
https://doi.org/10.31449/inf.v49i1.6756 Informatica 49 (2025) 19–38 19

Dynamic Routing for Large-Scale Mobility On-Demand Transportation
Systems

Chijia Liu1, Alain Quilliot1, Hélène Toussaint1, Dominique Feillet2
1Université Clermont Auvergne, CNRS, UMR 6158 LIMOS, 63178 Aubière, France
2Mines Saint-Etienne, Univ Clermont Auvergne, INP Clermont Auvergne, CNRS, UMR 6158 LIMOS, F - 42023 Saint-
Etienne, France
E-mail: chijia.liu@uca.fr, alain.quilliot@uca.fr, helene.toussaint@uca.fr,feillet@emse.fr

Keywords: Large-scale dial-a-ride problem, ride-sharing, shared autonomous vehicles

Received: July 23, 2024

We study a prospective large-scale Ride-Sharing Mobility-on-Demand (RSMoD) transportation system. In
this system, a fleet of Shared Autonomous Vehicles (SAVs) provides services to a very large number of
passengers (up to 300,000). Passenger requests are submitted throughout the service horizon and require
an immediate response from the system. We formulate the resulting decision problem as a dynamic dial-a-
ride problem (DARP), characterized by its very large size, necessitating well-fitted filtering devices.
We first derive a static version of this dynamic DARP from a statistical knowledge of the requests. Solving
this static DARP version allows us to identify reference requests and related routes, which we incorporate
into a Guided Insertion Mechanism (GIM). This mechanism aims to expedite the insertion of real dynamic
requests. To handle requests that do not fit the GIM learning basis, we complement this mechanism with a
Filtering System (FS), creating an algorithmic GIM-FS framework that dynamically routes the SAVs and
assigns them to requests. Numerical tests focus on the behavior of both this prospective system RSMoD
and the GIM-FS algorithmic scheme. They show that a large-scale RSMoD system involving SAVs is likely
to significantly reduce the number of on-route vehicles as well as the energy consumption and that the two-
phase GIM-FS approach is more efficient than a baseline method that does not learn from a pre-processed
static version of the DARP

Povzetek: Raziskava obravnava dinamično usmerjanje v velikih sistemih prevoza na zahtevo z avtonomnimi
vozili. Predlagan je dvofazni algoritem, ki vključuje mehanizem vodenega vstavljanja in filtrirni sistem za
učinkovito dodeljevanje vozil zahtevam. Numerični testi kažejo na zmanjšanje števila vozil na cesti in
manjšo porabe energije.

1 Introduction

The concept of Mobility-on-Demand (MoD) has gained a
reputation for being accessible and available to users when-
ever needed, thus offering more flexible transportation ser-
vices [4, 40, 29]. On-demand ride services are usually pro-
vided by Transportation Network Companies (TNCs) such
as Uber and Lyft, which communicate with users through
digital platforms and mobile applications. Some of these
on-demand ride services implement ride-sharing or ride-
pooling [2, 42], allowing passengers with similar itineraries
to share vehicles, thus alleviating both carbon emissions
and traffic pressure. We refer to these services asRide Shar-
ing Mobility-on-Demand (RSMoD) systems.
Nowadays, most MoD or RSMoD systems aim to pro-

vide convenient transportation for residents living in areas
with sparse public transportation, such as suburban or ru-
ral areas, and for elderly and disabled passengers [36, 35].
These systems are small due to the costs of drivers. How-
ever, the current development of autonomous car tech-
nology suggests that integrating autonomous vehicles into

RSMoD systems could overcome these limitations [46, 16,
37].
Connected autonomous vehicles would drastically de-

crease the costs of RSMoD systems and make them ac-
cessible to all kinds of users. In urban areas, their flex-
ibility might allow them to occupy a significant market
share between standard public transportation systems (bus,
tram, and underground) and individual cars, whose exces-
sive number and energy consumption are currently major
concerns for public authorities. In most European cities,
public authorities are promoting both the emergence of
RSMoD systems and advances in autonomous vehicle tech-
nology [28, 30], with the prospect that a significant portion
of individual vehiclesmight soon be replaced by Shared Au-
tonomous Vehicles (SAVs) involved in large-scale RSMoD
systems.
In this study, we address some of the decision prob-

lems likely to be related to the management of a prospec-
tive RSMoD system, relying on SAVs and thus capable of
capturing a large part of individual mobility in a medium-
sized urban/peri-urban area, such as the one surrounding

20 Informatica 49 (2025) 19–38 C. Liu et al.

the town of Clermont-Ferrand in France (population around
300,000). We consider a fleet of mid-sized SAVs con-
trolled by a service-providing company to meet a very large
number of daily passenger requests (around 300,000, i.e.,
around 40% of the individual mobility currently handled
by private cars). Installing and managing such a fleet re-
quires handling several decision levels: strategic ones, such
as pricing the services, determining the size of the fleet, and
establishing the infrastructure of the support transit network
(monitoring devices, sensors, protected areas, etc.); opera-
tional ones, such as vehicle routing and scheduling, assign-
ing vehicles to requests, maintenance scheduling, etc. In
our case, we focus on two tightly connected questions:

– The size of the fleet, which may be considered a de-
cision at the strategic level, which also determines at
the operational level the number of requests likely to
be rejected.

– The operational dynamic (online) assignment of the
large number of requests to the vehicles, and the dy-
namic routing and scheduling of the vehicles.

While addressing these two questions, we follow a
two-fold purpose: Designing efficient algorithms for
the real-time management of large sets of requests and
vehicles, and the minimization of both the running costs
and the number of unsatisfied requests; observing the
behavior of the RSMoD system itself, including its size,
costs, and its potential positive impacts on urban mobility.

To achieve this purpose, we presuppose the availability
of a suitable statistical representation of the mobility de-
mand. This initial statistical knowledge allows us to solve
a virtual static version of our dynamic dial-a-ride problem
(DARP) and use the resulting virtual collection of routes as
a learning basis for fast decision-making. Our main contri-
butions are as follows:

– We design a two-phase algorithm that dynamically in-
serts the requests into the routes followed by the ve-
hicles while minimizing the running costs. This algo-
rithm relies on:

– AGuided Insertion Mechanism (GIM) that takes
advantage of the large-scale feature of the system
and works as a learning device. It derives high-
quality reference routes from the resolution of a
static virtual version of the DARP, and uses them
to insert real requests r into real vehicles v;

– A Filtering System (FS), that applies to a given
request r in case the GIM process fails to ef-
ficiently assign a vehicle to r. FS reduces the
search space by filtering the candidate insertion
parameters, namely the vehicles and their inser-
tion positions within the vehicle routes.

– We conduct numerical experiments that assert the abil-
ity of this algorithm to significantly reduce computa-
tional times compared to the baseline approach (which

does not involve the GIM mechanism), while main-
taining the quality of the resulting solution.

– Furthermore, according to experimental results, an
RSMoD system relying on SAVs might reduce the
number of on-route vehicles by around 99% compared
to a private system where all 300,000 requests would
be serviced by private vehicles. These experiments
also reveal that such an RSMoD systemwouldmanage
significantly more dynamic requests in a shorter total
drive time than a taxi-like MoD system involving the
same number of vehicles and lacking a ride-sharing
feature

To our knowledge, this is the first study that explicitly links
the resolution of dynamic DARP to the use of statistical
vehicle travel patterns.

The paper is organized as follows: Section 2 is devoted
to the state of the art. Section 3 describes how our prospec-
tive RSMoD system works. We present in Section 4 a static
version of the resulting large-scale DARP and describe how
it can be handled through a best-fit insertion heuristic. The
core of our contribution is in Section 5, which describes the
two-phase GIM-FS algorithm for the handling of the dy-
namic version of the large-scale DARP. Section 6 presents
numerical experiments. We briefly conclude with a discus-
sion about open questions.

2 Related works

2.1 MoD systems
Together with the significant increase in smartphone own-
ership and the growing demand for flexible mobility,
Mobility-on-Demand (MoD) transportation systems have
emerged in recent years, greatly facilitating travel for urban
and rural residents. MoD systems manage requests through
digital platforms to customize efficient travel routes. Since
the use of Shared Autonomous Vehicles (SAVs) decreases
the running costs of MoD systems and opens the way to
large-scale MoD systems, academics are increasingly in-
terested in studying these systems [13, 1]. Research in this
area generally falls into the following two categories.
The first category contains studies focusing on the sys-

tems themselves, including their different configurations,
deployment viability, and potential advantages. For exam-
ple, in [15], the authors consider a dynamic RSMoD sys-
tem, where a fleet of SAVs is employed to cater for 54, 324
passenger requests during a service horizon of 24 hours in
the city of Austin. They demonstrate the ability of the ride-
sharing feature to reduce SAVs’ total travel time. In [26],
the author focuses on the congestion issue. He sets up a
Linear Programming model and runs experiments that re-
veal that, due to the empty repositioning trips performed
by the SAVs, congestion during peak hours may increase.
In [28], the authors introduce a simulation framework to
analyze the behavior of an MoD system with Electric SAVs

Dynamic Routing for Large-Scale Mobility On-Demand… Informatica 49 (2025) 19–38 21

(SAEVs). They show that optimizing the number of charg-
ing stations and reducing charging times are crucial for the
efficiency of the SAEV fleet.
The second category contains studies on how requests

and vehicles might be efficiently managed. It puts algo-
rithm design at the core of the research: passenger requests
are submitted online, hoping for almost immediate feed-
back. Deciding on the requests means efficiently assigning
them to vehicles and accordingly routing and scheduling the
vehicles. This defines the dynamic version of the Dial-a-
Ride Problem (DARP) (see [38]). The case when the num-
ber of requests is high (large-scale MoD systems) raises the
issue of filtering, concerning the introduction of filtering
devices that will guide the decision-makers, for any given
request, towards the best-fitted vehicles. For example, au-
thors in [43] introduce a dual-sided taxi searching approach
to efficiently filter candidate vehicles inside a taxi system
that dynamically handles over 330,000 requests. In [3], the
authors implement a similar idea to match requests and ve-
hicles in a ride-sharing system with thousands of requests.

2.2 Static DARP
Addressing the dynamic version of the problem requires
the ability to efficiently solve its static version, which is
characterized by the fact that all requests are known in ad-
vance and there are no restrictions regarding computational
times. Reviewing the literature reveals that most studies on
the DARP have been conducted concerning its static ver-
sion [12].
The static DARP involves a set of passenger requests,

each typically containing a pick-up location (origin) and a
drop-off location (destination). Additionally, certain con-
straints regarding service quality are imposed, such as time
windows for pick-up or drop-off services, or a maximum
ride time. The goal is to organize the routes of a fleet of
vehicles so that certain objectives are optimized, such as
minimizing total travel time or maximizing service quality.
Meanwhile, routes should satisfy constraints such as vehi-
cle capacity, maximum route duration, and those imposed
by the requests [18].
For very small-sized DARPs, authors propose exact al-

gorithms. Studies [38, 39] introduce dynamic programming
algorithms to solve specific instances of DARPs. Exact
algorithms based on Branch-and-Bound, Branch-and-Cut,
and Branch-and-Price [10, 7] are the most common meth-
ods used to solve the DARP. For example, in [32], the au-
thors propose a Brand-and-Price method to solve a DARP
with Split Requests and Profit (DARPSRP) with an objec-
tive of maximizing the total profit. Requests involving sev-
eral passengers can be split to be served separately if it is of
benefit to do so. Different instances with up to 4 vehicles
and 40 requests, or 5 vehicles and 20 requests can be solved
to optimality.
In real-life situations, the number of requests to be pro-

cessed usually forbids exact methods and leads to the de-
sign of heuristics. In [11], authors design a tabu search

heuristic to solve the DARP with time windows and deal
with instances with up to 295 requests with 20 vehicles.
Solving the largest instances necessitates over 200 minutes
of CPU time. Their work has inspired other tabu search-
based methods [6, 31]. Other types of metaheuristics are
also widely studied, such as Variable Neighborhood Search
(VNS) [33], Large Neighborhood Search (LNS) [21, 34]
and Adaptive Large Neighborhood Search (ALNS) [47, 5].
Insertion heuristics [22], which gradually constructs fea-

sible solutions, may be adapted in a natural way to dy-
namic contexts andmid-to-large-sized problems [8, 41, 20].
Among them, the best-fit insertion heuristics [44] appear as
the most efficient ones. In order to deal with very large
instances, [27] introduces a filtering system based on a
spatial-temporal decomposition, which, given a target re-
quest, not only selects candidate vehicles but also provides
the candidate insertion positions within the route of these
vehicles where the request can be inserted. Part of this fil-
tering system will be used in this paper.

2.3 Learning travel patterns
In large-scale systems, most requests correspond to travel-
ers who make similar trips from one day to another, and
thus adhere to some statistical patterns that one may try
to capture through statistical analysis or machine learn-
ing [17, 49]. For example, in [48], the authors propose
a deep learning-based approach, ST-ResNet, which mod-
els the temporal closeness and properties of crowd traffic
and predicts the inflow and outflow of crowds in every re-
gion. In [45], authors introduce a learning model based on
a convolution network to predict hourly Origin-Destination
Matrices in the Beijing urban area.
On the other hand, due to the similarity in passenger

requests, the trajectories of vehicles supporting these re-
quests are also likely to exhibit some repetitive or similar
travel patterns [25, 19]. In [24], the authors construct a se-
quence of dynamic graphs from the aggregation of trajec-
tory data and apply graph mining algorithms to analyze the
spatial and temporal travel patterns in the transit network.
In [23], a trajectory clustering method based on identifying
the Longest Common Sequence of each trajectory is pre-
sented, which facilitates traffic flow pattern analysis.

3 A target prospective RSMoD
system

The transit network The key underlying infrastructure
of our system is a transit network, represented here as an
oriented graph G = (N †,A), where A is the set of road
links (elementary arcs) and N † is the set of road junctions
(nodes). We denote byN ⊂ N † the nodes where a vehicle
involved in the system may pick up or drop some passen-
gers. We suppose, for the sake of simplicity, that the travel
time on any arc a ∈ A for any vehicle v is constant and
that the travel times from any node n1 ∈ N † to any node

22 Informatica 49 (2025) 19–38 C. Liu et al.

n2 ∈ N † are pre-calculated. We denote by t(n1, n2) this
quantity. In addition, we only consider one vehicle depot
n0 ∈ N † in the network. Throughout this paper, we re-
fer to this network as representative of the transit network
of a mid-sized urban area with about 500,000 inhabitants,
involving between 5,000 and 15,000 nodes.

The main players Three agents should be identified as
the main players of our RSMoD system: the central oper-
ator, the SAV fleet, and the passengers. Passengers sub-
mit their travel requests online to the central operator via a
digital terminal. The central operator then assigns requests
to SAVs and plans the routes for these vehicles. Finally,
each SAV follows its route to provide services to passen-
gers. More precisely:

– The Passenger Requests: A passenger request r, sub-
mitted at time tSubr is defined by: a load (number
of passengers) qr; a pick-up service Or, containing
a pick-up node or ∈ N and a pick-up time window
[eor , lor], where eor and lor represent respectively the
earliest and latest pick-up time for r; a drop-off ser-
viceDr, containing a drop-off location dr ∈ N , and a
maximum ride-time T r. We easily deduce a drop-off
time window [edr , ldr], where

edr = eor + t(or, dr);

and
ldr = lor + T r.

We assume that the service times at pick-up and
drop-off locations can be neglected.

The Large Scale Feature: We assume that this
prospective RSMoD system is likely to replace around
40% of the current mobility currently reliant on indi-
vidual cars. So we deal here with a number of requests
between 2.105 and 4.105.
Statistical Behavior of the Requests: Requests are
submitted online throughout the time horizon and they
may differ from one day to another. However, we sup-
pose that they follow some probabilistic distribution
that can be reproduced through simulation.

– The SAV Vehicles: The SAV fleet involves V identi-
cal autonomous electric vehicles, all with capacity Q.
The running times of the vehicles along the arcs of the
transit network come with the network. Each request
can be served by at most one vehicle, and no transfers
between vehicles are allowed. Once again, we do not
address the energy issue and assume that the vehicles
are able to run without recharging throughout the time
horizon.

– The Central Operator: The central operator is the
decider of the system. It collects the requests and as-
signs them to the vehicles (or possibly rejects them),

while simultaneously routing, scheduling, and con-
trolling the vehicles. It processes the requests by
“packages”. More precisely, [0, T] being the plan-
ning horizon, it divides it into E intervals [te, te+ IE]
of duration IE , resulting in a set of decision epochs
E = {0, 1, . . . , e, . . . , E− 1}. At each decision epoch
e ∈ E , it collects a set Re+1 of requests that will be
processed during epoch e+1 according to the follow-
ing decision scheme (R0 means the request that have
been submitted in advance) :

Step 1 At the beginning of epoch e, the central opera-
tor proceeds the requests ofRe during [te, te+η],
where η < IE is a parameter that bounds the
computational time allowed to this part of the
process. We note that η must be small enough
to leave enough time for time-consuming steps 2
and 3.

Step 2 Then it informs all passengers about the way
their requests have been handled and asks them
to confirm.

Step 3 According to this it communicates with the
vehicles and updates their routes and tentative
schedules.

The primary objective of the central operator is to
minimize the number of rejected requests, that cannot
be serviced by the vehicle fleet. The secondary ob-
jective is the minimization of an operational cost, re-
duced here to the Vehicles’ total Travel Time, denoted
by V TT .

Remark 1: In this work, we care neither about stochastic
events (passenger no-shows, traffic accidents, etc.), nor
about the communications processes that take place be-
tween the passengers, the central operator and the vehicles,
nor, as previously mentioned, about the energetic issue. Yet
it will be indispensable to address issues while designing
the processes aiming at the control of any real-life RSMoD
system involving SAVs.

Remark 2: It is worth noting that treating each decision
epoch as having equal duration IE is a simplification.
In real-life dynamic systems, the frequency of initiating
routing and replanning procedures usually varies according
to how quickly passengers should receive a response and
the quality of the routing. However, this aspect is not the
main concern of this study.

Our Target Problem According to the above description,
our challenge becomes the design of algorithmic tools for
the handling, at any epoch e, of the requests r of Re. In
order to deal with this dynamic large-scale DARP, we first
solve a static (where all requests are known in advance)
virtual version of our DARP. Next, we use the virtual solu-
tion obtained this way as a reference assignment and rout-
ing strategy, and handle the real requests while trying to
mimic this strategy. In case we fail to insert a request r

Dynamic Routing for Large-Scale Mobility On-Demand… Informatica 49 (2025) 19–38 23

in the current collection Θ of vehicle routes, we rely on a
complementary filtering device to compute the well-fitted
insertion parameters of the insertion of r into Θ.

4 Dealing With a virtual static
large-scale dial-a-ride problem

Formally, the main components of the static DARP are
adapted from what has just been previously described:

– The Transit Network.

– The Vehicle Fleet: Vehicles are the same as described
above, but their number is not known in advance. Con-
sequently, this Static DARP also aims to help decide
the size of the vehicle fleet. In addition, it could po-
tentially be utilized to identify the part of the transit
network that should support some kind of monitoring
infrastructure. Nevertheless, this specific issue is not
addressed in this study.

– The requests: We consider a large-scale set R of
known-in-advance virtual requests. They are gener-
ated according to the probabilistic distribution of real
requests. Being static, these requests are not charac-
terized by submission times.

The goal is to build a collectionΘ = {θv, v = 1, . . . , V }
of routes, assign every request to some route, and schedule
the vehicles along those routes following the objective be-
low:

– (Primary Objective) Minimize V .

– (Secondary Objective) Minimize V TT .

This performance criterion is based on a lexicographic or-
dering of the pairs (V, V TT): (V1, V TT1) is better than
(V2, V TT2), if and only if:

– V1 < V2, or

– V1 = V2 and V TT1 < V TT2.

Notice that our two criteria are in some way antagonistic.
We denote the resulting problem by S_DARP.

4.1 Encoding a route: notion of key point
The large scale of our problem leads us to rely on a
non-standard representation of the routes: For any vehicle
v, its route θv is a list θv = {P0, . . . , Pi, . . . , PM(v)−1} of
key points, where a key point is defined by all the drop-off
and pick-up services to be simultaneously performed by v
at a specific node nP ∈ N . Proceeding this way will dras-
tically diminish the length of the routes with respect to the
standard encoding and make it easier to perform both the
search of well-fitted insertion parameters for the requests
into the vehicles and the feasibility tests related to such
an insertion. More specifically, each key point P ∈ θv

specifies: (a) a service location nP ∈ N ; (b) an arrival
time window [eaP , l

a
P], where eaP and laP indicate the earliest

and latest possible arrival times at node nP , respectively,
together with the set R−

P of requests scheduled to get out
of the vehicle at P (drop-off services). (c) a departure time
window [edP , l

d
P], where edP and ldP represent the earliest

and latest departure times from nP respectively, together
with the set R+

P of requests scheduled to get in (pick up
services) the vehicle at P ; (d) the load of vehicle qP before
leaving nP .

The first and last points in θv , i.e., P0 and PM−1,
represent the fact that every vehicle should leave the depot
to start providing service, and return to the depot after
having finished all services by the end of time horizon T .
We also denote them by P0 = D1 and PM−1 = D2. Every
route is initialized as {D1, D2}, with: nD1

= nD2
= n0,

eaD1
= edD1

= eaD2
= edD2

= 0, laD1
= ldD1

= laD2
= ldD2

=

T , R+
D1

= R−
D1

= R+
D2

= R−
D2

= ∅, and qD1
= qD2

= 0.
For the sake of simplicity, given two key points Pi ∈ θv

and Pj ∈ θv , we use t(Pi, Pj) to denote the travel time
from node nPi

to node nPj
. For any request r, we denote

by P (Or) and P (Dr) the key points supporting Or and
Dr, respectively.

Travel Time and Feasibility of a Route
According to this specific encoding, the travel time of
a route θv = {P0, . . . , Pi, . . . , PM−1} is equal to∑

i≤M−2 t(Pi, Pi+1). Besides, θv is feasible if it satisfies
the following constraints:

– For any request r inserted at θv , the pick up service
Or should take place before the drop-off service Dr:
if P (Or) = Pi and P (Dr) = Pj , then i < j;

– For any i, the load inside the vehicle must not exceed
its capacity:

qPi ⩽ Q; (1)

– For any i, v should not leave Pi before arriving at it:

eaPi
⩽ edPi

, (2)

laPi
⩽ ldPi

; (3)

– For any i < M − 1, the arrival time at Pi+1 should be
consistent with the departure time from Pi:

edPi
+ t(Pi, Pi+1) ⩽ eaPi+1

, (4)

ldPi
+ t(Pi, Pi+1) ⩽ laPi+1

; (5)

– For any request r inserted at θv , its maximum ride-
time should be bounded:

eaP (Dr) −min(edP (Or), lor) ⩽ T r, (6)

laP (Dr) −min(ldP (Or), lor) ⩽ T r, (7)

24 Informatica 49 (2025) 19–38 C. Liu et al.

where the term min(edP (Or), lor) represents the actual
earliest in-vehicle time of r. Generally, passengers are
expected to board the vehicle no earlier than the ear-
liest departure time from Or, denoted edP (Or). How-
ever, if edP (Or) is later than r’s latest permissible in-
vehicle time, lor , then r may board at lor and wait un-
til the vehicle is ready. This situation could arise, for
example, if the vehicle must wait for other requests to
get onboard at the same key point before it can depart.
The same reasoning applies to how we represent the
actual latest pick-up time of r, min(ldP (Or), lor).

– For any r getting in v at Pi, v must be able to arrive at
nPi before the latest pick-up time of r:

∀r ∈ R+
Pi
, eaPi

⩽ lor ; (8)

– For any i, no related time windows are empty:

eaPi
⩽ laPi

, (9)

edPi
⩽ ldPi

. (10)

4.2 A best-fit insertion heuristic
In the static context, we are given a-priori unlimited time
to solve S_DARP. Yet both the problem’s very large size
and its complexity forbid exact methods. So we handle
S_DARP through a greedy Best-Fit insertion heuristic (BF).
This greedy heuristic might be augmented with local search
devices and meta-heuristic schemes. However, it is not the
focus of this study, and the performance of the best-fit in-
sertion heuristic is enough concerning our purpose [20].

4.2.1 The insertion procedures

Since we rely here on a specific encoding of the routes, we
need to explain the way we adapt the standard insertion pro-
cedures to this encoding: Inserting a request r in a route θv
according to insertion parameters (v, Po, Pd) usuallymeans
insertingOr between Po and its successor in θv andDr be-
tween Pd and its successor in θv . Here, the fact that a key
point refers to several pick-up and drop-off services leads
us to consider several cases (for the sake of simplicity, we
only consider Or and Po):

1. If or ̸= nPo , then inserting Or means creating a new
key point. There are two ways to insert this new key
point into θv . The first one (standard one, with a pa-
rameter ϵo = 0) means inserting it between Po and its
successor in θv; The second one (split one, with a pa-
rameter ϵo = 1) means splitting the current key point
Po into 2 key points P arr

o and P dep
o , that respectively

represents the drop-off and pick-up services performed
by the vehicle at nPo

, and inserting the new key point
between P arr

o and P dep
o . In practice, this split inser-

tion means that v arrives at nPo
, performs its drop-off

service, moves to Or to pick up r and finally comes
back to nPo to perform the pick-up part of its service.

2. If or = nPo
, then no additional key point is created,

and the pick-up serviceOr is aggregated to the pick-up
service related to Po, whose time window is impacted.

Consequently, the insertion parameters of the insertion
of r into current route collection Θ define a 5-tuple
(v, Po, ϵo, Pd, ϵd).

4.2.2 A best-fit insertion heuristic

According to this, we adapt the classic greedy insertion
heuristic framework presented in [22]:

Step 1: Sort R according to the ST-Cluster strategy: Di-
vide the transit network into small zones and the time
horizon [0, T] into small periods and cluster the re-
quests according to their pick-up and drop-off zones
and their earliest pick-up time periods (see [27] for de-
tails). Then handle the clusters according to increasing
periods, while randomly selecting the requests belong-
ing to the same cluster.

Step 2: For each request r ∈ R, sorted according to Step
1:

Step 2.1: For any insertion parameter 5-tuple
(v, Po, ϵo, Pd, ϵd), where v ∈ V is an activated
vehicle, Po located before Pd in θv , check the
feasibility of the insertion of Or according to Po

and ϵo, and Dr according to Pd and ϵd.
Step 2.2: If at least one insertion is feasible, keep the

best-fitted one that minimizes detour made by v,
and insert r; otherwise, activate a new vehicle v
and insert r into the related trivial route.

4.3 Performing step 2.1: checking the
feasibility of an insertion

We briefly provide here some insight into Step 2.1. For the
sake of simplicity, we restrict ourselves to the case (ϵo =
0, ϵd = 0), which means to the case of standard insertions.

4.3.1 A cascade strategy

We proceed according to a cascade strategy: We first per-
form a set of fast tests. In case of success, we continue
to perform a more time-consuming constraint propagation
process that checks the mathematical feasibility of the tar-
get insertion. This cascade strategy comes as follows:

– First, we test the insertion feasibility of Or:

– If or = nPo
, then Or is directly aggregated at

Po, and P (Or) = Po. We increase the load qPo

by qr and add r into the setR+
Po
. In addition, we

update the earliest departure time edPo
:

edPo
← max(edPo

, eor). (11)

Dynamic Routing for Large-Scale Mobility On-Demand… Informatica 49 (2025) 19–38 25

The other timestamps of the passage time win-
dows are not directly impacted.

– If or ̸= nPo
, then P (Or) is a new key point to

be inserted betweenPo andPo+1, withnP (Or) =

or, R+
P (Or) = {r} and qP (Or) = qPo

+ qr. The
earliest arrival time and the latest departure time
of P (Or) are computed:

eaP (Or) = edPo
+ t(Po, P (Or)) (12)

ldP (Or) = laPo+1
− t(P (Or), Po+1) (13)

– Then, we test the insertion feasibility of Dr:

– Proceed with Dr and Pd as with Or and Po;
– Deal with the maximum ride time T r as follows:
Two key pointsP (Or) andP (Dr) are now asso-
ciated with Or and Dr. Depending on the case,
they have just been created or they were previ-
ously existing. In any case, we may denote by
[edP (Or), l

d
P (Or)] the departure time window of

P (Or) and by [eaP (Dr), l
a
P (Dr)] the arrival time

window of P (Dr). Then we update these time
windows:

edP (Or) ← max(edP (Or), e
a
P (Dr) − T r) (14)

laP (Dr) ← min(laP (Dr), l
d
P (Or) + T r) (15)

– Increase by qr the load of all key points between
P (Or) and P (Dr) and check that the capacity con-
straint (1) is not violated.

– Apply the constraint propagation procedure and ac-
cordingly adjust the time windows along θv .

4.3.2 The constraint propagation procedure

The constraint propagation procedure [14, 27], checks the
consistency of current timewindows along the route θv with
the temporal constraints induced by the S_DARP and ac-
cordingly updates the influenced time windows. This pro-
cedure is the most time-consuming component of our cas-
cade strategy, with a complexity O(M2), where M is the
number of key points in θv .
Remind that a route is feasible if constraints (2) to (10) in

Section 4.1 are satisfied. Constraint propagationmeans that
the violation of such a constraint will trigger a constraint
propagation rule:

– If (2) is violated, then edPi
← eaPi

;
if (3) is violated, then laPi

← ldPi
.

– If (4) is violated, then eaPi+1
← eaPi

+ t(Pi, Pi+1);
if (5) is violated, then ldPi−1

← laPi
− t(Pi−1, Pi).

– If (6) is violated, then for any r ∈ R−
Pi
, delay the

earliest departing time at its destination: edP (Or) ←
eaPi
− T r;

if (7) is violated, then for any r ∈ R+
Pi
, decrease

the latest arrival time at its destination: laP (Dr) ←
ldPi

+ T r.

– If any of constraints (8) to (10) is violated, then return
a Fail signal.

Starting from the initial triggers induced by the first
updates at P (Or) and P (Dr) ((11) to (15)), the proce-
dure propagates the temporal S_DARP constraints all along
θv while updating the related time windows according to
the above rules. The procedure ends when no new trig-
ger requires activation or when a Fail signal is emitted.
In such a case, the current insertion parameter 5-tuple
(v, Po, ϵo, Pd, ϵd) is discarded as infeasible.

5 Dealing with the original dynamic
large-scale dial-a-ride problem

Wemay now come back to our original dynamic large-scale
DARP as defined in Section 3. We denote the problem by
D_DARP.We suppose here that the fleet sizeV is fixed, and
that the requests are dynamically submitted to the system
along the time horizon [0, T], which is divided into E deci-
sion epochs. Remind that {Re, e ∈ E} denotes the set of
requests submitted during epoch e−1. It is not known in ad-
vance and differs from one day to another. As in S_DARP,
our goal is to assign the requests to the vehicles and route
these vehicles. But our lexicographic performance criterion
becomes:

– (Primary Objective) Minimizing the number of re-
jected requests.

– (Secondary Objective) Minimizing V TT .

Wemust take into account the dynamic constraint that keeps
us from processing a request before it is submitted. Asmen-
tioned in Section 3, we apply the following decision frame-
work:

1. Initialize the route collection Θ by processing the set
R0 of requests that have been submitted before the be-
ginning of the process. During all the decision pro-
cesses, we use the same key point-based route encod-
ing as in Section 4.

2. For e = 0, . . . , E − 1 do

(a) D_DARP(Re) instruction: Process the requests
r ∈ Re during the time interval [te, te + η] ;

(b) Dispatch the decision towards the vehicles and
the users during the time interval [te + η, te+1].
Update the current state of the systemwhilemak-
ing the vehicles achieve their duty at epoch e
while following the earliest possible time accord-
ing to current time windows.

The rest of this section is devoted to the algorithmic part of
this decision framework, i.e., theD_DARP(Re) instruction.

26 Informatica 49 (2025) 19–38 C. Liu et al.

5.1 Two-phase algorithmic scheme for
D_DARP(Re)

To address the dynamic version of the DARP, we first em-
ploy preprocessing that leverages our statistical knowledge
of the request distribution and the resolution to the static
problem introduced in Section 4. The preprocessing helps
to obtain an estimation of the optimal fleet size, a collec-
tion of reference (virtual) requests, and a collection of travel
patterns. These elements form the basis of the Guided In-
sertion Mechanism, which will be discussed later. Then we
perform the D_DARP(Re) instruction by applying the fol-
lowing two-phase framework, termed GIM-FS:

– Phase 1: Guided InsertionMechanism Each request
r ∈ Re is processed by a Guided Insertion Mecha-
nism (GIM), which tries almost immediate insertions
of r into the current route collectionΘ under the guid-
ance of insertion patterns deduced from the reference
requests and preprocessing. If the insertion of r is fea-
sible according to GIM, then we keep the best-fitted
one and insert r;

– Phase 2: Filtering System For any request r not in-
serted by GIM, we invoke a specific Filtering System
(FS) to fast identify the best candidate insertion pa-
rameters. If there are parameters that allow a feasible
insertion of r then we choose the best-fitted one; oth-
erwise, we reject r.

Let us now describe the preprocessing process, which
serves as the basis for GIM, before delving into the details
of both GIM and FS.

5.2 Preprocessing
Urban short-distance trips primarily consist of commuting,
shopping, and other personal errands, making up the major-
ity of daily travel purposes [9]. Therefore, large sets of re-
quests should present some similar patterns. Consequently,
if all requests are served by a RSMoD system, daily vehicle
travel patterns should also be characterized by some similar
patterns. GIM is based on the same idea that drives statis-
tical learning: if two large request sets R̄ andR are similar
from a statistical point of view, then vehicle routes Θ̄ de-
signed for R̄ and vehicle routes Θ designed for R should
also be similar.

5.2.1 Solving reference static problem

According to the above motivation, we start by addressing
a reference static problem S_DARP (R̄) as introduced in
Section 4, where R̄ is a virtual reference request set gen-
erated so that it is consistent with our statistical knowl-
edge of the requests. As much time as necessary is used to
solve S_DARP (R̄) to get a good reference route set Θ̄ =
{θ̄v, v ∈ 1, . . . , V }. At this time, a point needs to be dis-
cussed. We do not know a-priori the fleet size V required
to efficiently handle our original problem D_DARP (R).

Experience shows that the way requests’ submission times
evolve from one day to another is far more volatile than the
other characteristics of the requests. Therefore, we intu-
itively guess that, for the same number of requests, the on-
line feature will make the fleet size larger than that obtained
through the resolution of the corresponding static DARP.
Consequently, we consider the size of R̄ as a parameter
and generate R̄ that reproduces the spatio-temporal distri-
bution of the real requests, so that the resulting fleet size
V is close to the optimal size required by the real system.
This requires some tuning processes that will be discussed
in Section 6.2 presenting numerical experiments.

5.2.2 Deriving travel patterns

Next, from the reference route set Θ̄, we derive a set of
travel patterns Γ. Specifically, for each vehicle v ∈ V , a
travel pattern γv ∈ Γ can be derived from its reference
route θ̄v = {P̄0, . . . , P̄M−1}. We define the travel pattern
γv as a list of guiding points, where each guiding pointG ∈
γv is a representation of a key point cluster in θ̄v .

Definition 5.1 (Key Point Cluster). A sub-
route {Pj , Pj+1, . . . , Pj+m} of route θv =
{P0, . . . , Pi, . . . , PM−1} with M key points forms a
key point cluster, if and only if:

t(Pk, Pk+1) ⩽ α, for j ⩽ k ⩽ j +m− 1

t(Pj−1, Pj) > α, if j ̸= 0

t(Pj+m, Pj+m+1) > α, if j +m ̸= M − 1

where the parameter α is a temporal threshold defining the
maximum travel time (distance) allowed for two consecu-
tive key points belonging to the same cluster.

A guiding point G representing the cluster
[P̄j , P̄j+1, . . . , P̄j+m] is associated with a temporal
neighborhood [tmin

G , tmax
G], with tmin

G = minP̄∈G ea
P̄
, and

tmax
G = maxP̄∈G ld

P̄
. We note that D̄1 and D̄2, which

correspond to the initial and terminal reference key points
P̄0 and P̄M−1 respectively, are excluded from the travel
pattern construction because no insertion happens at these
points. For any reference key point P̄ other than D̄1 and
D̄2, its associated guiding point is denoted by G(P̄).
As shown in Figure 1, given the reference route θ̄v ,

the corresponding travel pattern is γv . {P̄2, P̄3, P̄4},
{P̄6, P̄7, P̄8, P̄9} and {P̄11, P̄12} are three key point clus-
ters containing multiple key points. For example, the asso-
ciated guiding point of P̄3 is G(P̄3) = G1.

5.3 Phase 1: the guided insertion
mechanism

The idea of GIM when solving the real dynamic problem is
to encourage every SAV v to follow its pre-defined travel
pattern γv . Let us consider a request r ∈ Re to be inserted.
In the following, we describe how GIM proceeds r.

Dynamic Routing for Large-Scale Mobility On-Demand… Informatica 49 (2025) 19–38 27

Figure 1: Reference route θ̄v and travel pattern γv

First of all, we retrieve a list of reference requests from
R̄ which are similar to r. We say that a reference request r̄
is similar to r if and only if:

max(t(Or, Or̄), t(Or̄, Or)) ⩽ δs

max(t(Dr, Dr̄), t(Dr̄, Dr)) ⩽ δs

and
|eor − eor̄ | ⩽ δt

where parameter δs and δt are similarity parameters: δs

bounds the travel time (distance) between the origins (resp.
destinations) of two similar requests, and δt bounds the dif-
ference between the earliest pick-up times between r and
r̄. Let R̄r denote the set of reference requests similar to
r. In order to speed the construction of R̄r, we divide the
transit networks into zones and the time horizon into pe-
riods (which are typically larger than what have been uti-
lized in the ST-Cluster strategy). For every request r (ref-
erence or real), we quickly identify the zone z(Or) (resp.
z(Dr)) related to Or (resp. Dr) and the periods H(Or)
(resp.H(Dr)) during whichOr (resp. Dr) can be serviced.
Then we restrict the search for similar reference requests to
those in R̄ whose origin and destination lie in z(Or) and
z(Dr) respectively, and whose time windows are consis-
tent with H(Or) and H(Dr).
Next, we retrieve a set of guiding objects GOr =
{. . . , (γv, Go, Gd), . . . } from R̄r. If two reference re-
quests are inserted in the same reference route and their
insertion positions belong to the same key point clusters,
then they correspond to the same guiding object. In such a
case, we only keep one occurrence of each guiding object
inGOr. For example, in figure 1, if r̄1 and r̄2 are both sim-
ilar to the target real request r, then only one occurrence of
(γv, G2, G4) is kept in GOr.
Once GOr is constructed, we retrieve the candidate in-

sertion parameters for r. Specifically, a key point P in a
real route θv is called a child of a guiding point G ∈ γv , if
and only if the time windows of P overlap with the tempo-
ral neighborhood of G, that means if:

eaP ⩽ tmax
G

and
ldP ⩾ tmin

G .

We notice that a guiding point G ∈ γv may have multi-
ple children in θv , these children being consecutive. Sym-
metrically, a key point can also have multiple parents in
γv . For example, in Figure 2, P2, P3 and P4 are children
of G2 and P4 has two parents G2 and G3. For each guid-
ing point G, we only memorize lcG, the predecessor of the
left-most child of G, and rcG, the right-most child of G.
In Figure 2 we have lcG1

= P1 and rcG1
= P4. If D2

is the only key point satisfying the above condition then
we set rcG = lcG. At the beginning, all real routes only
consist of the two special key points D1 and D2. For ev-
ery G ∈ γv , both lcG and rcG are initialized to be D1.
Then, given (γv, Go, Gd) ∈ GOr, the corresponding can-
didate insertion parameters are 5-tuples (v, Po, ϵo, Pd, ϵd)
such that Po ∈ Lo and Pd ∈ Ld, where Lo is the list
of candidate insertion positions for Or, containing all the
key points between lcGo (included) and rcGo (included),
the same definition holding for Ld. For the guiding object
(γv, Go, Gd) of Figure 2, we have Lo = {P1, P2, P3, P4}
and Ld = {P7}.
Finally, the best-fit insertion heuristic is utilized over all

the candidate insertion parameters given by GOr. In other
words, among all feasible insertion parameters, we keep the
one that minimizes the insertion cost, and insert r for real.
However, if r fails to be inserted via GIM, we put it aside
and try the next request inRe. We wait until Phase 2 before
coming back to r. Every time a request is inserted into v via
GIM, time windows of key points along θv are modified,
and lcG and rcG are updated for G ∈ γv .

5.4 Phase 2: the filtering system
At each decision epoch e, Phase 2 of the GIM-FS frame-
work consists of trying to insert the requests r ∈ Re

rejected by GIM in Phase 1, while keeping with the best-fit
insertion principle. Yet, the current state of the system may
involve thousands of vehicles and hundreds of thousands
of key points. Consequently, the number of potential
insertion parameters (v, Po, ϵo, Pd, ϵd) may be too large
regarding the computational time η allowed to execute
the assignment/routing process. So we must filter the
search for the insertion parameters. For that, we adapt the
Filtering System (FS) introduced in [27] to the dynamic
context. The trick is to maintain throughout the decision

28 Informatica 49 (2025) 19–38 C. Liu et al.

Figure 2: The projection between a travel pattern γv and the real route θv . For a pointG, the dashed green arrow points at
lcG, the dashed green arrow points at rcG, and the solid black arrow means that lcG = rcG. For the sake of illustration,
we select several guiding points and use emitting gray shadows to elaborate their children

process a skeleton representation of the routes that involves
a partition of the transit networks into zones and of the
time horizon into periods. These periods and zones are
the same as in Section 5.3 and allow us to quickly identify
the vehicles and the key points likely to lead to feasible
insertions of a given request. In the following, we briefly
present FS.

As mentioned above, the transit network space is parti-
tioned into a set of zones, Z and the time horizon is par-
titioned into a set of periods, H, whose granularity may
be adapted according to the context. Then the skeleton
representation of the current state of the system is pro-
vided by a collection of filtering matrices: the vehicle fil-
tering matrix M⊕[Z × H], where ⊕ is an operator to be
clarified later, and the insertion position filtering matrices
Mv[Z × H], v = 1, . . . , V . The matrices are defined as
follows.

– For any zone z, any period h and any key point
P related to vehicle v, we define the elastic du-
ration ElP,z,h as ElP,z,h = min(ubP,z, th+1) −
max(lbP,z, th), where lbP,z (resp. ubP,z) denotes the
estimated earliest (resp. latest) time when v can arrive
at (resp. depart from) at z while coming from (resp.
going to) P . These two values are computed using
the four-references estimator [27] which determines
the estimated travel time between any node and any
zone. Intuitively, ElP,z,h provides us with an estima-
tion of the plausibility that v may enter into z during
period h while moving from P . The larger the value
of ElP,z,h, the more plausible the move becomes.

– Then, for any zone z and any period h, the vehicle fil-
tering matrix M⊕ identifies vehicles that are able to
move through zone z during period h, together with
the key points likely to allow this incursion. More pre-
cisely, we denote by Pl⊕v,z,h the quantity obtained by
applying the associate operator ⊕ to the elastic dura-
tions ElP,z,h, P ∈ θv . Pl⊕v,z,h provides us with the
plausibility of the presence of vehicle v inside zone z
during period h. The operator ⊕ may correspond to
either the sum or the max of its arguments, or to the

sum of the two largest elements. According to this,
M⊕[z, h] is defined as the set of the vehicles v such
that Pl⊕v,z,h is not null:

M⊕[z, h] = {(v, P l⊕v,z,h)|v ∈ V , P l⊕v,z,h > 0}

– For each vehicle v, the insertion position filtering ma-
trix Mv contains tuples (P,ElP,z,h) for each P ∈ θv

and z, h such that ElP,z,h > 0. Such a matrix may be
understood as a reverse matrix ofM⊕ and helps us in
updatingM⊕ every time an insertion is performed.

Identification of Candidate Vehicles: When we try to
insert a new request r, we first utilize the vehicle filtering
matrices M⊕ to quickly identify a subset of candidate
vehicles Vr. We denote by z(Or) ∈ Z (resp. z(Dr)) the
zone related to Or (resp. Dr) and by H(Or) ⊂ H (resp.
H(Dr)) the periods when Or (resp. Dr) may be serviced.
The vehicle candidate set Vr,⊕ contains vehicles that ap-
pear in bothM⊕[z(Or),H(Or)] andM⊕[z(Dr),H(Dr)].

Identification of Candidate Insertion Parameters: For
each candidate v, potential insertion positions are deter-
mined from the matrix Mv . A key point Po is regarded
as a candidate insertion position for Or if it appears in
Mv[z(Or),H(Or)] and meets conditions ensuring that in-
dependently inserting Or at P does not violate load and
time constraints on Po. The same validation is applied for
Dr. The candidate positions then undergo the complete fea-
sibility test explained in Section 4.1, and the best-fitted one
is retained. If no viable insertion is found, r is rejected.

Stopping mechanism A stopping mechanism can be in-
tegrated into FS to further accelerate the process. It re-
lies on a trial threshold T and a counter τ , that is ini-
tialized to 0 every time we start inserting a request r and
that is incremented every time some insertion parameter
(v, Po, ϵo, Pd, ϵd) is tried for insertion. The increment con-
sists in an estimation of the computational effort induced
by this trial. In practice, this computational effort is set to
1 if the constraint propagation procedure is called and to
0 else. Then the candidate vehicles v in Vr are sorted ac-
cording to a score, that combines Pl⊕v,z(Or),h∈H(Or) and

Dynamic Routing for Large-Scale Mobility On-Demand… Informatica 49 (2025) 19–38 29

Pl⊕v,z(Dr),h∈H(Dr) in order to quantify the plausibility that
v may service both the origin and destination of r. The
search for insertion parameters (v, Po, ϵo, Pd, ϵd) proceeds
by scanning the candidate vehicles v according to decreas-
ing score values. It stops when counter τ reaches the thresh-
old value T .
Therefore, FS has two variations. If the stopping mech-

anism is not implemented, it is referred to as Partial Fil-
tering System (PFS); otherwise, we denote it as Complete
Filtering System (CFS).

6 Numerical experiments
We implemented all the tested algorithms in the C++
language and executed the computations on a machine
equipped with an AMDEPYC 7452 32-Core Processor and
512 GB of RAM.

6.1 Instances
Transit network We consider the transit network in
Clermont-Ferrand, a mid-sized city in France, and its sub-
urban area. The underlined graph is downloaded from
OpenStreetMap, containing 31, 357 arcs and 13, 839 nodes,
among which 1, 496 are selected as pick-up and drop-off
points. Each pick-up and drop-off point is associated with
a labelworking, residential, or undefined. In the underlined
graph, 6.7% of the points are of type working, 54% of type
residential, and 39.3% of type undefined (see Figure 3).

Figure 3: The pick-up and drop-off locations in the under-
lined transit network in Clermont-Ferrand. Blue, purple
and yellow points represent points of type working, resi-
dential, and undefined, respectively

The vehicles The capacity of the vehicles is equal to 10.
Determining the fleet size is part of the problem (remind
that the request rejection rate and VTT are antagonistic cri-
teria) and will be discussed in the next section.

Time horizon and decision epochs The RSMoD service
period lasts for T = 24 hours, starting at 00:00 and ending
at 24:00. Requests are collected and processed every 10
minutes. Therefore, within a time horizon of T = 24 hours,
we end up with 144 decision epochs with IE = 10minutes.
We use η as a parameter for sensitivity analysis.

Request distribution and configuration The large-scale
RSMoD system studied here being still prospective, no suit-
able data is available to perfectly capture the usage of such
a system. We have designed a passenger request genera-
tor to generate daily request instances that comply with the
intended use case of the system. For each day, we con-
sider five time slots: Morning Slack (MS), from 00:00 to
06:00;Morning Peak (MP), from 06:00 to 10:00; Normal
Hours (NH), from 10:00 to 15:00; Evening Peak (EP),
from 15:00 to 19:00; and Evening Slack (ES), from 19:00
to 24:00. Then we ensure that 1% of the daily requests de-
part duringMS, 20% during NH, 9% during ES, whileMP
and EP each accounts for 35% of the requests. The two
peak periods correspond to passenger commuting trends.
As for the spatial distribution of the requests, around 70%
originate from residential (resp. working) points and termi-
nate atworking (resp. residential) points. They are referred
to as “typical” passenger requests. Around 80% of “typi-
cal” requests traveling from o to d during MP (resp. EP)
are related to a “symmetrical” passenger request traveling
from d back to o during EP (resp. MP).
Each request r has a pick-up time window δr between

10 and 30 minutes, and a maximum ride-time T r = 2 ×
t(or, dr), where t(or, dr) denotes the fastest travel time
from its origin to its destination. As for the submission
times, 90% of the requests are urgent ones, with a differ-
ence between the submission time and the earliest pick-up
time smaller than 1.5 hours. The rest are relaxed requests,
that are submitted much earlier (at least 1.5 hours before
their earliest pick-up time) or in advance. If we divide the
time horizon [0, T] into time bins of equal duration of 10
minutes, the distribution of requests submitted at each time
bin is given in Figure 4.

Figure 4: The number of requests submitted at each time
bin

30 Informatica 49 (2025) 19–38 C. Liu et al.

Recurrent Requests: We introduce a proportion β ofR
to identify the recurrent requests, which are considered to
be almost stable from one day to another. This parameter,
β, plays a key role in deducing the reference request set
R̄ from R. The recurrent requests should generate very
similar reference requests, whereas the remaining requests
will be generated to meet the statistical distribution of the
requests.

Summary Table 1 summarizes the basic settings of the
RSMoD system and the requests.

Table 1: Basic setting of the system and the requests

Param Description Value

|N | the number of pick-up and deliv-
ery locations

1,496

T the planning horizon 24 h
IE the duration of each decision

epoch
10 min.

of each decision epoch
V SAV fleet size 1,977
|R| the number of dynamic requests 300k
δr the length of pick-up time window 15 min.
T r the maximum ride time of any re-

quest r
2t(or, dr)

qr the load of request r 1
|R̄| the number of reference requests 400k
β the proportion of “random’’ part in

R
10%

6.2 Fleet sizing and the reference S_DARP
problem

The RSMoD system studied in this paper aims to cater to
around 300,000 dynamic requests daily. As explained in
Section 5, we compute pertinent fleet sizes by proceeding
as follows.
First, we generate six static instances of varying sizes

that meet the statistical features previously described.
These instance sizes range from 300,000 to 425,000, in-
creasing in increments of 25,000. For any static instance,
we address the associated static problem S_DARP with BF
(see Section 4.2) and get the resulting fleet sizes. Table 2
shows the fleet sizes obtained from resolving each of the
six static problems.
Next, we generate five trial dynamic instances

{i0, i1, . . . , i4}, with 300,000 dynamic requests. For
each instance, we address the six related problems
D_DARP while relying on the basic algorithm BF and
fixing the fleet size at the above-established six values. We
get every time a request rejection rate. Table 3 presents
the passenger rejection rates under different fleet sizes for
different instances and the corresponding averaged values.

Then we consider 1,977 as the most reasonable fleet size:
The passenger rejection rate is close to 0, under signifi-
cantly smaller economic costs than the other tested size of
2,069. Of course, we might try fleet sizes between 1,977
and 2,069: Here we only propose a tentative approach for
the fleet sizing issue.
An advantage of the above process is that it provides us

with both the reference request set and the reference route
sets required by GIM. The static request set of size 400,000
yielding the 1,977 SAVs is selected as the reference set R̄,
and the related solution becomes the reference route set Θ̄.

6.3 The behavior of the RSMoD system

We compare here the performance of the RSMoD system
to two other systems: private and MoD. In the private sys-
tem, the 300,000 passenger requests are all supported by
private vehicles. We estimate a fleet size of 240, 951 in
private, which is the number of one-way requests plus the
number of symmetric requests. InMoD, ride-sharing is not
allowed. Its fleet size is 1,977, the same as in RSMoD. The
baseline approach BF is used to solve the corresponding
routing problems.
As shown in Table 4, in private system, the total drive

time is much higher thanMoD and RSMoD, because much
more vehicles are utilized. Almost half of the requests are
rejected in MoD, but its total drive time is still higher than
that in RSMoD. Because no ride-sharing is allowed inMoD,
and SAVs must make the re-positioning to reach differ-
ent pick-up locations. We see that empty drive time con-
tributes to 31.5% of the total drive time (the column Rela-
tive empty drive time) inMoD. Additionally, according to
the results, to cater for all the rejected requests inMoD, an
estimated minimum number of additional SAVs of around
2, 000 would be required, resulting in a great increase in
the total drive time as well. Remind that most of the re-
jected requests are associated with peak hours, we would
need many more SAVs than 2, 000. In contrast, thanks to
ride-sharing, 78.1%of the total drive time is shared bymore
than one passenger inRSMoD, and only 7.4% is issued from
empty relocation, with a smaller total drive time compared
to the two other system configurations. These results prove
several advantages of the RSMoD system. First, the on-
route vehicles in the city can be largely reduced, thus the
traffic congestion and occupancy of the city infrastructure
can be improved. And SAVs are self-driving, reducing the
cost of human labor. Furthermore, the fact that RSMoD de-
creases the total drive time in our simulation proves that
the consumption of energy can be greatly economized by
deploying such a novel system. Finally, the passengers’
travel comfort remains the same in MoD, and is decreased
in RSMoD, with an average of 16.63 minutes per passen-
ger, suggesting that SAVsmake detours to promote the ride-
sharing so that the rejection of requests can be minimized.

Figure 5 provides a better vision of how drive times
of each category (total drive time, empty drive time, and

Dynamic Routing for Large-Scale Mobility On-Demand… Informatica 49 (2025) 19–38 31

Table 2: Fleet sizes to different static problem sizes

Instance size 300,000 325,000 350,000 375,000 400,000 425,000

Fleet size 1,621 1,667 1,768 1,869 1,977 2,069

(a) private (b) MoD (c) RSMoD

Figure 5: Accumulated drive time, empty drive time, and shared drive time (where appropriated) in each period of duration
of one hour

Table 3: The rejection rate when solving static problems
with different fleet sizes

Fleet
size

Instance Avg
i0 i1 i2 i3 i4

1,621 6.2% 6.4% 6.3% 6.2% 6.3% 6.3%
1,667 4.7% 4.8% 4.9% 4.7% 5.0% 4.8%
1,768 2.2% 2.2% 2.1% 2.3% 2.3% 2.2%
1,869 1.0% 0.8% 1.0% 1.0% 1.0% 1.0%
1,977 0.1% 0.0% 0.1% 0.1% 0.1% 0.1%
2,069 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

shared drive time) are distributed across the service hori-
zon. In both private and RSMoD systems, the drive time
during peak hours is much higher than in other time slots.
InMoD, the total drive time remains almost the same during
MP, EP and NH, because the number of requests that can
be serviced during these time slots is almost the same (ex-
cessive requests during peak hours are rejected). Further-
more, as shown in Sub-figure 5b and Sub-figure 5c, empty
drive time inMoD is higher than in RSMoD, especially dur-
ing peak hours, because more detours are required to pick
up new passengers. And a large proportion of trajectory
duringMP, EP and NH are shared in RSMoD.

6.4 The behavior of the GIM-FS
algorithmic scheme

In addition to the two approaches, GIM-PFS and GIM-
CFS, we try 4 variants: BF, PFS, CFS, and GIM-BF, of
the GIM-FS algorithmic scheme. Whenever FS is uti-
lized, it is configured as follows: the spatial-temporal par-
tition results in 24 periods of equal duration and 20 zones
of equal area. In CFS, the stopping criterion T r set for

each request r is equivalent to exploring at most 10% of
the already-activated vehicles. In addition, a regeneration
mechanism is employed, which proportionally expands the
search space when no feasible insertion is present in the first
candidate search space. These variants are summarized in
Table 6. Furthermore, in GIM, the parameter α that de-
fines the spatial neighborhood of pattern points is fixed at
10 minutes.

6.4.1 General results

Table 7 presents the general results when solving the dy-
namic problem with different approaches and different val-
ues of the request parameter β.
The column CPU time represents the accumulated ex-

ecution time to solve D_DARP. Generally speaking, for
every β, the two-phase approaches integrated with GIM
are more efficient than their basic algorithm, thanks to the
largely reduced search space provided byGIM.Meanwhile,
when utilizing two-phase approaches, the quality of the so-
lution remains almost the same, compared to those when
applying the corresponding basic algorithms. Typically,
GIM-BF and GIM-PFS reject slightly more requests and
demonstrate a slightly longer total drive time than BF and
GIM-BF, respectively. In addition, for every β, GIM-CFS
outperforms CFS, in both execution time and solution qual-
ity, thanks to the guide provided by GIM in Phase 1. Specif-
ically, although CFS can solve the problem in a very short
time thanks to a largely reduced search space, the result-
ing solution is less satisfactory. Because this reduction is
only deduced from the current status of the system in a
rather myopic and greedy way, without any consideration
of the global quality of the solution. However, GIM uti-
lizes the additional information of the reference resolution
and “forces” vehicles to stick to their pre-defined travel pat-
terns extracted from optimal reference routes. This helps

32 Informatica 49 (2025) 19–38 C. Liu et al.

Table 4: Performance of three systems

Fleet
size

Rejection
rate

Total drive
time (h)

Relative[1]
shared

drive time

Relative[2]
empty

drive time

Average in
-vehicle time

(min)

private 240,951 / 49,585 / / 9.92
MoD 1,977 48.0% 33,343 / 31.5% 10.30
RSMoD 1,977 0.5% 24,035 78.1% 7.4% 16.63
1 Relative shared drive time is calculated as the percentage of total drive time that is shared with other passengers.
2 Relative empty drive time is calculated as the percentage of total drive time where the vehicle is empty.

Table 5: Sensitivity analyses of GIM

δs

(min)
δt

(min) Approach CPU time
(min)

Rejection
rate

Total drive
time (h)

Average in-
vehicle time

(min)

matchGI
rate

succGI
rate

2

3
GIM-BF 137.1 0.7% 23,571 16.39

67.5%
41.0%

GIM-PFS 93.5 0.7% 23,585 16.38 41.0%
GIM-FS 17.9 2.3% 26,725 17.16 36.3%

7.5
GIM-BF 134.2 0.7% 23,604 16.38

89.6%
40.0%

GIM-PFS 92.1 0.7% 23,600 16.37 40.0%
GIM-FS 17.6 2.3% 26,713 17.15 34.9%

15
GIM-BF 85.3 0.9% 24,092 16.45

92.3%
62.0%

GIM-PFS 56.0 0.9% 24,095 16.45 61.8%
GIM-FS 13.3 1.7% 26,126 16.87 58.4%

3

3
GIM-BF 82.1 0.8% 24,129 16.40

82.7%
60.4%

GIM-PFS 54.1 0.8% 24,109 16.41 60.3%
GIM-FS 12.8 1.6% 26,117 16.8 56.6%

7.5
GIM-BF 76.5 1.2% 24,497 16.58

95.4%
65.1%

GIM-PFS 47.9 1.2% 24,498 16.57 65.2%
GIM-FS 12.6 2.0% 26,190 16.99 62.4%

15
GIM-BF 71.8 1.2% 24,527 16.53

97.1%
62.6%

GIM-PFS 45.9 1.2% 24,527 16.5 62.6%
GIM-FS 11.8 1.8% 26,166 16.87 59.3%

5

3
GIM-BF 68.5 3.1% 25,655 17.51

94.3%
64.2%

GIM-PFS 40.3 3.2% 25,657 17.55 64.0%
GIM-FS 12.5 4.0% 27,048 17.92 62.3%

7.5
GIM-BF 44.8 2.7% 25,817 17.36

99.0%
76.6%

GIM-PFS 26.3 2.7% 25,809 17.37 76.5%
GIM-FS 11.6 3.0% 26,671 17.52 76.0%

15
GIM-BF 37.3 2.8% 26,035 17.4

99.5%
81.0%

GIM-PFS 22.7 2.8% 26,033 17.42 80.7%
GIM-FS 12.4 3.0% 26,668 17.49 80.6%

The best results among all combinations are presented in bold font.

have a sort of pre-concern of future requests in the current
insertion, thus making up for the inefficiency of CFS.

The reduction in CPU time by GIM-BF and GIM-PFS
compared to BF and PFS, respectively, becomes stronger
when there are more similar requests between the real re-
quest set and the reference request set. When more requests

have similar reference requests, the proportion of requests
that can be inserted via GIM should be higher, making the
execution faster. However, this reduction effect between
GIM-CFS and CFS across different scenarios is less promi-
nent, for the already short enough execution time.

A closer analysis of the efficiency of the approaches can

Dynamic Routing for Large-Scale Mobility On-Demand… Informatica 49 (2025) 19–38 33

(a) CPU time per epoch (β = 0.9) (b) GIM effectiveness (β = 0.9)

(c) CPU time per epoch (β = 0.5) (d) GIM effectiveness (β = 0.5)

(e) CPU time per epoch (β = 0.3) (f) GIM effectiveness (β = 0.3)

Figure 6: Effectiveness of the algorithm. Each row corresponds to a value β. Sub-figures in the first column represent the
CPU time spent to solve the sub routing problem for each decision epoch when using different approaches. Sub-figures
in the second column represent the number of requests to be processed (blue), that are associated with at least one similar
reference request in GIM (orange), and that are successfully inserted via GIM (green)

be done through Figure 6, which shows different statistics
in every decision epoch. In terms of the CPU time spent on
the insertion of requests in each decision epoch, we observe
that approaches integrated with GIM spend much less time
regarding their basic approach. For the purpose of thorough
analyses, we did not set a specific value of η. From Sub-
figures 6a, 6c and 6e, we see that when setting η at different
values, several methods may fail to complete during certain
epochs: When η = 40 seconds, only CFS and GIM-CFS
can finish all insertions in every epoch.
The efficiency of two-phase approaches can be explained

by the number of successful insertions via GIM. For ex-
ample, from Sub-figures 6b, 6d and 6f, we note that with
β = 0.9, the number of requests that have at least one
similar reference request (orange bars in figures), and the
successful insertions via GIM (green bars in figures) are
higher than with the other two β values, especially during
peak hours. Therefore, fewer requests are passed to Phase
2 when β = 0.9, and the insertion process becomes faster.

34 Informatica 49 (2025) 19–38 C. Liu et al.

Table 7: General test results with different approaches under different β

Table 6: Description of tested approaches

Approach Description

BF Best-Fit insertion heuristic
PFS Partial Filtering System
CFS Complete Filtering System
GIM-BF GIM is used in Phase 1, BF is used

in Phase 2
GIM-PFS GIM is used in Phase 1, PFS is used

in Phase 2
GIM-CFS GIM is used in Phase 1, CFS is used

in Phase 2

6.4.2 Sensitivity analysis

From the above discussion, we see that the rate of success-
ful insertions via GIM has a great impact on the efficiency
of the two-phase methods. This rate is directly influenced
by the number of requests that can be matched to at least
one similar reference request. Two parameters, δs and δt,
control the similarity measure, thus the match rate. From
now on, we only focus on the β = 0.9, and analyze the
sensitivity of the two-phase algorithms while varying the
values of δs and δt.
Table 5 shows the performances of different methods un-

der different δs and δt combinations.

Typically, the column matchGI rate represents the per-
centage of requests that have at least one similar reference
request, and the column succGI rate computes the percent-
age of requests that are successfully inserted via GIM. We
conclude that when the similarity measure becomes more
relaxed (bigger δs and δt), the matchGI rate and succGI
rate effectively become bigger. For example, in the most
relaxed situation, 99.5% of requests are passed to GIM,
and 81% of requests are successfully inserted from GIM.
We confirm that the general trend is that a higher succGI
rate implies a smaller CPU time. However, a bigger suc-
cGI rate is not equivalent to a better solution. We get the
opposite situation instead. Because such an increase in suc-
cGI rate is gained from a more relaxed request similarity
measure. Consequently, as long as a feasible insertion is
found in Phase 1, GIM may force the request to be inserted
by mimicking the insertion patterns of a not-very-similar
reference request. In the short term, the insertion of such
a request is based on a relatively bad candidate insertion
parameter. In the long term, such insertion may lead to a
distortion of the trajectory of the vehicle in question from
its pre-defined pattern, preventing later perfectly matched
requests from being inserted, thus worsening the quality of
the solution.

Dynamic Routing for Large-Scale Mobility On-Demand… Informatica 49 (2025) 19–38 35

7 Conclusion
In this paper, we studied a prospective large-scale RSMoD
transportation systemwith SAVs. We showed that this SAV
RSMoD system would provide on-demand services with a
very low rejection rate and satisfactory passenger riding
comfort, while, thanks to its ride-sharing feature, signifi-
cantly reducing the total driving time, energy costs, and the
number of on-route vehicles.
As for the operational management of such a system, we

introduced aGIM:Guided InsertionMechanism, that learns
from a reference solution deriving from a statistical virtual
version of the related DARP, and combined it with a Fil-
tering System to form a two-phase algorithm framework,
GIM-FS. We proved that GIM is likely to significantly help
the manager of the system efficiently assign dynamic re-
quests to the vehicles.
Yet, several issues remain that will motivate our future

research. First, we must try (algorithmic issue) to improve
the basic greedy insertion heuristic used to solve the sta-
tistical virtual version of the related DARP, in a way that
will fit the very large-scale feature and that will allow us
to make the GIM component more efficient. Next, we
should integrate into our decision-making framework the
energetic issue, and thus take into account that the schedule
of a vehicle should include its recharge transactions and the
time-varying costs of these recharge transactions. Finally,
we should address the robustness issue, related to the non-
deterministic features of any mass RSMoD system: traffic
congestion, passenger no-shows, etc.

Acknowledgement
This work was supported by the International Research
Center “Innovation Transportation and Production Sys-
tems” of the I-SITE CAP 20-25.

References
[1] Ransford A. Acheampong, Alhassan Siiba, Den-

nis K. Okyere, and Justice P. Tuffour. Mobility-on-
demand: An empirical study of internet-based ride-
hailing adoption factors, travel characteristics and
mode substitution effects. Transportation Research
Part C: Emerging Technologies, 115:102638, June
2020. https://doi.org/10.1016/j.trc.2020.102638.

[2] Niels Agatz, Alan Erera, Martin Savelsbergh, and
Xing Wang. Optimization for dynamic ride-sharing:
A review. European Journal of Operational Research,
223(2):295–303, December 2012. https://doi.org/10.
1016/j.ejor.2012.05.028.

[3] Vincent Armant and Kenneth N. Brown. Fast op-
timised ridesharing: Objectives, reformulations and
driver flexibility. Expert Systems with Applications,
141:112914, March 2020. https://doi.org/10.1016/j.
eswa.2019.112914.

[4] Bilge Atasoy, Takuro Ikeda, Xiang Song, and
Moshe E. Ben-Akiva. The concept and impact
analysis of a flexible mobility on demand sys-
tem. Transportation Research Part C: Emerging
Technologies, 56:373–392, July 2015. https://doi.org/
10.1016/j.trc.2015.04.009.

[5] Slim Belhaiza. A Hybrid Adaptive Large Neighbor-
hood Heuristic for a Real-Life Dial-a-Ride Problem.
Algorithms, 12(2):39, February 2019. https://doi.org/
10.3390/a12020039.

[6] Gerardo Berbeglia, Jean-François Cordeau, and
Gilbert Laporte. A Hybrid Tabu Search and Con-
straint ProgrammingAlgorithm for theDynamicDial-
a-Ride Problem. INFORMS Journal on Computing,
May 2011. https://doi.org/10.1287/ijoc.1110.0454.

[7] Kris Braekers, An Caris, and Gerrit K. Janssens. Ex-
act and meta-heuristic approach for a general het-
erogeneous dial-a-ride problem with multiple depots.
Transportation Research Part B: Methodological,
67:166–186, September 2014. https://doi.org/10.
1016/j.trb.2014.05.007.

[8] Roberto Wolfler Calvo and Alberto Colorni. An ef-
fective and fast heuristic for the Dial-a-Ride prob-
lem. 4OR, 5(1):61–73, March 2007. https://doi.org/
10.1007/s10288-006-0018-0.

[9] CEU. MOVE., Univ. Eiffel., TRT., Panteia., GDCC.,
and STRATEC. Study on new mobility patterns
in European cities: final report. Task A, EU wide
passenger mobility survey. Publications Office, LU,
2022. https://data.europa.eu/doi/10.2832/728583.

[10] Jean-François Cordeau. A Branch-and-Cut Algorithm
for the Dial-a-Ride Problem. Operations Research,
54(3):573–586, 2006. https://doi.org/10.1287/opre.
1060.0283.

[11] Jean-François Cordeau and Gilbert Laporte. A
tabu search heuristic for the static multi-vehicle dial-
a-ride problem. Transportation Research Part B:
Methodological, 37(6):579–594, July 2003. https:
//doi.org/10.1016/S0191-2615(02)00045-0.

[12] Jean-François Cordeau and Gilbert Laporte. The dial-
a-ride problem: models and algorithms. Annals of
Operations Research, 153(1):29–46, June 2007. https:
//doi.org/10.1007/s10479-007-0170-8.

[13] Jean-François Cordeau, Gilbert Laporte, Jean-Yves
Potvin, and Martin W. P. Savelsbergh. Chapter
7 Transportation on Demand. In Cynthia Barn-
hart and Gilbert Laporte, editors, Handbooks in
Operations Research and Management Science, vol-
ume 14 of Transportation, pages 429–466. Else-
vier, January 2007. https://doi.org/10.1016/S0927-
0507(06)14007-4.

https://doi.org/10.1016/j.trc.2020.102638
https://doi.org/10.1016/j.ejor.2012.05.028
https://doi.org/10.1016/j.ejor.2012.05.028
https://doi.org/10.1016/j.eswa.2019.112914
https://doi.org/10.1016/j.eswa.2019.112914
https://doi.org/10.1016/j.trc.2015.04.009
https://doi.org/10.1016/j.trc.2015.04.009
https://doi.org/10.3390/a12020039
https://doi.org/10.3390/a12020039
https://doi.org/10.1287/ijoc.1110.0454
https://doi.org/10.1016/j.trb.2014.05.007
https://doi.org/10.1016/j.trb.2014.05.007
https://doi.org/10.1007/s10288-006-0018-0
https://doi.org/10.1007/s10288-006-0018-0
https://data.europa.eu/doi/10.2832/728583
https://doi.org/10.1287/opre.1060.0283
https://doi.org/10.1287/opre.1060.0283
https://doi.org/10.1016/S0191-2615(02)00045-0
https://doi.org/10.1016/S0191-2615(02)00045-0
https://doi.org/10.1007/s10479-007-0170-8
https://doi.org/10.1007/s10479-007-0170-8
https://doi.org/10.1016/S0927-0507(06)14007-4
https://doi.org/10.1016/S0927-0507(06)14007-4

36 Informatica 49 (2025) 19–38 C. Liu et al.

[14] Samuel Deleplanque and Alain Quilliot. Insertion
techniques and constraint propagation for the DARP.
In 2012 Federated Conference on Computer Science
and Information Systems (FedCSIS), pages 393–400,
September 2012.

[15] Daniel J. Fagnant and Kara M. Kockelman. Dynamic
ride-sharing and fleet sizing for a system of shared au-
tonomous vehicles in Austin, Texas. Transportation,
45(1):143–158, January 2018. https://doi.org/10.
1007/s11116-016-9729-z.

[16] Jeffery B. Greenblatt and Susan Shaheen. Automated
Vehicles, On-Demand Mobility, and Environmen-
tal Impacts. Current Sustainable/Renewable Energy
Reports, 2(3):74–81, September 2015. https://doi.org/
10.1007/s40518-015-0038-5.

[17] Martin L Hazelton. Inference for origin–destination
matrices: estimation, prediction and reconstruction.
Transportation Research Part B: Methodological,
35(7):667–676, August 2001. https://doi.org/10.
1016/S0191-2615(00)00009-6.

[18] Sin C. Ho, W.Y. Szeto, Yong-Hong Kuo, Janny M.Y.
Leung, Matthew Petering, and Terence W.H. Tou. A
survey of dial-a-ride problems: Literature review and
recent developments. Transportation Research Part
B: Methodological, 111:395–421, May 2018. https:
//doi.org/10.1016/j.trb.2018.02.001.

[19] Zihan Hong, Ying Chen, Hani S. Mahmassani, and
Shuang Xu. Commuter ride-sharing using topology-
based vehicle trajectory clustering: Methodology,
application and impact evaluation. Transportation
Research Part C: Emerging Technologies, 85:573–
590, December 2017. https://doi.org/10.1016/j.trc.
2017.10.020.

[20] Esa Hyytiä, Lauri Häme, Aleksi Penttinen, and Reijo
Sulonen. Simulation of a large scale dynamic pickup
and delivery problem. In Proceedings of the 3rd
International ICST Conference on Simulation Tools
and Techniques, Malaga, Spain, 2010. ICST. https:
//doi.org/10.4108/ICST.SIMUTOOLS2010.8701.

[21] Siddhartha Jain and Pascal Van Hentenryck. Large
Neighborhood Search for Dial-a-Ride Problems.
In Jimmy Lee, editor, Principles and Practice of
Constraint Programming – CP 2011, volume 6876,
pages 400–413. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2011. https://doi.org/10.1007/978-3-
642-23786-7_31.

[22] Jang-Jei Jaw, Amedeo R. Odoni, Harilaos N.
Psaraftis, and Nigel H. M. Wilson. A heuristic algo-
rithm for the multi-vehicle advance request dial-a-ride
problemwith time windows. Transportation Research
Part B: Methodological, 20(3):243–257, June 1986.
https://doi.org/10.1016/0191-2615(86)90020-2.

[23] Jiwon Kim and Hani S. Mahmassani. Spatial
and Temporal Characterization of Travel Patterns
in a Traffic Network Using Vehicle Trajectories.
Transportation Research Procedia, 9:164–184, 2015.
https://doi.org/10.1016/j.trpro.2015.07.010.

[24] Jiwon Kim, Kai Zheng, Jonathan Corcoran,
Sanghyung Ahn, and Marty Papamanolis. Tra-
jectory Flow Map: Graph-based Approach to
Analysing Temporal Evolution of Aggregated Traffic
Flows in Large-scale Urban Networks, December
2022. https://doi.org/10.48550/arXiv.2212.02927.

[25] Da Lei, Xuewu Chen, Long Cheng, Lin Zhang,
Satish V. Ukkusuri, and Frank Witlox. Inferring tem-
poral motifs for travel pattern analysis using large
scale smart card data. Transportation Research Part
C: Emerging Technologies, 120:102810, November
2020. https://doi.org/10.1016/j.trc.2020.102810.

[26] Michael W. Levin. Congestion-aware system op-
timal route choice for shared autonomous vehi-
cles. Transportation Research Part C: Emerging
Technologies, 82:229–247, September 2017. https:
//doi.org/10.1016/j.trc.2017.06.020.

[27] Chijia Liu, Alain Quilliot, Hélène Toussaint, and Do-
minique Feillet. A filtering system to solve the
large-scale shared autonomous vehicles Dial-a-Ride
Problem. Transportation Research Part C: Emerging
Technologies, 161:104551, April 2024. https://doi.
org/10.1016/j.trc.2024.104551.

[28] Benjamin Loeb, Kara M. Kockelman, and Jun Liu.
Shared autonomous electric vehicle (SAEV) opera-
tions across the Austin, Texas network with charging
infrastructure decisions. Transportation Research Part
C: Emerging Technologies, 89:222–233, April 2018.
https://doi.org/10.1016/j.trc.2018.01.019.

[29] J. Carlos Martínez Mori, M. Grazia Speranza, and
Samitha Samaranayake. On the Value of Dy-
namism in Transit Networks. Transportation Science,
57(3):578–593, May 2023. https://doi.org/10.1287/
trsc.2022.1193.

[30] Santhanakrishnan Narayanan, Emmanouil Chanio-
takis, and Constantinos Antoniou. Shared au-
tonomous vehicle services: A comprehensive re-
view. Transportation Research Part C: Emerging
Technologies, 111:255–293, February 2020. https:
//doi.org/10.1016/j.trc.2019.12.008.

[31] Julie Paquette, Jean-François Cordeau, Gilbert La-
porte, and Marta M. B. Pascoal. Combining multicri-
teria analysis and tabu search for dial-a-ride problems.
Transportation Research Part B: Methodological,
52:1–16, June 2013. https://doi.org/10.1016/j.trb.
2013.02.007.

https://doi.org/10.1007/s11116-016-9729-z
https://doi.org/10.1007/s11116-016-9729-z
https://doi.org/10.1007/s40518-015-0038-5
https://doi.org/10.1007/s40518-015-0038-5
https://doi.org/10.1016/S0191-2615(00)00009-6
https://doi.org/10.1016/S0191-2615(00)00009-6
https://doi.org/10.1016/j.trb.2018.02.001
https://doi.org/10.1016/j.trb.2018.02.001
https://doi.org/10.1016/j.trc.2017.10.020
https://doi.org/10.1016/j.trc.2017.10.020
https://doi.org/10.4108/ICST.SIMUTOOLS2010.8701
https://doi.org/10.4108/ICST.SIMUTOOLS2010.8701
https://doi.org/10.1007/978-3-642-23786-7_31
https://doi.org/10.1007/978-3-642-23786-7_31
https://doi.org/10.1016/0191-2615(86)90020-2
https://doi.org/10.1016/j.trpro.2015.07.010
https://doi.org/10.48550/arXiv.2212.02927
https://doi.org/10.1016/j.trc.2020.102810
https://doi.org/10.1016/j.trc.2017.06.020
https://doi.org/10.1016/j.trc.2017.06.020
https://doi.org/10.1016/j.trc.2024.104551
https://doi.org/10.1016/j.trc.2024.104551
https://doi.org/10.1016/j.trc.2018.01.019
https://doi.org/10.1287/trsc.2022.1193
https://doi.org/10.1287/trsc.2022.1193
https://doi.org/10.1016/j.trc.2019.12.008
https://doi.org/10.1016/j.trc.2019.12.008
https://doi.org/10.1016/j.trb.2013.02.007
https://doi.org/10.1016/j.trb.2013.02.007

Dynamic Routing for Large-Scale Mobility On-Demand… Informatica 49 (2025) 19–38 37

[32] Sophie N. Parragh, Jorge Pinho de Sousa, and
Bernardo Almada-Lobo. The Dial-a-Ride Prob-
lem with Split Requests and Profits. Transportation
Science, 49(2):311–334, 2015. https://doi.org/10.
1287/trsc.2014.0520.

[33] Sophie N. Parragh, Karl F. Doerner, and Richard F.
Hartl. Variable neighborhood search for the dial-a-
ride problem. Computers & Operations Research,
37(6):1129–1138, June 2010. https://doi.org/10.1016/
j.cor.2009.10.003.

[34] Sophie N. Parragh and Verena Schmid. Hybrid col-
umn generation and large neighborhood search for
the dial-a-ride problem. Computers & Operations
Research, 40(1):490–497, January 2013. https://doi.
org/10.1016/j.cor.2012.08.004.

[35] Ronik Ketankumar Patel, Roya Etminani-
Ghasrodashti, Sharareh Kermanshachi, Jay Michael
Rosenberger, and Ann Foss. