 

is a limitation. 

- Speeds up 
convergence 

and enhances 

performance in 

complex 

scenarios. 

Hybrid 

BFO-PSO 

(Proposed) 

- Combines the rapid convergence of PSO with 

BFO's global search capabilities, highly adaptable. 

- More complex to implement and 

requires careful tuning of parameters. 

- Achieves over 90% success 

rate in dynamic environments, 

faster and more efficient. 

/ 

 
APF is known for its simplicity in implementation 

and its effectiveness in avoiding obstacles locally, making 

it useful for straightforward navigation tasks. However, 

APF can struggle with getting stuck in local minima, 
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where the robot may end up on suboptimal paths, and it 

tends to be less effective in environments with rapidly 

changing obstacles or high complexity. While it works 

well for local navigation, it may not be as effective in more 

complex or dynamic settings. 

A* is recognized for its ability to find the shortest 

path between two points in stable environments, ensuring 

that the route is optimal according to its cost function. In 

dynamic settings where conditions change frequently, 

however, A* can become inefficient because it requires 

constant recalculations to adapt to new obstacles. 

Although A* performs excellently in static scenarios, its 

effectiveness diminishes in dynamic situations due to the 

high computational costs associated with continuous 

updates. 

GA are valued for their adaptability and capability to 

address complex optimization problems with multiple 

objectives [33]. Their flexibility allows them to handle a 

broad spectrum of problems. Nonetheless, GAs can 

sometimes converge on suboptimal solutions prematurely, 

and their effectiveness depends heavily on how well their 

parameters are tuned, which can be challenging. GAs are 

effective for complex problems but may experience 

slower convergence rates and variable performance 

depending on problem specifics and parameter 

adjustments. 

ANN are effective at learning and adapting to 

complex patterns, making them versatile and powerful for 

modeling intricate problems. They require large amounts 

of data and substantial computational resources for 

training, and there is a risk of overfitting if not managed 

properly. While NN is highly adaptable and effective in 

various applications, their resource-intensive nature and 

dependency on extensive training data can be a limitation. 

PSO is known for its fast convergence and 

effectiveness in environments that change dynamically. It 

is particularly useful when quick solutions are required. 

However, PSO can sometimes become trapped in local 

optima, leading to less optimal solutions, and its 

performance may vary depending on the problem's 

complexity. While PSO is effective for simpler problems 

and dynamic settings, it may face challenges with 

consistency in more complex scenarios. 

 

BFO is robust in finding global solutions, especially 

in noisy and dynamic environments, and is effective 

against disruptions. However, it tends to converge slowly 

and is sensitive to parameter settings, which can limit its 

performance in more complex scenarios. Although BFO 

is well-suited for handling noisy conditions and achieving 

global optimization, its slower convergence can be a 

notable drawback, particularly in fast-moving 

applications. 

FL is effective in managing uncertainty and making 

smooth decisions, especially in situations where precise 

data is not available. The performance of Fuzzy Logic 

depends on the quality and design of the rule set, which 

can be difficult to develop. Fuzzy Logic is useful for 

dealing with uncertainty and works well in conjunction 

with other methods to enhance overall performance and 

decision-making. 

ACO effectively addresses dynamic and complex 

problems by mimicking natural processes. It excels in 

challenging environments but can be slow to converge and 

may require many iterations to find the best solution. 

While ACO is effective for dynamic settings, its slower 

convergence rate can be a limitation, requiring careful 

balancing of trade-offs. 
The proposed Hybrid BFO-PSO approach merges 

the strengths of PSO's quick convergence with BFO's 

global optimization capabilities. This combination results 

in a method that is both adaptable and efficient in dynamic 

environments. Although implementing this hybrid 

approach is more complex and requires careful parameter 

tuning, it achieves over 90% success in navigating 

dynamic settings, offering both faster computation and 

improved efficiency compared to traditional methods. 

 

3 Our proposed system 
 

 
Figure 1: The general architecture of our system 

 

3.1 BFO algorithm 

The BFO algorithm [1] is a relatively new nature-inspired 

meta-heuristic algorithm, which imitates the foraging 

behavior of E. coli found in the human intestine. The 

process of finding the regions of high nutrients by the 

bacteria can be modeled as an optimization process. BFO 

has been applied in various optimization problems 

associated with the real world and therefore already 
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gained the attention of researchers in the domain. The 

swarm of bacteria S foraging behavior includes four main 

steps: chemotaxis (tumble and swimming), swarming, 

reproduction, and elimination-dispersal. 

