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The rapid growth of IoT has enabled diverse applications using Wireless Sensor Networks across various
fields. A significant challenge in Wireless Sensor Networks is the efficient deployment of sensors to en-
sure coverage and connectivity. Effective coverage allows continuous target tracking and data collection,
while connectivity ensures data transmission to the base station. In this paper, we address the challenge of
maximizing the number of targets satisfyingK-coverage andK-connectivity, where each target is tracked
by K sensors and has K transmission paths to the base station. We propose a two-phase methodology to
tackle this challenge. The first phase enhances the Greedy algorithm to solve the K-coverage problem.
The second phase addresses the K-connectivity problem using Memetic algorithms augmented by an effi-
cient local search mechanism called PMA. We evaluate the algorithm on various datasets and compare
it with baseline methods, including Greedy and Prim-based with the withdrawal strategy (PWS). Our
results show that the proposed PMA with a robust local search outperforms alternative algorithms, with
improvements exceeding 10% to 15% compared to the baseline methods. Additionally, we validate the per-
formance of the proposed method using a real-world dataset and outline plans for further enhancements in
the near future.

Povzetek: Avtorji so razvili dvofazni pristop za maksimiranje K-pokritosti in K-povezljivosti v brezžičnih
senzorskih omrežjih, ki združuje izboljšan pohlepni algoritem in memetični algoritem z lokalnim iskanjem,
imenovan PMA.

1 Introduction

Amidst rising environmental concerns, escalating global
political tensions, and the widespread proliferation of In-
ternet of Things (IoT) technology and products, particu-
larly emphasizing privacy and security, Wireless Sensor
Networks (WSNs) have attracted significant attention[15,
1]. WSNs are composed of sensors equipped with data col-
lection capabilities. Devices must be outfitted with sen-
sor chips capable of detecting environmental phenomena
and converting them into accessible data on the Internet for
users to analyze and process[19]. These sensors collect data
from specific areas and transmit monitoring information to
a central base station.
WSNs find crucial applications across various domains,

such as military operations, healthcare services, environ-
mental monitoring, biodiversity studies, industrial pro-
cesses, and urban infrastructure management [20, 7, 12, 5].
For example, wearable, embedded, or ingestible sensors en-
able continuous monitoring of health parameters and vital
signs, such as blood pressure or heart rate, offering vital

insights wherever patients or caregivers are situated. The
proliferation of WSNs has stimulated significant scientific
research and publications aimed at tackling key challenges
in sensor networks, including issues related to lifetime, cov-
erage, connectivity, fault tolerance, load balancing, and se-
curity. In addition, sensors, characterized by their com-
pact dimensions, face limitations in storage capacity, op-
erational lifespan, and susceptibility to environmental con-
ditions. In areas where battery replacement or recharging
is impractical—such as hazardous or obstructed environ-
ments like deep oceans or dense forests—ensuring contin-
uous multi-coverage and connectivity between targets and
base stations becomes crucial for maintaining network in-
tegrity, particularly in scenarios involving potential node
failures. Therefore, in this paper, we focus on solving the
problem ofK-coverage andK-connectivity.
Coverage concern is divided into various subproblems,

such as target coverage, area coverage, and barrier cover-
age. In this study, we focus on resolving the target cov-
erage problem[16, 22]. The target coverage problem in-
volves guaranteeing thorough monitoring of specified tar-
gets within a designated surveillance area through strategi-
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cally placed sensors. The aim is to ensure that every tar-
get falls within the sensing range of at least one sensor,
enabling comprehensive monitoring and detection capabil-
ities. This challenge is critical across various applications
such as environmental monitoring, surveillance, and intru-
sion detection, where adequate coverage of specific tar-
gets is vital for operational efficacy and informed decision-
making. The target coverage problem includes 1-coverage,
K-coverage, Q- coverage. Within this context, 1-coverage
guarantees that all targets are monitored by at least one sen-
sor, K-coverage ensures at least K sensors track each tar-
get, and Q-coverage ensures that targets are tracked by Q
sensors, the specific value of Q can be adjusted based on
priority requirements. In this paper, our primary objective
is to resolve theK-coverage problem[8].
Connectivity in WSNs denotes the capacity of sensors to

establish and sustain communication links within the net-
work[18]. This ensures reliable data transmission among
sensors, facilitating seamless information flow throughout
the network. Connectivity is pivotal for fostering collab-
oration among sensors, streamlining data aggregation, and
bolstering network functions like routing and data forward-
ing. A well-connected network enhances efficiency, re-
silience, and reliability, enabling effective monitoring and
communication across various applications. Connectivity
issues encompass 1-connectivity, K-connectivity, and Q-
connectivity. In 1-connectivity, a minimum of 1 commu-
nication path exists from the target to the base station. K-
connectivity guarantees the presence of at least K disjoint
paths from the target to the base station[23]. Finally, Q-
connectivity ensures the existence of at least Q disjoint
paths from the target to the base station, with the value
of Q being adjustable based on the target’s priority level.
In this paper , our primary objective is to resolve the K-
connectivity problem.
Recent research endeavors to addressmulti-coverage and

