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Liver cirrhosis often occurs as a result of the lengthy and persistent progression of chronic liver disorders. 

It is a key crucial cause of death on a global scale. Early diagnosis and identification of cirrhosis are 

essential for preventing the disease's progression and the complete devastation of liver tissue. This paper 

aims to build an intelligent automated system that can predict the stages of cirrhosis employing Machine 

Learning (ML) algorithms, including Random Forest (RF), Extra Trees (ET), and Support Vector Machine 

(SVM). The dataset used in this research is sourced from the Zenodo website and linked to the GitHub 

website. This was our initial use of the data, which is publicly accessible and consists of 70 features and 

10,000 records. In addition, data mining techniques were used to analyze the data before predicting the 

outcome. This involved data balancing due to the significant imbalance in the dataset's classes. To address 

this, we employed the Synthetic Minority Oversampling Technique (SMOTE) to mitigate a bias problem 

in a machine learning model. Then, feature selection techniques were applied, such as Chi-Square, Mutual 

Information (MI), and Recursive Feature Elimination and Cross-Validation (RFECV) based on classifiers 

RF and SVM (RF-RFECV, SVM-RFECV) to select relevant features. Lastly, the experimental findings 

showed that the Extra-Trees model with the Chi-square feature selection method (ET-Chi-Square) 

achieved the maximum level of accuracy of 93.87%. Additionally, it obtained recall, F1-score, and 

precision values of 94% each and an Area Under Curve (AUC) of 99%. Our method exhibited exceptional 

performance as compared to previous relevant research. 

Povzetek: Razvit je nov pristop k napovedovanje stadijev jetrne ciroze z uporabo metod strojnega učenja, 

kot so Extra Trees, Random Forest in SVM, ter s tem izboljšuje medicinsko diagnostiko.

1 Introduction 
Cirrhosis is a response to persistent liver injury. It is 

defined by the formation of regenerating nodules inside 

the liver tissue, which are encircled by fibrous bands [1]. 

The 11th most prevalent cause of mortality worldwide is 

liver cirrhosis. From 1990 to 2017, the incidence of deaths 

attributed to cirrhosis rose from 899,000 to 1,320,000, 

representing 2.4% of the total reported global mortality. 

Decompensated liver cirrhosis has a cumulative mortality 

rate of approximately 40% over one year [2]. The main 

etiologies of cirrhosis are Alcohol-Associated Liver 

Disease (ALD), autoimmune illnesses, Non-Alcoholic 

Fatty Liver Disease (NAFLD), and hepatitis B and C virus 

[1]. Symptoms may be mild in the early stages. The 

symptoms exacerbate as the liver's damage increases.  In 

the initial phase, the most prevalent symptoms include 

fatigue, lethargy, nausea, weight loss, and loss of appetite.  

These results are expected to deteriorate in the future. 

Jaundice during this process, edema in the legs, rapid skin 

bruising, excessive itching, abdominal swelling, a 

propensity to hemorrhage, muscle atrophy, and Water 

retention in the body are all observed [3]. Liver biopsy is 

the established method for diagnosing cirrhosis. However, 

there are disadvantages to this intrusive method. A liver 

biopsy is a medical operation that involves the removal of 

a small piece of liver tissue using a local anesthetic. This  

 

 

tissue is then examined by a pathologist. Several factors 

affect the accuracy of cirrhosis staging. For illustration, 

the diagnostic precision of a biopsy specimen is affected 

by its length [1]. 

1.1 Data mining (DM) 

Medical data has grown unparalleled over the years due to 

the exponential daily volume of transactions. Indeed, due 

to the vast volume of data generated, Data Mining (DM) 

has emerged to transform this data into practical and 

significant knowledge for hospitals [4]. Within the 

framework of Knowledge Discovery in a Database 

(KDD), Data Mining (DM) includes the processes of 

collation, transformation, preparation, mining of data, 

model interpretation or evaluation, and the application of 

the obtained information [5]. This study will employ data 

mining techniques to perform preprocessing for data, 

which is a crucial step in the DM process before using 

models to predict the stage of cirrhosis. 

1.2 Machine learning (ML) 

ML is a branch of AI that concentrates on accurately 

predicting changes in clinical conditions. Machine 

learning approaches are highly effective in the medical 
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field because they can extensively address a wide range of 

problems in medical data analysis. Various liver ailments 

have been accurately predicted through the application of 

ML [4][6]. A timely diagnosis of cirrhosis, facilitated by 

AI and ML, enables the implementation of medical 

interventions and lifestyle modifications. At the same 

time, this mitigates the likelihood of complications, 

including hepatic encephalopathy and variceal 

hemorrhage. The selection of appropriate treatment 

modalities is also facilitated, which reduces the necessity 

for advanced and expensive interventions such as liver 

transplantation [7].  

This research is segmented into the subsequent 

sections: Section 2 comprises a collection of relevant 

studies and research. Detailed descriptions of the 

methodology implemented in the proposed system are 

provided in Section 3. Section 4 presents the details of an 

experimental findings account acquired from the 

suggested system. Section 5 provides an analysis and 

interpretation of the findings. Section 6 comprises the 

conclusions. 

2 Related works 
This section presents a selection of recent research 

focused on predicting liver cirrhosis using automated AI 

techniques. Table 1 provides a concise overview of the 

studies related to the identification of liver cirrhosis. 

In 2024, Sudiksha et al. [7] introduced LivMarX, a 

new model that seeks to stage liver cirrhosis by utilizing 

biomarkers rather than relying on photographs; it utilized 

advanced ML methods such as Gradient Boosting 

Classifier, CatBoost Classifier, Decision Tree Classifier 

(DT), and RF within an interdisciplinary framework. With 

an accuracy of 86%, LivMarX's RF Classifier was the 

most effective model. 

In 2023, Greeshma et al. [1] created a new framework 

for noninvasive early detection of liver cirrhosis. An 

accuracy of 90.5% is achieved using the Extreme Gradient 

Boosting (XGboost) classifier. Has suggested a way to 

learn about the features that go into making predictions, 

which can aid doctors in making accurate diagnoses with 

the Explainable-AI algorithm. 

In 2023, Oguzhan et al. [8] used the following 

classification algorithms to determine if the patient has 

liver cirrhosis: Multilayer Perceptron-Artificial Neural 

Networks, RF, NB, Logistic Regression (LR), K-Nearest 

Neighborhood (KNN), SVM, and DT. According to the 

findings, the DT algorithm achieves the utmost accuracy 

of (87.75%) compared to all other approaches. 

In 2022, Anıl Utku [3] proposed a deep learning 

model utilizing multilayer perceptron (MLPs) to predict 

the probability of cirrhosis. The model's effectiveness was 

evaluated by comparing it to other approaches, including 

NB, KNN, LR, RF, SVM, and DT. The effectiveness of 

the generated model was examined. The suggested model 

exhibited better results compared to the methods in 

experimental studies. Based on the experimental results, 

the tested model achieved a precision, F1-score, recall of 

85.71%, and an accuracy of 80.48%. 

In 2022, Ke Chena et al. [9] they constructed a 

prognostic model utilizing ML to anticipate the happening 

of liver cirrhosis in persons diagnosed with Wilson disease 

(WD). Out of 346 patients with WD who were analyzed in 

this study, 246 were found to be free of liver cirrhosis. The 

model (XGBoost) exhibited exceptional accuracy, with a 

testing set accuracy of 0.76 and an AUC of 0.78. 

Table 1: A summary of related works. 

Ref. Year 
Classifiers for prediction 

of liver cirrhosis 

Dataset 

Size 
Key Findings Accuracy 

[7] 2024 
Gradient Boosting, 

CatBoost, DT, RF 

424 

patients 

Presented an approach for predicting the 

stage of liver cirrhosis by using blood tests. 

utilized several ML methods, and the RF 

model achieved a remarkable accuracy of 

86%, surpassing comparable models. 

86% 

[1] 2023 

Logistic regression (LR) 

and Extreme Gradient 

Boosting (XGBoost) 

424 

patients 

Diagnostic biomarkers were employed to 

detect early-stage liver cirrhosis using the 

LR and XGBoost classifiers; the XGBoost 

achieved an accuracy of 90.5%. 

90.5% 

[8] 2023 
MLP-ANN, SVM, NB, 

DT, RF, K-NN, LR 

2000 

patients 

identified whether the patient has liver 

cirrhosis or not. The results showed that 

the DT algorithm outperforms all other 

methods used. 

87.75% 

[3] 2022 
MLPs, KNN, NB, DT, LR 

RF, and SVM 

418 

patients 

A deep learning model based on MLP has 

been created to forecast cirrhosis from 

blood testing. The MLP achieved an 

accuracy of 80.48%. 