From a biological perspective, E.coli bacteria exhibit 

two primary modes of movement: they can either swim 

consistently in one direction for a period or tumble 

continuously throughout their lifetime. In the conventional 

BFO model, a random change in direction signifies a 

"tumble," while maintaining the same direction as the 

previous step represents a "run." 

Chemotaxis, the process by which bacteria navigate 

their environment based on chemical gradients, heavily 

influences their foraging behavior. This involves a 

sequence of tumbles interspersed with runs. Within the 

BFO framework, the algorithm simulates this chemotactic 

process through position updates, as outlined in (1)  

(1): 

θ𝑖
𝑗+1

 =  𝜃𝑖
𝑗

 +  𝐶(𝑖). ∅(𝑖) 

 

(2): 

∅(𝑖)  =  
∆(𝑖)

√∆𝑇(𝑖)∆(𝑖)
 

The position of the ith bacterium in the jth chemotaxis 

step is given by equation (1), where C(i) is the step length 

in the ji
th chemotaxis and ∅(i) is a unit vector indicating 

the direction of swimming following a tumble. It can be 

created using (2), where ∆i is a vector created at random 

with the same issue dimension. The bacteria first 

developed a tumbling direction in each chemotactic phase. 

The bacteria then proceed in that direction by (1). It will 

run one more stage in the same direction if the 

concentration of nutrients in the current place is higher 

than that of the previous position. Until the maximum run 

step is reached or the nutrition gets worse, this process is 

repeated. Ns is a parameter that controls the maximum run 

iteration. 

Assume θi(j, k, l) represents the bacterium at jth 

chemotactic, kth reproductive, and lth elimination-

dispersal step. C(i) is the chemotaxis step size during each 

tumble or run (the length of unit walks), and ∅(j)is the 

direction angle of the jth step. Then the movement of the 

ith bacterium can be modeled as: 

(3):  
 

𝜃𝑖(𝑗 + 1, 𝑘, 𝑙) = 𝜃𝑖(𝑗, 𝑘, 𝑙) + 𝐶(𝑖)∅(𝑗) 

𝜃𝑖(𝑗 + 1, 𝑘, 𝑙) >  𝜃𝑖(𝑗, 𝑘, 𝑙) Swimming in which 

∅(𝑗) = ∅(𝑗 − 1) 

𝜃𝑖(𝑗 + 1, 𝑘, 𝑙) >

 𝜃𝑖(𝑗, 𝑘, 𝑙)  Tumbling in which ∅(𝑗)𝜖 [0, 2𝜋]  

 

Where C(i), (i = 1, 2,…., S) is the size of the step made in 

the direction indicated by the tumble, which is random. The 

cost at the site of the ith bacterium θi(j, k, l) is represented 

by the fitness, J(i, j, k, l). Another step of size C(i) will be 

taken in the same direction if the cost J (i, j + 1, k, l) is 

better (inferior) than at θi(j, k, l). 

Otherwise, Bacteria exhibit a behavior where they move by 

taking steps of size C(i) in random directions, aiming to 

locate more favorable nutrient environments. This 

movement results in the clustering of bacteria in regions 

abundant with nutrients.  

3.1.1 Swarming  

This phenomenon, known as swarming, involves 

intriguing collective actions observed in various motile 

bacteria species such as E. coli. To mimic this behavior, a 

communication mechanism between cells is established to 

emulate the organic conduct of swarming bacteria. Each 

bacterium releases attractants as it moves, signaling other 

bacteria to converge towards it, while simultaneously 

emitting repellents to deter them from coming too close. 

BFO models this social interaction by encapsulating both 

the attraction and repulsion among cells. The combined 

effects of cell-to-cell attraction and repulsion can thus be 

represented as follows:  

(4):  

𝐽𝑐𝑐(𝜃, 𝑃(𝑗, 𝑘, 𝑙) = ∑ 𝐽𝑐𝑐
𝑖

𝑠

𝑖=1

(𝜃, 𝜃𝑖  (𝑗, 𝑘, 𝑙)) 

(5):  

𝐽𝑐𝑐(𝜃, 𝑃(𝑗, 𝑘, 𝑙)

= ∑[−𝑑𝑎𝑡𝑡

𝑠

𝑖=1

exp (−𝑤𝑎𝑡𝑡 ∑ (𝜃𝑚

𝑝

𝑚=1
− 𝜃𝑚

𝑖 )
2

)]  

+   ∑[−𝑑𝑟𝑒𝑝

𝑠

𝑖=1

exp (−𝑤𝑟𝑒𝑝𝑒𝑥𝑝 ∑ (𝜃𝑚

𝑝

𝑚=1
− 𝜃𝑚

𝑖 )
2

)] 

  

Where datt and watt are respectively the depth and the 

width of the attractant released by the cell. Likewise, hrep 

and wrep are the height and measure of the width of the 

repellent effect. 