multi-connectivity [10, 3] have encountered limitations,
particularly when prioritizing the minimization of sensors
required to meet problem constraints, assuming an unlim-
ited number of sensors. Nevertheless, deploying sensors
presents substantial hurdles in environments where battery
replacement or recharging is unfeasible, such as hazardous
or obstructed locations like deep oceans or dense forests.
Consequently, the practicality of sensor deployment is con-
strained, leading to a limited number of sensors in reality.
Hence, our team is dedicated to tackling novel problems
that, to our knowledge, have yet to be explored by other re-
search groups. Specifically, we focus on determining the
maximum number of targets simultaneously fulfilling K-
coverage and K-connectivity requirements, given a fixed
number of sensors.
In response to the identified challenge, we propose a two-

phase strategy. Initially, we aim to resolve theK-coverage
issue by refining the Greedy algorithm. Subsequently, the
second phase addressed the K-connectivity problem, em-
ploying Heuristic and Memetic algorithms augmented with
an efficient local search mechanism. The simulation results

indicate that the proposed Memetic algorithm combined
with Prim and a robust local search function (PMA) out-
performs alternative methods, demonstrating superior per-
formance. Therefore, investigating this problem holds sci-
entific and practical significance. In the subsequent section,
we present relevant studies concerning this matter.
Our main contributions are listed as follows:

– Formulating a novel problem of K-coverage and K-
connectivity suitable for practical application in the
2D domain.

– Presenting a Greedy based method for node deploy-
ment that providesK-coverage to all of targets.

– Proposing two baseline methods: PWS and Greedy
combined with withdrawal strategy to address connec-
tivity issues.

– Proposing a new approach called PMA (Prim-based
Memetic Algorithms): A special Memetic Algorithm
Strategy Enhanced with Robust Local Search for Ef-
fective Problem Solving.

– Evaluating the proposed method across 40 experimen-
tal and real-world datasets.

The rest of the paper is structured as follows: Section 2 pro-
vides a comprehensive review of related works. In Section
3, we present the system model and the problem formula-
tion. The proposed algorithms are detailed in Section 4.
Section 5 contains the experimental settings, obtained re-
sults on various test sets, and a performance comparison
with other algorithms to demonstrate the proposal’s effi-
cacy. Section 6 discusses conclusions and future.

2 Related work
Coverage and connectivity are two paramount challenges
in WSNs. Specifically, coverage in WSNs pertains to the
comprehensive monitoring and surveillance of every point
within the designated area of interest. [11] The coverage
challenge is categorized into three distinct classes based on
the intended application: area coverage, target coverage,
and barrier coverage [21], [20]. In this paper, our primary
focus is on the target coverage predicament, which has been
identified as an NP-hard problem. [16] elucidates the vari-
ous iterations of target coverage.
The emphasis on the NP-completeness of the coverage

problem is attributed to the research conducted by [13].
Consequently, most studies advocate solutions employing
integer linear programming, heuristic and metaheuristic al-
gorithms to address this challenge. Integer linear program-
ming, which involves constructing a mathematical model,
is one of the methodologies employed to resolve the target
coverage quandary [3], [23].
However, its effectiveness is evident primarily when

dealing with smaller problem sizes, while it demands
increased computing time for larger problem sizes [4].
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Henceforth, researchers are increasingly delving into the
exploration and utilization of heuristic and meta-heuristic
algorithms to address the coverage problem. Chien-Chih
Liao et al. [14] propose a novel memetic algorithm (MA)
that integrates an integer-coded genetic algorithmwith local
search techniques to solve the K-coverage problem. This
approach adapts crossover and mutation operators to inte-
ger representation. It introduces a novel fitness function
that considers both the number of covers and the individual
contribution of sensors to these covers.
When sensors are deployed, a critical consideration

arises: determining whether any node in the network can
communicate with any other node. Connectivity thus
broadens the scope of the coverage problem, aiming to
guarantee the existence of pathways between nodes to fa-
cilitate the transmission of collected data to external des-
tinations. Moreover, securing network connectivity is
paramount for effective WSNs operations. One prevalent
approach is to maintain theK-connectivity property, which
ensures that the removal of up to K—1 sensor nodes does
not lead to network partitioning, thereby preventing the iso-
lation of one or more sensor nodes from the network.
A common tactic to preserve K-connectivity entails