80.48% 

[9] 2022 
Extreme Gradient 

Boosting (XGboost) 

346 

patients 

Using clinical information, analyzed 346 

patients with WD, out of which 246 did not 

have cirrhosis; the XGboost model 

demonstrated superior accuracy in 

predicting cirrhosis in WD. 

76% 
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3 Methodology 
Figure 1 illustrates the principal steps of the proposed 

system for predicting the stages of cirrhosis. This research 

procedure includes dataset encoding, data scale, handling  

the imbalance of the dataset, features selection, splitting  

the dataset, and analyzing the classifier's performance. 

3.1 Dataset description  

Tests were administered on a publicly available dataset 

obtained from the Zenodo website, an open-access 

repository that supports research in many fields; a link is 

indicated on the GitHub website [10]. This study used the 

dataset for the first time to forecast cirrhosis; it comprises 

comprehensive clinical data intended for analyzing and 

forecasting health outcomes associated with liver diseases. 

Below, describe its characteristics and clinical relevance: 

• Demographics and sample size: The dataset consists 

of 70 categorical and continuous features and 10,000 

records with no missing values. It included 40.1% males 

and 59.9% females aged between 15 and 83 years. 

• Demographic variables: Include age and gender. 

These variables are considered necessary for 

comprehending patient profiles. 

• Clinical symptoms: Include features such as fatigue, 

itching, upper pain, spiders, bleeding, anorexia, nausea, 

edema, ascites, hepatomegaly, encephalopathy, etc. The 

dataset provides values for these variables (absent or 

present). These symptoms are indicators of the patient's 

health status and are essential for diagnosing and 

monitoring the progression of cirrhosis. 

• Laboratory results: These results, including liver 

function tests that reflect liver damage, such as (Alanine 

aminotransferase (ALT), aspartate aminotransferase 

(AST), Gamma-glutamyl Transferase (GGT), etc.), 

provide a thorough assessment of the patient's liver 

health. 

• Clinical features other: injections, transfusions, 

gallstones, choledocholithotomy, fibrosis, diabetes, 

blood pressure, Primary biliary cholangitis (PBC), 

obesity, steatosis, and Hepatitis. Their feature's 

relevance helps in developing complications of liver 

cirrhosis and its stages and treatment approach 

direction. 

• Target available: is cirrhosis feature with three cases 

(absent, compensated, decompensated). 

3.2 Data preprocessing 

Data preparation involves converting raw data into a 

logical and understandable format. Data cleaning is an 

essential and obligatory process in preparing data for 

utilization in ML models and enhancing the precision of 

diagnostic findings. The data processing stages in our 

suggested system consist of the following steps: 

3.2.1 Data encoding 

Transforming categorical variables, which are represented 

as text strings, into numerical values is an essential step in 

facilitating ML models to calculate the correlation 

between them and generate precise predictions. This is 

because most ML models are designed to interpret 

numerical data rather than text [11].  

A label coding technique was employed in this study 

to convert categorical data into numerical values. Where a 

distinct integer is allotted to every categorical value in the 

features. Our dataset contained 55 categorical attributes; 

the "Cirrhosis" feature, for example, is characterized by 

the presence of (absent, compensated, decompensated) 

variables. The encoding of the variables will be as follows 

(absent = 0, compensated = 1, decompensated = 2). 

3.2.2 Feature selection 

In the fields of pattern recognition and ML, feature 

selection is a critical data preprocessing utility. The 

minimally sized feature subset from the original set that is 

optimal for the objective is selected through the feature 

selection process [12].  Feature selection's advantages 

include enhanced data quality through an efficient data 

collection process, enhanced predictive performance, and 

reduced computational time required for the prediction 

model. [13]. In this study, we used two methods of feature 

selection: Filter and wrapper methods. 

a) Filter methods: Select features based on feature 

ranking as the evaluation metric. For the most part, 

features are evaluated according to their scores within 

variety of statistical tests that evaluate their correlation 

with the class. Features that receive a score below a 

specific threshold are eliminated, while those that 

receive a score above it are preferred [14]. Without 

incorporating any learning classifier algorithm, it 

selects the feature based on its integral features. 

Compared to the wrapper technique, this method yields 

results more rapidly [15]. Chi-square is a widely 

recognized filter method. 