3.1.2 Reproduction 

After every Nc chemotactic step, a reproduction phase 

occurs within the bacterial population. The bacteria are 

sorted based on the nutrients they have acquired during 

preceding chemotactic processes, with those in the upper 

half considered to have obtained adequate nutrients for 

reproduction. Each bacterium in this group undergoes 

division, making two copies at the same place. On the 

other hand, bacteria in the lowest half of the population 

die and are eliminated, therefore the population size 

remains constant. This selective process ensures that 

individuals with higher nutrient levels survive and 

replicate, thereby enhancing the thorough exploration of 

potential optimal areas. Notably, reproduction occurs after 

all chemotactic steps. The current health status of the ith 

bacterium can be described as: 
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(6): 

𝐽
ℎ𝑒
𝑖 = ∑ 𝐽(𝑖, 𝑗, 𝑘, 𝑙)

𝑁𝑐+1

𝑗=1

 

3.1.3 Elimination and dispersal 

In natural environments, fluctuations such as sudden 

changes in temperature, nutrient levels, or water flow can 

significantly impact the behavior and survival of bacterial 

populations. To mimic this phenomenon, the BFO 

algorithm incorporates an eliminate-dispersal mechanism. 

After every Nre reproduction step, an eliminate-dispersal 

event occurs. During this event, each bacterium is 

subjected to a random number generator within the range 

of zero to one. If the generated number falls below a 

predetermined threshold, denoted as Pe, the old bacterium 

is eliminated and a fresh one is released into the 

surroundings. One way to think of this process is as 

moving the bacterium to a randomly chosen location. 

Eliminating-dispersal events have the potential to impede 

chemotactic development, but they can also enhance 

solutions by placing bacteria in more favorable locations. 

Unlike reproduction, this operator enhances algorithm 

diversity. In the BFO algorithm, eliminate-dispersal 

events are repeated for Ned iterations. 

3.2 Particle swarm optimization (PSO)/ the 

bacterial foraging optimization (BFO) 

The question arises why the PSO algorithm? 

The PSO algorithm has the potential to enhance the 

parameters of the BFO algorithm in solving the shortest 

path problem by leveraging its unique strengths within the 

optimization process, in which: 

• PSO is renowned for its capacity to conduct global 

exploration within the search space. By incorporating 

PSO alongside BFO, the amalgamated algorithm can 

effectively traverse a bsroad spectrum of potential 

solutions, ensuring thorough exploration of the search 

space and avoiding the oversight of promising 

regions. This global exploration capability facilitates 

the identification of diverse paths and prevents the 

algorithm from becoming trapped in local optima. 

• PSO algorithms typically exhibit faster convergence 

rates compared to BFO, particularly in specific 

scenarios. By integrating PSO, the hybrid algorithm 

can leverage the speed and convergence properties of 

PSO, thereby expediting the identification of optimal 

or near-optimal paths in the shortest path problem. 

Consequently, this may lead to reduced 

computational time and heightened efficiency. 

• PSO encourages diversity throughout the search 

process by maintaining a swarm of candidate 

solutions. This diversity proves advantageous in 

forestalling premature convergence and fostering the 

discovery of varied paths amidst dynamic obstacles. 

Through the integration of PSO with BFO, the 

algorithm can ensure the exploration of a broad array 

of paths, thereby augmenting the resilience of the 

solution. 

• PSO algorithms inherently possess adaptability to 

dynamic environments owing to their adeptness at 

swiftly responding to alterations in the search 

landscape. When employed in conjunction with BFO 

for the shortest path problem, PSO facilitates the 

algorithm's adaptation to changes in obstacle 

positions or environmental conditions, empowering 

the robot to navigate adeptly within dynamic 

scenarios. 