adding new nodes as needed. The principal design aim is
to reduce the number of additional nodes required while
retaining K-connectivity. As with coverage, connectiv-
ity poses an NP-hard problem [2] that can be tackled
using linear programming and approximation algorithms.
One method to address the target connectivity dilemma
is integer linear programming, which entails constructing
a mathematical model[22]. Nonetheless, its efficacy is
more pronounced in managing smaller problem sizes, ne-
cessitating escalated computational resources for larger-
scale problems. Consequently, researchers are increas-
ingly venturing into exploring and implementing heuristic
and meta-heuristic algorithms to tackle the coverage issue.
Szczytowski et al. [18] introduced an innovative method
for runtime repair and preservation of global WSN K-
connectivity, relying solely on localized information. This
approach significantly reduces resource demands compared
to previous studies.
In recent years, researchers have focused on addressing

the challenges of weak security, connection losses during
operation, and damaged relay nodes, aiming to ensure de-
pendable monitoring and information transmission. Tomit-
igate these risks, they have specifically targeted solutions
for multiple coverage and multiple connections. In [6],
Gupta et al. explored a genetic algorithm (GA)-based ap-
proach to identify the minimum number of selected poten-
tial positions suitable for deploying sensor nodes in target-
based wireless sensor networks, ensuring bothK-coverage
and M-connectivity of the sensor nodes. The study as-
sumes predefined potential positions for sensor node de-
ployment to monitor targets. Similarly, [17] introduces a
method based on the Imperialist Competitive Algorithm
(ICA), aiming to identify the minimum number of suitable
locations for sensor node deployment while meeting cover-

age and connectivity requirements.

3 System model and problem
formulation

3.1 System model

We assume aWireless Sensor Network and all sensor nodes
in it have the same transmission range. Each target col-
lects information from the environment in the range which
it is deployed, this region is assumed to be a circular disk
whose radius is equal to the sensing range of a sensor node.
Then target transmits that information through the sensor
nodes on predetermined paths. Transmitting in different
paths avoid losing information, if a sensor has problem lead
to a path disconnect, there’s still other path to transmit in-
formation. Two sensor nodes can connect with each other
if the Euclidean distance between them is less than or equal
the sensing range. Finally, the information is transferred to
the Base Station.

3.2 Problem formulation

Let us define surveillance region A as a rectangular with
area W × H and a set T includes m targets T =
{Ti(xi, yi)|0 ≤ xi ≤ W, 0 ≤ yi ≤ H, ∀i ∈ [1,m]}. B
is the Base Station in A with coordinates (xB , yB). We
assume set S = {S1, S2, ..., Sn} is set of n sensors. Our
goal is to place n sensors in region A such that maximize
the number of targets that satisfied both K-coverage and
K-connectivity.
A sensor node can connect with a target if their Euclidean

distance is not greater than the sensing range, denoted rs
. Similar, two sensor notes can connect if their Euclidean
distance is not greater than the communication range, de-
noted rc. Let c(Si, Tj) denote the connectivity probability
between sensor Si and target Tj , which is calculated via:

c(Si, Tj) =

{
1, if d(Si, Tj) ≤ rs,

0, otherwise.
(1)

and the number of sensors in each target’s sensing range
is calculated by the following forrmula:

CTj
=

n∑
i=1

c(Si, Tj). (2)

A target Tj isK-coverage if and only if CTj ≥ K.
We assume each target, for example Tj , has a set in-

clude K path P = {Pi|Pi = (Tj , Si1, Si2, ..., Sili , B), i ∈
[1,K], li is number of sensors nodes in Pi}. Then, theseK
paths will be disjoint if
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Pa ∩ Pb = {Tj , B} ∀a, b ∈ [1,K], a ̸= b, (3)
d(Tj , Si1) ≤ rs ∀i ∈ [1,K], (4)
d(Siu, Si(u+1)) ≤ 2rc ∀i ∈ [1,K], u ∈ [1, li − 1], (5)
d(Sili , B) ≤ rc ∀i ∈ [1,K]. (6)

Equation (3) ensures that the K paths have no common
sensor. Equation (4) make sure that the target and sensors
can connect (Their distance are satisfy the sensing range).
Equation (5) make sure that the sensors can connect. Equa-
tion (6) make sure that the sensors and the Base Station can
connect.
A target is K-connectivity if and only if its K paths are

disjoint.
Let Ej is the connectivity and coverage status of target

Tj . Then

Ej =


1, if Tj is bothK-connectivity

andK-coverage,
0, otherwise.