• Chi-Square: A score of χ2 is allocated to every 

feature as well as the target of feature selection. "χ2 

score" calculation is based on the reasoning that a 

characteristic with a low "χ2 score" is unrelated to a 

target class, suggesting that is not suitable for 

classifying samples of data [16]. It is mathematically 

represented using Equation 2. 

𝑋2=∑
(𝑂𝑖− 𝐸𝑖)2

𝐸𝑖
                (1) 

Where 𝐸𝑖 is the expected value, 𝑋2 is Chi-Square, 

and 𝑂𝑖  is the observed value. 

• Mutual Information (MI): The MI classification 

concept is founded on entropy, a metric that 

quantifies the level of uncertainty in random data, 

yielding a numerical value ranging from 0 to 1. MI 

quantifies the extent of shared information between 

two random variables. This approach examines the 

features based on their interdependencies with the 

class and their duplication with each other [17]. It is 

mathematically represented using Equation 3. 

𝐼(𝐹; 𝑇) = 𝐻(𝐹) − 𝐻(𝐹|𝑇)      (2) 
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Where I (F; T) is the MI for F and T, H(F) is the 

entropy of the F and T, and H (F | T) is the conditional 

entropy for F given T. 

b) Wrapper methods: Irrespective of the ML technique 

used, use the performance of the chosen classifier 

algorithm as a metric to aid in selecting the best subset 

of features [14]. Variable subsets are evaluated and 

selected by employing the predictor's performance as 

the objective function, which is regarded as a black 

box. RFECV is a widely recognized form of wrapper 

method [18]. 

• RFECV: This method is a wrapper that selects 

features using an ML algorithm, ensuring that the 

most relevant attributes are selected. RFECV 

combines cross-validation and recursive feature 

elimination To determine the best features that 

improve model performance [19]. RFE is a 

procedure that evaluates the significance of features 

in a model through an iterative process. Remove the 

feature with the lowest significance in each iteration. 

The procedure entails the assessment of the 

validation errors of all potential feature subsets as 

well as the selection of therefore determining the 

best feature subset with the least error rate [20]. 

Algorithm 1 illustrates the RFECV feature selection 

steps: 

Algorithm 1: RFECV for feature selection 

Input: Dataset D 

Output: feature subset 

 

1: For each feature in D do 

2:  For K-fold= 1 to 5 do                

3: Cross-validation: 

4:  D: Randomly subdivided into 5 subsets 

5:  1 subset for validation data, and 4 for the 

training set; 

6:  Train model (RF or SVM) using the 

training set; 

7:  Compute the accuracy (ACC) using the 

testing set; 

8:  Acquire the importance of each feature 

using the model; 

9:  Updated the train set and removed/least 

weighted features; 

10:  End for  

12:  Acquire feature subset (FS) with the best 

ACC; 

13:  If the FS-ACC is the best ACC, then:  

14:   Features Selected = FS; 

15:  End if 

16: End for 

17: Return Features Selected. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: The proposed system for prediction of liver 

cirrhosis. 

3.2.1 Balanced data  

The dataset used in this paper for liver cirrhosis prediction 

is highly asymmetrical, which influences the result 

prediction. When there is a considerable disparity in the 

data between two classes, the classifiers will show a bias 

towards the class with the bigger amount of data. This 

phenomenon is commonly known as "imbalanced data" 

[21]. We employed SMOTE, a method that seeks to 

expand the samples of the smaller class by generating 

synthetic samples to prevent all overfitting problems. The 

presence of overfitting causes the model to exhibit 
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excellent performance on the training set but inadequate 

fit on the testing set [22]. The SMOTE steps are as follows 

[23]: 

1. Preparation of quantity of synthetic minority class 

samples. 

2. Randomly select a sample of a minority class. 

3. Employs the KNN algorithm to obtain associate 

neighbors of the chosen sample [11]. 

4. Utilizes random interpolation to produce a new 

synthesis by combining minority and selected 

adjacent class instances. 

5. The process of replicating steps 2 and 4 is continued 

until the desired quantity is achieved. 

To guarantee the efficiency of SMOTE, it is essential 

to precisely adjust its setup by choosing the ideal value of 

K. In this work, after experimenting with several values, 

including 1,5, 7, and 9, we identified 5 as the final k-value 

to enhance the data properties of the randomly produced 

sample and minimize excessive computation, which may 

not yield improvements for the algorithm. 