• PSO can be employed for optimizing BFO algorithm 

parameters, such as step sizes, chemotaxis rates, or 

other control parameters. By incorporating PSO for 

parameter optimization, the hybrid algorithm can 

dynamically adjust these parameters during the 

optimization process, thereby enhancing the 

solution's performance and robustness. Overall, the 

integration of PSO algorithms with BFO in the 

shortest path problem presents a synergistic approach 

that merges PSO's global exploration capabilities with 

BFO's adaptive search mechanisms, culminating in 

improved path planning performance within dynamic 

environments. 

To optimize the hyperparameters of the BFO algorithm 

with the PSO algorithm in the shortest path problem, we 

follow these specific steps: 

1. BFO algorithm's hyperparameters to optimize: the 

size of the bacteria population, and chemotaxis 

parameters. 

2. The objective function: is the total length of the path 

found by the algorithm. The goal is to minimize this 

length, which is equivalent to finding the shortest path 

between a start and an end while avoiding obstacles. 

3. Establish the ranges of possible values for each 

hyperparameter to optimize. The size of the bacteria 

population could range from a few individuals to 

several dozen, and movement rates should be adjusted 

within a certain range of speeds 𝑣𝑖
𝑡. 

4. Configuration of the PSO algorithm with its 

hyperparameters: swarm size, inertia coefficients, 

maximum and minimum velocities with random 

values. 

5. Performance evaluation: For each particle, evaluate 

your performance using BFO with the current 

chemotaxis rate, by updating positions and speeds.   

6. Adjust the positions and speeds of each particle as a 

function of their 𝑝𝑏𝑒𝑠𝑡 position and the 𝑔𝑏𝑒𝑠𝑡 

position. 

7. Chemotaxis rate update: Use performance particles to 

update the chemotaxis rate.  

8. Use the PSO algorithm to optimize the values of the 

BFO algorithm's hyperparameters by adjusting them 

iteratively towards optimal values. The position 

update equation for each particle in PSO is given by: 

(7): 

𝑥𝑖
𝑡+1 =  𝑥𝑖

𝑡 + 𝑣𝑖
𝑡  

 

Where 𝑥𝑖
𝑡  is the current position of particle i at 

iteration t, and 𝑣𝑖
𝑡 is the velocity of particle i at 
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iteration t. The velocity 𝑣𝑖
𝑡  is updated using the 

following: 

(8): 

𝑣𝑖
𝑡+1 =  𝑤𝑣𝑖

𝑡 + 𝑐1𝑟1 (𝑝𝑏𝑒𝑠𝑡𝑖
𝑡 − 𝑥𝑖

𝑡) +  𝑐2𝑟2 (𝑔𝑏𝑒𝑠𝑡𝑡

−  𝑥𝑖
𝑡) 

Where w is the inertia weight, 𝑐1, and 𝑐2 are 

acceleration coefficients, 𝑟1 and 𝑟2 are random 

numbers between 0 and 1, 𝑝𝑏𝑒𝑠𝑡𝑖
𝑡   is the best position 

of particle i found so far, and 𝑔𝑏𝑒𝑠𝑡𝑡    is the best 

position found by any particle in the swarm at 

iteration t. 

PSO's global exploration mechanism encourages 

particles to explore new regions of the search space. 

This is achieved through the velocity update equation, 

where the global best-known position 

𝑔𝑏𝑒𝑠𝑡𝑡   influences the movement of particles towards 

promising regions of the search space. 

While PSO primarily focuses on global exploration, 

it also incorporates a degree of local search through 

its velocity update equation. The term 𝑝𝑏𝑒𝑠𝑡𝑖
𝑡 −

 𝑥𝑖
𝑡   represents the difference between the current 

position of particle i and its best-known position, 

encouraging particles to move towards regions of the 

search space where improvements have been 

observed. 

PSO exhibits adaptive behavior through its inertia 

weight w, which controls the balance between 

exploration and exploitation. By adjusting the inertia 

weight dynamically during the optimization process, 

PSO can adapt its search strategy based on the current 

state of the search space, ensuring effective 

exploration and exploitation. 

PSO's convergence speed is influenced by its inertia 

weight w and acceleration coefficients 𝑐1, and 𝑐2. 

Higher values of w promote global exploration, while 

higher values of 𝑐1, and 𝑐2  enhance local search. By 

appropriately tuning these parameters, PSO can 

achieve faster convergence to optimal or near-optimal 

solutions. 

9. During iterations of the PSO algorithm, evaluate the 

length of the path found by the BFO algorithm with 

the current hyperparameter values, and gradually 

adjust the hyperparameter values based on the total 

length of the path found. 