(7)

From equation (2),(3),(4),(5),(6) and (7) we have prob-
lem model:
Maximize

m∑
j=1

Ej . (8)

Subject to

CTj
≥ K ∀j ∈ [1,m], (9)

Pa ∩ Pb = {Tj , B} ∀a, b ∈ [1,K], a ̸= b, (10)
d(Tj , Si1) ≤ rs ∀i ∈ [1,K], (11)
d(Siu, Si(u+1)) ≤ 2rc ∀i ∈ [1,K], u ∈ [1, li − 1], (12)
d(Sili , B) ≤ rc ∀i ∈ [1,K]. (13)

Figure 1: Problem formulation

In Figure 1, the targets T1 and T2 are charac-
terized by meeting K-coverage and K-connectivity
criteria, where K is set to 2. On the other hand,
target T3 achieves K-coverage but fails to meet the
K-connectivity requirement. Additionally, targets
T4 and T5 do not fulfill the K-coverage and K-
connectivity criteria.

4 Proposed method
To address the identified challenge, we propose a two-phase
methodology. The first phase focuses on resolving the K-
coverage issue by enhancing the Greedy algorithm. Sub-
sequently, the second phase is dedicated to tackling the
K-connectivity problem, employing Memetic Algorithms
augmented by an efficient local search mechanism, PMA.
Furthermore, we conduct comprehensive evaluations of the
proposed algorithm using various datasets and compare its
performance with baseline methods, including Greedy and
PWS.

4.1 Coverage phase
In this phase, we aim to determine an optimal approach
for placing sensors within region A that can provide K-
coverage for each target with the minimum number of sen-
sors. In order to minimize the number of sensors, we apply
a Greedy based algorithm.
We consider the set of disksD is the set that conclude the

targets which was not satisfiedK-coverage. From this set,
we construct a set O conclude overlapping regions, which
we will use to placed sensors in. An overlapping region is
defined by the intersection of the disks inD. And we have
a set I that concludes the disks that have no intersection
with other disks. For example, in figure below, we have set
O = {1 ∩ 2 ∩ 3, 1 ∩ 4} and I = {5}.

Figure 2: Coverage phase

After having two setsO and I , we will only place sensors
in these two sets. At first, we choose a region Oi in O that
can cover the most targets. We placeK sensors at a random
point in it. After placing sensors, if a target satisfies K-
coverage, we will remove it from D and update the set O
and I . We repeat that procedure untilO = ∅. After placing
sensors in O, we start with set I . With every region in I ,
we repeat placing k sensors at a random point. The entire
algorithm is described in Algorithm 1.

4.2 Connectivity phase
While targets may meetK-coverage without achievingK-
connectivity, and vice versa, these scenarios are not applica-
ble in real-world settings. Therefore, after completing Cov-
erage phase in sensor placement for K-coverage, special-
ized strategies will optimize sensor positioning. This ap-
proach aims tomaximize targets by simultaneouslymeeting
bothK-coverage andK-connectivity criteria. Based on our
understanding, no research studies have addressed the is-
sue we raised. Therefore, we propose the main method, the
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Algorithm 1: Greedy based algorithm for coverage

Input : T : Set of targets.
rs: Sensing range.
n: The number of available sensors

Output : Set R concludes candidate regions.
Location of minimum number of sensor

nodes needed to satisfyK-coverage S2

1 Build disk set D = {Dj(Tj , rc)|Tj ∈ T} with each
disk has center at one target and radius rs

2 S2 = ∅, R = ∅;
3 O ← set of overlapping regions;
4 I ← set of targets without overlapping;
5 while O ̸= ∅ do
6 Oi ← Region in O can coverage the most

targets;
7 {s1, . . . , sK} ←PlaceK sensors at a random

point at Oi;
8 R = R ∪Oi, S2 = S2 ∪ {s1, . . . , sK};
9 if a target Tj satisfiesK-coverage then
10 Remove Dj from D;
11 Update O, I;
12 end
13 end
14 for region ∈ I do
15 {s1, . . . , sK} ←PlaceK sensors at a random

point in region ;
16 R = R ∪Oi, S2 = S2 ∪ {s1, . . . , sK};
17 end
18 return S2, R;

Prim-based Memetic Algorithms (PMA) in Section 4.2.3,
alongside two baseline methods, Greedy and Prim-based
with withdrawal strategy PWS in Section 4.2.1, 4.2.2, for
comparative analysis.

4.2.1 Greedy based algorithm for connectivity
(Greedy)

At first, we introduce a Greedy based algorithm used for
maximize the number of targets satisfy both K-coverage
and K-connectivity by a limited number of sensors. After
coverage phase, we assume number of available sensors is
na = n−|S|. However, in this phase, when we exhaust all
of the sensors, we will remove sensors from special regions
within coverage phase to optimize the result.
We assume set U concludes the base station and the

sensors which is available to connect to the base station
and set L concludes the regions which unsatisfactory K-
connectivity. Beginning, we initialize U = {B} and L =
R. Each region in L,U is represented by the location of
the sensors in it. We define the region in L which has the
shortest distance to a point in U . Then, we place sensors
in order to connect that region with U . To connect two re-
gions, from a point in first region, we create a path to the
nearest point which not have path in the second region and
repeat until we haveK separate paths between two regions.

The sensors amount need to connect two points I and J (
I, J can be Base Station or sensor) is calculates by

sensor_amount = [
d(I, J)− 2rc

2rc
] + 1. (14)

where [.] denotes the integer part of a number.
If in this process, we exhaust all of the sensors, we will

choose the region that have furthest distance to a point in U
and remove all sensors in it to use for connect until the sen-
sors amount is enough to connect or there are no more sen-
sors to remove. If the available sensor can not increase the
number of target satisfy K-coverage and K-connectivity,
we will place them in some region that has density of sen-
sors highest aim to enhance connectivity.
The entire algorithm is described in Algorithm 2.

Algorithm 2: Greedy based algorithm for connectivity

Input : R: Set of candidate regions.
S2: Set of sensors use for coverage.
na: The number of available sensors

Output : The number of targets satisfy both
K-coverage andK-connectivity

1 U = {B} Connected set;
2 L = R← Unconnected set;
3 res← Number of target satisfyK-coverage and

K-connectivity;
4 while na > 0 or |L| > 0 do
5 mindist = +∞;
6 for i ∈ L do
7 for j ∈ U do
8 if d(i, j) < mindist then
9 mindist = d(i, j);
10 lchoose = i, uchoose = j;

11 end
12 end
13 end
14 sensorneed ← Sensors amount need to connect

lchoose, uchoose

15 while na < sensorneed and |L| > 1 do
16 Choose region in V furthest to U and

remove from L;
17 na = na +K;
18 end
19 if na ≥ sensorneed then
20 Place sensors;
21 Update L,U, res, na;

22 end
23 else
24 Remove sensors in L; na = na +K;
25 Place na sensors in high sensor density

region;
26 end
27 end
28 return res;
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4.2.2 Prim-based with withdrawal strategy (PWS)

First, each region is represented by the location of the sen-
sors in it. We consider a graph G = (V,E) where V con-
clude Base Station and candidate regions V = B ∪R and
E = {(u, v, dist(u, v)|u, v ∈ V, u ̸= v} with dist(u, v)
is the number of sensors required to connect u to v by
K node-disjoint paths calculate by the formula has been
presented before. We will apply Prim’s algorithm to find
the Minimum Spanning Tree starts from B. We define set
Sl = {v|vis leaf node}. nleft is the number of sensors left
after placing sensors to the tree (nleft can be negative if sen-
sor amount is not enough) calculate by nleft = na−nMST

with nMST is the number of sensor need to placing in Min-
imum Spanning Tree. Until nleft ≥ 0, we choose node v
in Sl that have dist(v, parent(v)) is the biggest, remove v
from sl and update nleft, sl. The number of satisfied target
is the number of remaining node in the tree (except B).
The entire algorithm is described in Algorithm 3.

Algorithm 3: Prim-based with withdrawal strategy(PWS)

Input : R: Set of candidate regions.
S: Set of sensors use for coverage.
na: The number of available sensors

Output : The number of targets satisfy both
K-coverage andK-connectivity

1 Graph G = (V,E) with V = B ∪R ,E =
{(u, v, dist(u, v)|u, v ∈ V, u ̸= v};

2 Apply Prim’s algorithm to find the Minimum
Spanning Tree;

3 Sl ← Set of leaf node;
4 nleft ← the number of sensors left after placing

sensors to the tree;
5 while nleft < 0 do
6 v ← Leaf node has biggest dist(v, parent(v));
7 Remove v from Sl;
8 update Sl, nleft

9 end
10 res← The number of remaining node (except B);
11 return res

4.2.3 Prim-based memetic algorithms (PMA)

Our proposed method presents an innovative and efficient
approach to solving the problem. Each solution element is
encoded as a binary vector, representing whether a specific
area is utilized for connectivity. This encoding serves as the
basis for generating the initial population. We introduce
two advanced strategies for crossover and mutation oper-
ators to enhance the evolutionary process. These strate-
gies are designed to direct new individuals toward promis-
ing regions in the solution space while preserving popula-
tion diversity, thereby expediting convergence to optimal
solutions. Furthermore, a local search mechanism is inte-
grated to refine the best-performing individuals, increasing
the potential to escape local optima. A distinctive evalu-

ation mechanism is employed in which unsatisfying indi-
viduals are not immediately discarded. Instead, they are re-
tained and evaluated using a specialized strategy, ensuring
consistent population diversity throughout the optimization
process.
Detailed explanations of each component in the proposed

method are provided in the following sections.

4.2.3.1 Individual representation A individual is a
vector of integers of size n+ 1, where n denotes the num-
ber of coverage areas. We incremented the count by 1 to
incorporate the Base station. Our research paper defines
a individual as a significant binary sequence comprising 0s
and 1s. Here, a 1 denotes the location of the associated cov-
erage area for establishing the connecting line. Conversely,
a 0 indicates the corresponding coverage area where the re-
sponse is negated, thus disregarding any potential connec-
tion path. For example if n = 5 , a individual can can be
c1 = [110100] , this represent that areas 1, 3 are considered
to find the connection to Base station.

4.2.3.2 Genetic operators In this paper, we employ a
novel crossover and mutation heuristic strategy along with
a potent local search function to seek optimal results.
Crossover : With two random chromosomes from the

population, we denoted them as P1, P2 . Then we intro-
duce the following heuristic crossover method for generat-
ing new chromosomes C from P1 and P2.

C[i] =


P1[i], if P1[i] = P2[i],

P1[i], if P1[i] ̸= P2[i]

and p < fitness(P1)
fitness(P1)+fitness(P2)

,

P2[i], otherwise
(15)

where p is a random number in range [0, 1].
Mutation : We propose a Heuristic Mutation. A chro-

mosome satisfies when it has enough sensors for connectiv-
ity. For these chromosomes, we will iterate through points
with a value of 0 and change them to 1 with a given prob-
ability α (based on experimentation). Each time there’s a
change, decrease α by an amount of 1

2n to ensure there are
not too many changes (as excessive changes can lead to vi-
olations). Similarly for chromosomes that do not satisfy,
we apply the same strategy but instead of changing 0 to 1,
we change 1 to 0.
Local search : With the chromosome that has the best

fitness Pbest, we will iterate through all points in Pbest and
replace each value of 0 with 1. If a new chromosome that
satisfies the conditions is generated, this will be the new
best chromosome.

4.2.3.3 Evaluation The fitness value of a chromosome
A is determined according to a special strategy as follows:
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fitness(A) =

{
|T |, if enough sensors for connectivity
1
|U | , otherwise

(16)
with |T | is the number of targets that satisfyK-coverage

and K-connectivity and |U | is the number of missing sen-
sors.
In our study, we retain unsatisfactory chromosomes

within the population to preserve potentially beneficial
genetic material for subsequent generations. Notably,
individuals with fewer sensor deficiencies are assigned
higher fitness values than those with greater deficiencies.
To consistently meet the constraint, individuals of higher
quality are assigned elevated fitness values ( If chromo-
some X outperforms chromosome Y, then fitness(X) >
fitness(Y )).

4.2.3.4 Selection and replacement Starting from a
population denoted as P comprising N elements, we will
generate a new population, labeled Pnew also consisting of
N chromosomes, employing a specialized heuristic strat-
egy :
Initially, the individuals within P will be arranged in de-

scending order based on their fitness value.
We defined two probabilities p1, p2. Where p1 decides

whether we will use crossover or mutation and p2 to de-
cide whether we will do with the whole population or with
some top chromosomes. New chromosomes are created
and added to Pnew until |Pnew| = N .
Next, we merged populations P and Pnew to form Pmix,

then sortedPmix in descending order of fitness values. Sub-
sequently, to construct the potential population Pp, we se-
lect individuals as follows: Initially, the top ctop% ele-
ments of Pmix, representing the best individuals, are cho-
sen and removed. Next, the remaining aspects of Pmix are
shuffled, and croutlette% elements are selected using the
roulette wheel selection method. And then P = Pp. After
that, choosing randomly cloc% elements in P to undergo
local search. This process iteratedmax_gen times.
Function bestfitness(P ) return the individual with the

highest fitness value in P .
The entire algorithm is described in Algorithm 4.

5 Numerical results

5.1 Parameter setting

Our algorithms are implemented in Python and executed on
Visual Studio Code with Intel(R) i5-12500H 3.1GHz CPU,
RAM 16GB DDR4 1600MHz.
The parameter is configured for presentation inTable 1.

Algorithm 4: Prim-based Memetic Algorithms (PMA)

Input : R : Set of candidate regions.
na : The number of available sensors.
N : The number of individuals in a

population.
max_gen : The number of generation.
p1, p2 : Mutation coefficient

Output : The number of targets satisfy both
K-coverage andK-connectivity

1 P ← Randomly generate N individuals;
2 count = 0
3 while count < max_gen do
4 Pnew = ∅
5 while |Pnew| < N do
6 if p1 < m then
7 x = crossover(P1, P2) if p2 < m1

8 y = mutation(P1) if p2 < m2

9 where P1, P2 is randomly in P
10 end
11 else
12 x = crossover(P1, P2) if p2 < m1

13 y = mutation(P1) if p2 < m2

14 where P1, P2 are randomly selected
from the top Nbest elements in P .

15 end
16 Pnew ∪ x ∪ y
17 p1, p2 is random numbers in range [0, 1]
18 end
19 Pmix = P + Pnew

20 Calculate fitness value of every individual in
Pmix.

21 X = Select ctop% of elements in Pmix with the
highest fitness values.

22 Pmix \X
23 X1 = Choose croutlette% elements using the

roulette wheel selection method in Pmix

24 P = X +X1 , Apply local search for randomly
cloc% elements in P

25 count = count+ 1

26 end
27 x = local search(x) , xin P
28 Return bestfitness(P ) ;

Table 1: Parameter value for PMA
Parameter Value
Population size (N) 200
Nbest 50
Number of generations (max_gen) 300
Crossover rate(p1 = p2) 20%
ctop 25
croutlette 75
cloc 10
α 0.3
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5.2 Problem instances

Due to the lack of public research related to this problem,
we conducted an experiment on a new dataset consisting
of four scenarios for both phases: K-coverage and K-
connectivity fromTable 1 . The data set is limited to the
1000× 1000 domain. We randomly generate the locations
of targets and Base stations in surveillance region A of size
1000× 1000(m2) with uniform distribution.
We have 4 scenarios:
scenario 1The scenario includes 10 instances as given

inTable 2; each instance undergoes execution across 10 dis-
tinct test sets, followed by averaging, to assess the impact
of the number of sensors on solution quality.
scenario 2The scenario includes 10 instances as given

inTable 3; each instance undergoes execution across 10 dis-
tinct test sets, followed by averaging, to assess the impact
of the number of targets on solution quality.
scenario 3The scenario includes 5 instances as given

inTable 4; each instance undergoes execution across 10 dis-
tinct test sets, followed by averaging, to assess the impact
of the number ofK on solution quality.
scenario 4The scenario includes 10 instances as given

inTable 5; each instance undergoes execution across 10 dis-
tinct test sets, followed by averaging, to assess the impact
of the number of r on solution quality.

Table 2: Parameter values for test instances in scenario 1
Dataset n m r K A(W ×H)(m2)
s1-1 400

150 20 3 1000× 1000

s1-2 440
s1-3 480
s1-4 520
s1-5 560
s1-6 600
s1-7 640
s1-8 680
s1-9 720
s1-10 760

Table 3: Parameter values for test instances in scenario 2
Dataset n m r K A(W ×H)(m2)
s1-1

400

60

20 3 1000× 1000

s2-2 70
s2-3 80
s2-4 90
s2-5 100
s2-6 110
s2-7 120
s2-8 130
s2-9 140
s2-10 150

Table 4: Parameter values for test instances in scenario 3.
Dataset n m r K A(W ×H)(m2)
s3-1

400 150 20

1

1000× 1000
s3-2 2
s3-3 3
s3-4 4
s3-5 5

Table 5: Parameter values for test instances in scenario 4
Dataset n m r K A(W ×H)(m2)
s4-1

400 150

12

3 1000× 1000

s4-2 14
s4-3 16
s4-4 18
s4-5 20
s4-6 22
s4-7 24
s4-8 26
s4-9 28
s4-10 30

5.3 Experiment results
We run 4 scenarios on the dataset and evaluate the ob-
tained results. For this evaluation, we used the variable
score = E

n , where E represents the number of targets sat-
isfying K coverage and K connectivity, and n denotes the
total number of targets. The detailed results are presented
below.
In this experiment, domain A is a large region of size

1000 × 1000. Result of this experiment is given in Fig 3,
Fig 4, Fig 5 and Fig 6. With the dataset we have, it is clear
that there is a significant distance between nodes, which
means there are not many overlapping regions. In compar-
ing two base methods, their results exhibit a notable sim-
ilarity, whereas the proposed method PMA consistently
demonstrates superior performance over both base meth-
ods.
scenario 1
In this experimental setup, the value of n was incremen-

tally raised from 400 to 760 to investigate the influence of
the sensor count on the outcomes generated by three dis-
tinct algorithms. The result is shown in Figure 3. The anal-
ysis reveals that PMA surpasses the performance of the
two base methods. To be precise, PMA exhibits a superi-
ority of 110% over PWS and Greedy algorithms. In ex-
pansive spatial contexts, PMA demonstrate enhanced ef-
ficacy relative to baseline methods, owing to the integra-
tion of heuristic crossover, mutation mechanisms, and ex-
tensive local search. As the number of sensors increases,
the opportunity for targets to meet both K-coverage and K-
connectivity requirements rises significantly
scenario 2
In our experimental setup, we incrementally varied the

value of m from 60 to 150 to study how the number of
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Figure 3: Impact of the number of sensor on PMA, PWS
and Greedy

targets influences the outcomes produced by three differ-
ent algorithms. Figure 4 illustrates the results, showing
that PMA outperforms both baseline methods. Specifi-
cally, PMA demonstrates a superiority of 113% over the
PWS and Greedy algorithms in terms of performance. As
the number of targets increases, more sensors are needed to
cover and connect all targets in the region. Consequently,
the number of targets satisfying the constraints decreases.

Figure 4: Impact of the number of sensor on PMA, PWS
and Greedy

scenario 3
In this experiment, we varied K from 1 to 5 to as-

sess its influence on the outcomes produced by three algo-
rithms. The results depicted in Figure 5 demonstrate that
PMA outperforms both baseline methods, showing a per-
formance advantage of 115%over thePWS andGreedy al-
gorithms. To explain why PMA outperforms, as the value
of K increases, devising an effective sensor deployment
strategy for optimal solutions becomes more challenging.
However, PMA maintains its strength through diverse ex-
ploration of feasible solution spaces, consistently approach-
ing nearly optimal outcomes.
scenario 4

Figure 5: Impact of the number of sensor on PMA, PWS
and Greedy

In this experiment, r ranged from 12 to 30 to examine
its impact on the outcomes of three algorithms. The find-
ings in Figure 6 indicate that PMA surpasses the perfor-
mance of the two baseline methods, exhibiting a superior-
ity of 124% over Prim and Greedy algorithms. As r in-
creases, sensor deployment creates more overlapping areas,
which reduces the required number of sensors and thereby
increases the number of targets meeting both K-coverage
and K-connectivity criteria. Furthermore, more signifi-
cant overlap introduces various deployment strategies, and
through its diverse exploration of solution space, PMA
demonstrates superior performance compared to baseline
methods.

Figure 6: Impact of the number of sensor on PMA, PWS
and Greedy

5.4 Real-world dataset
In this section, we utilize a real-world dataset to assess the
performance of the PMAmethod. The original coordinate
data were sourced from [9]. This dataset comprises the co-
ordinates of 43 targets, representing railway stations and
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bus stops near the center of Hanoi, the capital of Vietnam.
The base station is positioned at the Vietnam Academy of
Agriculture. To facilitate analysis, we normalized the coor-
dinates to a range of [0, 1000].

Figure 7: Target locations on the map

The illustration for the target coordinates is depicted in
Figure 7. Suppose we aim to monitor these targets from the
academy utilizing a WSN. We consider the following two
scenarios:

– scenario 1: Let K = 2, which means the targets re-
quire low resources.

– scenario 2: Let K = 5, which means the targets re-
quire high resources.

All other parameters remain constant: rc = rs = 60m.

Figure 8: Result of scenario 1

The outcomes of the two scenarios are depicted in Fig-
ures 8, and 9. In these figures, blue stars denote targets,

Figure 9: Result of scenario 2

while red triangles indicate sensor nodes. In scenario 1, the
PMA algorithm requires a total of 50 sensors and operates
in 0.033 seconds. Conversely, scenario 2 requires 125 sen-
sors and runs in 0.054 seconds. It is evident that selecting
optimal regions in Phase 1 allows PMA to deploy sensors
effectively within the intersection areas of the target disks.
Furthermore, optimizing connections in Phase 2 helps re-
duce the consumption of sensor nodes.

6 Conclusion
This paper presents a model that maximizes the number of
targets satisfying K-coverage and K-connectivity with a
fixed number of sensors. The problem is addressed in two
phases: the first phase optimally places sensors to achieve
K-coverage, while the second phase establishes optimal
connections to ensure K-connectivity. The Greedy algo-
rithm is proposed to solve the first phase, while a novel
method called PMA is employed for the second phase
and compared with Prim and Greedy algorithms. Exten-
sive testing across four scenarios reveals that optimizing
K-coverage and K-connectivity significantly impact net-
work deployment. The proposed PMA outperforms exist-
ing Prim and Greedy methods.
These findings promise future advancements in Wireless

Sensor Networks. In the future, we plan to further study
this problem and consider more factors such as obstacles,
energy efficiency and network lifetime, clustering and rout-
ing, deployment in 3D environment
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