In this research, we utilized 1000 samples from the 

referred to above dataset because the dominant category 

in these data is the absence of cirrhosis in a large 

percentage, distributed throughout each stage from class 

as follows: absent (200), compensated (238), and 

decompensated (562). Subsequently, the entries 

underwent the Oversampling technique, leading to the 

data being balanced, thus, an equal distribution of samples 

across each stage: absent (562), compensated (562), and 

decompensated (562). Figure 2 (a, b) shows the count plot 

before and after applying the SMOTE technique. Table 2 

displays the total number of samples for each stage of 

cirrhosis in the dataset before and after applying the 

SMOTE approach. 

 Figure 2-a: Before using the SMOTE Count Plot.  

Figure 2-b: After using the SMOTE Count Plot. 

 

Table 2: Details the number of class samples before and 

after data balancing. 

3.2.2 Data scaling 

Scaling, also known as normalization, ensures that 

features with higher numerical ranges do not supersede 

those that vary within a lower range. Thus, dataset scaling 

can alleviate this phenomenon and, as a result, enhance 

classification performance [24]. In this study, data scaling 

was implemented within the standard-scaler function. 

Consequently, it is a frequently employed data 

transformation technique in the field of ML to standardize 

the scale of numerical variables or features. The data is 

scaled using the standard deviation and the mean. The 

resulting features represent the distribution with zero 

mean and unit variance. The standard-scaler was 

mathematically represented using Equation 1. 

Z= 
𝑋− μ

𝜎
                (3) 

Where 𝒙 is an original value, 𝝈 is a standard deviation, 

𝝁 is the mean. 

3.2.3 Splitting dataset  

The dataset undergoes division into a pair of distinct sets; 

training set and test set. Employing a training set, 

classifiers are trained, which consists of 70% of the data 

(1180 samples). The model's accuracy and effectiveness 

on unseen data are explicitly assessed using the testing 

dataset, which comprises 506 samples (30% of the data). 

3.3 Classification models 

The classifiers ETs, SVM, and RF were selected and 

implemented after the preceding phases. Classification is 

an essential process of supervised learning in which 

classifiers apply their knowledge to the testing dataset to 

identify the target attribute by learning from the training 

dataset. The classification techniques employed in this 

research are detailed below. 

3.3.1 Extra-Trees (ET) 

ET is an ensemble learning method that is based on DTs. 

ET employs a random selection process to choose 

particular judgments and subsets of data to avoid 

excessive learning and fitting. Multitudes of trees are 

constructed, and the nodes are divided into groups 

according to randomly selected subsets of features. Data 

bootstrapping is not employed to introduce randomization 

into Extra-Trees; rather, all observations are randomly 

divided [25]. 

Before SMOTE After SMOTE 

Class 
Sample 

count 
Class 

Sample 

count 

absent 200 absent 562 

compensate 238 compensate 562 

decompensate 562 decompensate 562 

Total 1000 Total 1686 
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3.3.2 Support vector machine (SVM) 

SVM is the potent model of the realm of supervised ML 

methods and is particularly effective in addressing binary 

classification and multiclass classification issues [26]. 

SVM is a method for identifying a hyperplane in a space 

with N dimensions. Data points could be categorized into 

distinct categories or predicted as continuous values using 

a variety of hyperplanes. Hyperplanes serve as decision 

boundaries, enabling the classification of data points. 

Furthermore, by expanding the margin distance, it is 

possible to enhance the accuracy of classifying future data 

points [27]. 

3.3.3 Random forest  

RF refers to the compilation of DTs randomly selected 

from the input feature set. It acquires input data, trains 

numerous models, accumulates each model's prediction, 

and subsequently implements a voting mechanism to 

choose the optimal solution [28]. In clinical data analysis, 

the RF achieves the balance between robustness and 

accuracy. The capacity to manage intricate interactions 

and nonlinear relationships among variables can improve 

the diagnostic and prognostic accuracy of diseases [29]. 

3.4 Performance metrics 

To assess the models' efficacy in this study, numerous 

metrics were implemented, including F1-score, precision, 

confusion matrix, recall, accuracy, and AUC, as illustrated 

in the following details: 

• Confusion matrix: Was employed to assess the 

effectiveness of ML models. It consists of the 

classification keys, which are illustrated below:  

• TP (True positive): Refers to an output classed as 

positive and is correctly predicted. 

• TN (True negative): This is a negative output, 

ensuring the predicted result is correctly classified. 

• FP (False positive): signifies the output is 

positive, resulting in an incorrect classification of 

the predicted result 

• FN (False negative): signifies the output is 

negative, resulting in an incorrect classification of 

the predicted result. 

Table 3 displays the description of this method. 

• Accuracy: the proportion of right predictions out of all 

forecasts made. Equation 3 is used to represent it 

mathematically.  

             Accuracy = 
TP + TN

TP + FN + FP + TN
               (4) 

• Recall: It indicates the "true positive rate (TPR)": It is 

calculated by dividing correctly predicted positive 

values by the entire of positive values. Equation 4 is 

used to represent it mathematically. 

    Recall = 
TP

TP + FN
                                  (5) 

• Precision: It determines the proportion of the correctly 

detected samples to all detected samples. Equation 4 is 

used to represent it mathematically. 

Precision = 
TP

TP+FP
                            (6) 

• F1-score: signifies the equilibrium between precision 

and recall. Mathematically, it is represented using 

Equation 6. 

  F1-score = 
2 ∗ Precision ∗ Recall

Precision+ Recal
              (7) 

• AUC: Utilizing the AUC of the ROC curve (Receiver 

Operating Characteristic). An ideal classifier achieves 

a maximum value of AUC which is 1, while a random 

classifier achieves a value of AUC of 0.5. A greater 

AUC indicates an enhanced ability to distinguish 

between excellent and negative occurrences [30]. 

Table 3: The general layout of a confusion matrix for a 

classification with three classes. 

4 Experimental results  
This part will present the findings for all the tests we 

conducted using RF, SVM, and ET classification models 

with feature selection techniques such as Chi-Square, MI, 

and RFECV based on (RF and SVM). Furthermore, the 

models' efficacy and effectiveness on a testing set were 

evaluated by employing a variety of metrics, such as 

recall, confusion matrix, precision, F1-score, and 

accuracy. Additionally, the ROC plots in our research 

were chosen based on the models' greatest AUC scores. 

To evaluate the efficacy of the models in the proposed 

study, we implemented a sequence of experiments. These 

experiments are referred to as Experiment I and 

Experiment II. 

4.1 Experiment I 

In this experiment, we processed the data so that it was 

appropriate for the models to make predictions. Before 

data balancing, we trained the models using the original 

dataset, which consisted of 1000 samples with all features 

(70). The ET classifier had superior performance 

compared to the other classifiers, as evidenced by its 

accuracy of 84%, precision of 78%, recall of 87.66%, and 

F1-score of 79.66%. Due to the asymmetrical nature of our 

dataset, there is a notable imbalance in the number of 

stages. Specifically, there are far more instances of the 

"absent" stage compared to the "compensate" and 

"decompensate" stages. To address this problem, we 

applied the SMOTE technique to equalize the dataset and 

then divided it into two separate datasets. The first 

category consists of (1180) training samples, representing 

70% of the total, and the test set, which consists of 506 

samples, accounts for 30% of the overall dataset, which 

contains 1686 samples of the total samples. The result of 

the train–test split method on the balanced dataset with all 

features (70), the ET model obtained the best findings in 

Confusion matrix 
Actual class 

Stage 1 Stage 2 Stage 3 

Predicted 

class 

Stage 1 TP FP FP 
Stage 2 FN TN TN 

Stage 3 FN TN TN 
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the accuracy of (88.54%), F1-score, recall, and precision 

of (88.33%) respectively. The outcomes of the algorithms 

before and following the implementation of the SMOTE 

approach are illustrated in Table 4. 

Table 4: Performances of ML models on imbalanced and 

balanced data with all features. 

Before SMOTE with all features 

Evaluation 

Metrics 
RF SVM ET 

Accuracy 0.83 0.80 0.84 

Precision 0.88 0.79 0.78 

F1-score 0.78 0.78 79.66% 

Recall 0.76 0.78 87.66% 

After SMOTE with all features 

Evaluation 

Metrics 
RF SVM ET 

Accuracy 0.87 0.83 88.54% 

Precision 0.87 82.33% 88.33% 

F1-score 86.33% 82.66% 88.33% 

Recall 86.66% 82.66% 88.33% 

4.2 Experiment II 

In this experiment, we employed feature selection 

techniques in a sequence of experiments conducted 

independently of one another; the sequence is as follows: 

 First, we implemented the Chi-Square method, in 

which we conducted numerous tests to determine the 

optimal number of pertinent and critical features for the 

target.  40 features were chosen due to their superior 

performance with the proposed models. Compared to 

other experiments in this study, the ET model yielded the 

highest precision, F1-score of (0.94), and recall and 

accuracy of (93.87%). 

Secondly, in the series of experiments we conducted, 

we used the RFECV feature selection technique based on 

the RF classifier (RF-RFECV). The technique 

automatically selected 38 features as the best features. The 

results indicated that the RF was characterized by superior 

accuracy (90.32%), precision, F1-score (89.66%), and 

recall (90.33%) compared to other models (SVM, ET). 

Third, in this experience, we employed the same 

procedure (RFECV), as previously mentioned to select 

features, but we relied on the SVM classifier. This 

technique selected a reduced number of features, in 

comparison to RF-RFECV, specifically 15 features. The 

RF model achieved the highest outcomes in the terms of 

recall, accuracy (91%), F1 score, and precision (90.66%). 

 Fourth and last, MI is used to evaluate the 

dependency between the target variable and each feature. 

This method identified the top 39 features that provide the 

most information about the target variable. However, as 

shown in Table 5, MI did not enhance the total results of 

our models in the selection process. 

Table 5 illustrates the outcomes of the models after 

using feature selection techniques. 

Table 5: Performances of ML models on balanced data with feature selection methods. 

Feature 

Methods 

Number 

of 

Features 

Evaluation 

Metrics 

Classifiers 

RF SVM ET 

Chi-Square 40 

Accuracy 93.08% 91.50% 93.87% 

Precision 0.93 91.33% 0.94 

F1-score 0.93 0.91 0.94 

Recall 0.93 91.33% 0.94 

RF-RFECV 

 
38 

 RF SVM ET 

Accuracy 90.32% 85.17% 90.12% 

Precision 89.66% 84.33% 89.33% 

F1-score 89.66% 84.33% 89.33% 

Recall 90.33% 84.66% 0.90 

SVM-

RFECV 

 

15 

 RF SVM ET 

Accuracy 0.91 89.13% 90.32% 

Precision 90.66% 0.89 89.66% 

F1-score 90.66% 0.89 0.90 

Recall 0.91 89.33% 89.66% 

Mutual 

Information 

(MI) 

39 

 RF SVM ET 
Accuracy 84.78% 79.24% 84.78% 

Precision 84.33% 0.79 84.66% 

F1-score 84.33% 78.33% 84.66% 

Recall 84.66% 78.66% 84.66% 
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Figure 3(a, b, c, and d) displays the ROC curves of 

the algorithms utilizing feature selection techniques. The 

(ET+ Chi-Square) model achieved 0.99 highest AUC by 

comparison with all experiments, as shown in Figure 3 

(a). Besides, when we used the (RF-RFECV) method, the 

(ET+RF-RFECV) and (RF+RF-RFECV) achieved 0.97 

AUC, as Figure 3 (b) illustrates. The (RF+SVM-RFECV) 

achieved 0.98 AUC, as Figure 3 (c) shows using the 

(SVM-RFECV) method, in which the (ET+SVM-

RFECV) achieved 0.98 AUC. 

Figure 4(a, b, c,d) displays the performance results of 

the models (ET, RF, SVM) with feature selection methods 

(Chi-Square, RFECV, MI) based on the confusion matrix. 

 

Figure 3-a: ROC-AUC curves of (ET, RF, SVM) with (Chi-Square). 

 Figure 3-b: ROC-AUC curves of (ET, RF, SVM) with (RF-RFECV). 

Figure 3-c: ROC-AUC curves of (ET, RF, SVM) with (SVM-RFECV).  

Figure 3-d: ROC-AUC curves of (ET, RF, SVM) with (Mutual Information). 
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Figure 4-a: Confusion matrix of (ET, RF, SVM) with Chi-Square. 

Figure 4-b: Confusion matrix of (ET, RF, SVM) with RF-RFECV. 

Figure 4-c: Confusion matrix of (ET, RF, SVM) with SVM-RFECV.  

Figure 4-d: Confusion matrix of (ET, RF, SVM) with Mutual Information. 
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5 Discussion 
Our proposal for this system comes as a result of a notable 

lack of studies investigating the application of ML in 

predicting cirrhosis. Compared to the state-of-the-art 

(SOTA) listed in Table 1, our suggested system exhibited 

exceptional performance, achieving an accuracy of 

93.87%. This is due to its unique contributions to the field 

of liver cirrhosis staging, including the dataset size, where 

the studies in [1], [3], [7], and [9] depend on small or 

heavily imbalanced datasets and the dataset contains many 

missing restrictions, which can bias performance metrics 

like accuracy and AUC. Conversely, the dataset employed 

by our system consists of a sufficiently extensive 

collection of clinical characteristics and very big samples. 

These factors are crucial for precisely determining the 

stage of liver cirrhosis, thereby enhancing the results' 

realism. 

Regarding the process of feature selection. In [1],  [7] 

use SHAP (SHapley Additive exPlanations). In [8], 

Boruta is used as a feature selection method. However, 

these methods may not be as effective in handling the 

specific dataset characteristics used in this study, 

especially with high-dimensional clinical data. The study 

in [3] did not use any feature selection methods, Where 

irrelevant features can lead to model bias and complicate 

interpretation, especially in clinical settings where 

understanding the relationship between features and 

outcomes is critical. Consequently, this may result in 

diminished performance. 

Furthermore, the incorporation of ET as a classifier 

with Chi-Square as a feature selection method is an 

innovative methodology that has not been extensively 

explored in existing scholarly works. This combination 

has a substantial effect on the model's recall and AUC, 

especially in accurately identifying the precise patterns 

within clinical characteristics that indicate various stages 

of liver cirrhosis. 

Another distinguishing characteristic is the selection 

of ET as the classifier. With its capacity to handle high-

dimensional data and mitigate overfitting by employing 

ensemble learning, ET provides a more robust and 

accurate classification compared to single decision tree-

based models or the linear models used by other state-of-

the-art (SOTA) methods. 

Regarding the dataset balance used in this study, our 

primary objective was to oversample rather than under-

sample to prevent the loss of important information, so we 

did not use under-sampling techniques. Within the realm 

of oversampling approaches, a viable approach exists to 

augment the quantity of data through basic randomization. 

Conversely, SMOTE produces data using algorithms, thus 

reducing the probability of overfitting compared to basic 

random approaches. Consequently, our system achieved 

optimal performance.  

The main constraint of this study is that the 

oversampling technique can artificially boost the number 

of minority-class instances by creating new ones based on 

their resemblance to existing minority examples. This 

raises apprehensions about the potential occurrence of 

overfitting during the ML procedure. 

6 Conclusion 
This paper proposed an automated system to predict the 

stages of cirrhosis employing ML methods. The 

performance comparison baseline was established by 

implementing three ML classifiers including ET, RF, and 

SVM. It used data mining techniques to pre-process the 

data, enhancing its quality and rendering it appropriate for 

analysis and predictive modeling. This research aims to 

aid medical professionals in diagnosing and managing this 

intricate disease, to limit the progression of the disease, 

and to reduce effort, time, and cost by predicting the early 

phases of cirrhosis as well. The proposed system goes 

through several stages. In the first stage, we converted the 

categorical data to digital. The second stage involved the 

utilization of feature selection methods to identify a subset 

of important and relevant features to reduce model 

training time; in addition to improving system 

performance, the outputs of this stage were balanced by 

applying the SMOTE method to be converted into a 

format more suitable for ML models. In the third stage, we 

partitioned the dataset into training and testing and 

subsequently employed a standard scaler to standardize 

the feature measurements. The system's performance was 

assessed by employing a variety of metrics, such as AUC-

ROC, recall, precision, accuracy, F1-score, and confusion 

matrix. The (ET-Chi-Square) demonstrated a 93.87% 

accuracy rate, surpassing all other methodologies in terms 

of all metrics.  

The current study's concentration on a single dataset 

allows for a thorough analysis within the defined scope. 

However, future work could broaden the scope by testing 

the model on other datasets related to liver cirrhosis, 

employing cross-validation methods, and using 

supplementary feature selection techniques to strengthen 

the reliability of the results and improve the predictive 

accuracy. Additionally, it is worth considering the use of 

domain adaptation strategies to improve the model's 

ability to adapt to different data sources, thereby ensuring 

broader applicability and greater clinical relevance. 
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