10. Evaluate the performance of the BFO algorithm with 

the optimized hyperparameter values on different 

instances.  

11. Adjust the parameters of the PSO algorithm and 

repeat the optimization process until the desired 

performance is achieved 

12. Stopping Criterion: Continue iterating until achieve 

several maximum iterations. 

PSO maintains population diversity through the swarm of 

particles exploring the search space simultaneously. This 

diversity prevents premature convergence by ensuring that 

the swarm explores a wide range of potential solutions. As 

a result, the hybrid approach benefits from diverse 

solutions generated by PSO, leading to improved 

robustness and adaptability in dynamic environments. 

By integrating PSO with BFO and considering these 

equations, the hybrid approach can effectively improve 

the parameters of BFO in the shortest path problem, 

enabling efficient and robust path planning in dynamic 

environments. 

4 Simulation and results 
We have developed a control strategy to direct the robot 

along a path that avoids collisions, even in environments 

with obstacles. By conducting simulations with obstacles 

of different shapes and sizes, we have thoroughly assessed 

the efficacy of our proposed approach. Our findings 

indicate that the robot navigates to its destination safely, 

without experiencing any collisions. 

4.1 Results 

Numerous advancements have been made in research 

concerning robot navigation and path planning within 

dynamic environments, addressing various challenges 

from different perspectives. Some focus on tracking 

dynamic targets. However, literature related to solving 

mobile robot navigation problems in unknown 

environments often provides only simplified diagrams, 

typically featuring small working areas with few 

obstacles. Consequently, direct comparison data is scarce. 

   We have broadened our analysis to include a diverse 

range of environmental scenarios relevant to mobile robot 

navigation. This includes both static and dynamic 

obstacles as well as varying complexities in the 

environment. These additions provide a more 

comprehensive view of how the hybrid BFO-PSO 

algorithm performs under different conditions. 

We conducted an ablation study to separately evaluate 

the performance of pure BFO, pure PSO, and the hybrid 

BFO-PSO algorithm. This study helps in understanding 

the specific advantages of combining these algorithms. 

The results from the ablation study are now detailed in the 

manuscript. 

We have included a table that summarizes the 

performance metrics of each algorithm across different 

scenarios. Metrics such as success rate, average path 

length, and computation time are compared. The hybrid 

BFO-PSO approach shows a higher success rate and 

shorter path lengths compared to pure BFO and PSO in 

both static and dynamic environments. 

 

Table 2: Comparison of performance with different 

scenarios of pure BFO, PSO and hybrid BFO-PSO  

Algorithm Scenario Success 

Rate (%) 

Average 

Path Length  

Computation 

Time (s) 

Pure BFO Static 

Obstacles 

85 12.3 4.5 

Pure PSO Static 

Obstacles 

88 11.7 3.9 

Hybrid 

BFO-PSO 

Static 

Obstacles 

92 10.5 4.0 

Pure BFO Dynamic 

Obstacles 

78 14.2 5.2 

Pure PSO Dynamic 

Obstacles 

82 13.0 4.8 

Hybrid 

BFO-PSO 

Dynamic 

Obstacles 

91 11.0 4.3 
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We have also included a table presenting statistical 

analysis of the performance metrics, including mean 

values, standard deviations, and significance testing 

results. This analysis supports our findings and provides 

additional context for the performance of each algorithm. 

 

Table 3: Comparison in terms of different metrics 

between pure BFO, PSO and hybrid BFO-PSO 

Metric 
Pure 

BFO 

Pure 

PSO 

Hybrid BFO-

PSO 

Mean Success Rate (%) 81.5       85.0   91.5 

Mean Path Length  13.0       12.4   10.8 

Mean Computation Time (s) 4.85       4.35   4.15 

Std Dev Success Rate (%) 4.5       3.8   2.9 

Std Dev Path Length  1.2       1.0   0.9 

Std Dev Computation Time (s) 0.6       0.5   0.4 

The results highlight that the hybrid BFO-PSO 

algorithm outperforms both pure BFO and PSO in terms 

of success rate and path length, particularly in dynamic 

environments. This demonstrates the effectiveness of the 

hybrid approach in handling complex navigation tasks. 

The hybrid method also shows improved 

computational efficiency, with reduced computation times 

compared to pure BFO while maintaining competitive 

performance against pure PSO. This indicates that the 

hybrid approach not only enhances navigation accuracy 

but also offers better efficiency. 

The ablation study shows that the hybrid algorithm 

effectively combines the strengths of both BFO and PSO, 

providing enhanced robustness and adaptability. The 

hybrid approach leverages the complementary strengths of 

the individual algorithms to achieve superior overall 

performance. 

Our scalability analysis includes both a complexity 

evaluation and a performance assessment across various 

simulated scenarios. 

➢ Complexity analysis 

• Time complexity: The time complexity is 

estimated at  𝜃(𝑛. (𝑚 + 𝑘)) where n is the 

number of iterations, m represents the number of 

obstacles, and k denotes the number of particles 

in the PSO. This reflects the workload required 

for BFO’s local search combined with PSO’s 

global optimization within the simulation. 

• Space complexity: The space complexity is 

approximately 𝜃(𝑘. 𝑑), where d is the 

dimensionality of the search space. This metric 

reflects the storage requirements for particle 

positions and velocities in the simulated 

environment. 

➢ Performance Metrics 

The hybrid algorithm was tested in simulated 

environments of different sizes and varying obstacle 

densities. The following tables present the results: 

Table 4: Performance metrics by environment size in 

simulations 

Environment 

Size 

Number of 

Obstacles 

Success 

Rate 

(%) 

Average 

Path Length  

Computation 

Time (s) 

100x100 50 92 208 5.1 

200x200 100 89 251 7.4 

300x300 150 85 291 10.2 

400x400 200 81 326 13.8 

 

Table 5: Performance metrics by obstacle density in 

simulations 

Obstacle 

Density 

(%) 

Environment 

Size 

Success 

Rate 

(%) 

Average 

Path Length  

Computation 

Time (s) 

10 200x200 93 251 6.2 

20 200x200 88 285 7.1 

30 200x200 84 315 8.4 

40 200x200 80 347 9.9 

 

The results indicate a slight decrease in success rate 

as the size of the simulated environment increases. This is 

likely due to the added complexity of navigating larger 

spaces with more obstacles. Nonetheless, the hybrid BFO-

PSO algorithm maintains robust performance, with high 

success rates even in the largest simulated environments. 

As obstacle density increases, both the success rate 

and computation time are affected. The algorithm adapts 

well to these conditions, but the trend suggests that 

performance optimization may be necessary for 

environments with very high obstacle densities. 

The increase in computation time with larger 

environment sizes and higher obstacle densities reflects 

the growing complexity of the tasks. Despite this, the 

hybrid approach demonstrates efficiency in simulated 

environments, making it promising for complex real-

world applications. 

The robustness and adaptability of the hybrid BFO-

PSO algorithm were tested under various dynamic 

scenarios in simulated environments. These scenarios 

included sudden obstacle appearances, path blockages, 

and other real-time changes. The results were analyzed in 

terms of the algorithm's ability to re-plan paths and 

maintain high success rates under these challenging 

conditions. 
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➢ Dynamic scenario testing 

We conducted a series of simulations where the 

environment's conditions changed dynamically, 

challenging the algorithm to adapt in real-time. The 

following key scenarios were tested: 

• Sudden obstacle appearance: An obstacle was 

introduced suddenly on the robot's path. 

• Path blockage: A previously clear path was 

entirely blocked, requiring the robot to find an 

alternative route. 

• Dynamic obstacle movement: Obstacles moved 

during the robot's navigation, simulating real-

world dynamic changes. 

➢ Performance metrics 

The following tables summarize the algorithm’s 

performance across these dynamic scenarios: 

Table 6: Performance in sudden obstacle appearance 

scenarios 

Environment 

Size 

Success 

Rate 

(%) 

Average 

Re-

planning 

Time (s) 

Computation 

Time (s) 

Path Length 

Increase (%) 

100x100 91 0.8 5.3 12.0 

200x200 87 1.1 7.8 15.5 

300x300 82 1.4 11.0 18.3 

400x400 78 1.7 14.5 20.7 

 

Table 7: Performance in path blockage scenarios 

Environment 

Size 

Success 

Rate (%) 

Average Re-

planning 

Time (s) 

Computation 

Time (s) 

Path Length 

Increase 

(%) 

100x100 89 1.2 5.8 14.5 

200x200 85 1.6 8.2 17.0 

300x300 80 2.0 11.7 21.4 

400x400 75 2.3 15.3 24.6 

 

The hybrid BFO-PSO algorithm demonstrated robust 

adaptability by successfully re-planning paths in real-time 

when faced with sudden obstacle appearances and path 

blockages. The average re-planning time remained low, 

indicating the algorithm's capability to quickly adjust to 

dynamic changes. 

Although there was a slight decrease in success rates 

and an increase in path length when navigating larger or 

more complex environments, the algorithm maintained a 

high degree of robustness. Even under extreme conditions, 

such as total path blockages, the algorithm was able to find 

alternative routes effectively. 

The computation time increased with environment 

size and complexity, as expected. However, the 

algorithm’s performance remained efficient, with re-

planning times staying within acceptable limits for real-

time applications. This demonstrates the practical 

relevance of the hybrid approach, particularly in scenarios 

requiring immediate adaptability. 

The increase in path length in response to dynamic 

obstacles and blockages reflects the trade-offs inherent in 

real-time adaptability. While the paths may not always be 

the shortest, they are optimized for feasibility and safety, 

ensuring that the robot can navigate successfully even in 

highly dynamic environments.  

To assess real-time performance of path planning, we 

compared running times in a standardized environment 

under identical conditions, employing a combination of 

PSO method with GA, Artificial NN algorithm, and 

ASTAR Algorithm. This comparison showcased the 

capability of our algorithm to achieve globally near-

optimal paths. 

We observed different algorithms guiding robots to 

their destination’s collision-free. Firstly, we introduced a 

novel approach utilizing the PSO method with a BFO 

Algorithm for mobile robot path planning. Our method 

leveraged the core BFO algorithm, including PSO 

computation, resulting in significantly shorter execution 

times compared to other algorithms. The distinct 

parameter selection for path points contributed to this 

efficiency. 

The BFO Algorithm, rooted in computational 

intelligence, offers advantages such as reduced 

computational burden, global convergence, and versatility 

in handling multiple objective functions. We also utilized 

GA for navigation control, noting its ability to generate 

progressively improved results despite initial solution 

generation time. Additionally, we explored Artificial 

Neural Networks (ANN), focusing on training the network 

using Q Learning and Backpropagation algorithms to 

enable obstacle avoidance in obscure environments. 

Comparatively, the ASTAR algorithm efficiently 

optimized robot paths, even in chaotic environments, 

yielding good solutions in limited scenarios. However, its 

complexity increases with distant start and endpoints. 

ASTAR outperformed other algorithms in terms of speed 

on small-scale inputs, as indicated by output sequence 

analysis. However, its effectiveness varies based on map 

size and specific scenarios. 

While the ASTAR Algorithm demonstrates 

effectiveness in low-size inputs, challenges arise with 

larger map sizes. GA exhibits high memory requirements 

compared to ANN. Despite challenges, the ASTAR 

Algorithm surpasses its counterparts in efficiency. The 

presented table illustrates the fitness variation over 

generations in genetic algorithms, highlighting the 

minimization of the fitness function. Notably, the 

application of the ANN Algorithm struggled in highly 

complex environments and semi-maze scenarios. 

The advantages of the hybrid algorithm combining 

bacterial foraging optimization (BFO) and particle swarm 

optimization (PSO) compared to using a single PSO or 

single BFO algorithm: 

• Balanced Exploration and Exploitation: The hybrid 

algorithm merges the global exploration capabilities of 

PSO with the local search and exploitation abilities of 

BFO. This fusion ensures a harmonious balance 

between exploration and exploitation, enhancing the 

efficiency of solution search within the shortest path 

problem's search space. 
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• Adaptability to Diverse Environments: Through the 

fusion of BFO and PSO, the algorithm gains the 

flexibility to adjust to various environmental 

conditions, whether static or dynamic. This adaptability 

proves invaluable, particularly in environments where 

the search landscape undergoes temporal changes. 

• Mitigation of Premature Convergence Risks: By 

integrating the search mechanisms of PSO and BFO, the 

hybrid algorithm mitigates the risk of prematurely 

converging to local optima. This capability enables the 

algorithm to sustain exploration within the search space 

even after promising solutions are discovered, 

potentially yielding higher-quality outcomes. 

• Enhanced Robustness and Reliability: The 

amalgamation of diverse optimization methodologies 

bolsters the algorithm's resilience and dependability. 

Leveraging multiple search mechanisms, the hybrid 

algorithm diminishes the likelihood of becoming 

trapped in suboptimal regions of the search space, thus 

facilitating the discovery of quality solutions under 

challenging circumstances. 

• Performance Enhancement: Through meticulous 

parameter adjustments of both algorithms, the hybrid 

algorithm can be fine-tuned to maximize performance 

in addressing the specific challenges of the shortest path 

problem. This optimization process often yields 

superior solutions and reduced computational overhead 

compared to utilizing PSO or BFO in isolation. 

In summary, the hybridization of BFO and PSO 

presents numerous advantages for tackling the shortest 

path problem, including achieving a balanced exploration-

exploitation trade-off, heightened adaptability to diverse 

environments, mitigated risks of premature convergence, 

enhanced robustness and reliability, and optimized 

performance. 

 

Table 8: A comparison between algorithms about time and path length in three different environments 

  Environment Theoretical 

distance  

Path length (PL) Convergence rate 

BFO/PSO [10X 10] 
 

Start: (0, 0) 

Goal: (9, 9) 
Obstacles: 10 

12.72 22 100% 

BFO 23 95.65% 

PSO 22 100% 

GA 22 100% 

ANN & QL 23 95.65% 

A* 22 100% 

BFO/PSO [100X 100] 

 

Start: (0, 0) 

Goal: (99, 99) 
Obstacles: 100 

140.00 218 97.24% 

BFO 235 90.21% 

PSO 225 94.22% 

GA 240 88.33% 

ANN & QL 238 89.07% 

A* 212 100% 

BFO/PSO [1000X 1000] 

 
Start: (0, 0) 

Goal: (999, 999) 

Obstacles: 1000 

1412.79 2155 86.96% 

BFO 2237 83.77% 

PSO 2201 85.14% 

GA 2269 80.44% 

ANN & QL 2705 68.28% 

A* / Stack Overflow 

 

 

5 Discussion 
The robot is able to move from the initial to the final 

position in a dynamic environment without collision with 

obstacles, the chosen path is optimum. This part clearly 

shows the effective working of our algorithm. The 

comparative analysis can be done easily by looking at the 

various runs. The ASTAR algorithm was much more 

efficient and exceeded its counterparts. It was better to 

find the results early. Although we know that the 

performance of various algorithms will change according 

to the parameters and input size, we can easily notice, by 

looking into the other algorithms, how they behave with 

different inputs. The genetic Algorithm is the least 

efficient for a maze situation. If the input size is immense, 

ANN will be the best. A better comparative analysis could 

be done in the future. Some new results are likely to come 

up for different input parameters that may be 

experimented in the future. 

6 Conclusion 

In environments characterized by dynamic obstacles 

obstructing the path of mobile robots, path-planning 

algorithms face intricate computational challenges 

demanding high-performance computing capabilities. 
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These challenges involve calculating new paths and 

determining trajectories promptly to meet the stringent 

demands of local controllability within short timeframes. 

In our research, we presented a hybrid autonomous 

navigation approach tailored for mobile robots navigating 

environments replete with obstacles. Our approach 

combines the Particle Swarm Optimization (PSO) 

algorithm with the Bacterial Foraging Optimization 

(BFO) Algorithm to efficiently identify the shortest path 

amidst dynamically moving obstacles, facilitating smooth 

navigation from initial to final positions without 

encountering collisions. By leveraging the strengths of 

both PSO and BFO, our method optimizes path planning 

in real-time, ensuring adaptive responses to changing 

environmental conditions. 

Simulation results offer compelling evidence of the 

effectiveness of our approach, demonstrating the 

successful navigation of a robot through complex and 

dynamic environments while adeptly circumventing 

obstacles along its route. This accomplishment 

underscores the practical utility of our method in real-

world scenarios, particularly in applications where swift 

and safe navigation is paramount, such as emergency 

response scenarios and industrial automation. 

Furthermore, the versatility of our approach extends 

beyond robot navigation, encompassing a broad spectrum 

of applications. For instance, in robotic surgery, our 

method can assist in planning optimal paths for surgical 

instruments to navigate complex anatomical structures 

safely. In the realm of video game artificial intelligence, it 

can enhance the realism and strategic decision-making 

capabilities of virtual agents navigating dynamic 

environments. Similarly, in architectural design, our 

method can aid in optimizing pedestrian flow within 

complex architectural spaces, ensuring efficient 

circulation while minimizing congestion. 

Looking ahead, our research trajectory includes plans 

to expand the applicability of our approach to 

accommodate scenarios involving multiple cooperating 

robots and mobile manipulators. By further refining our 

hybrid navigation framework and exploring collaborative 

strategies, we aim to unlock new possibilities for 

autonomous navigation in increasingly complex and 

dynamic environments. 
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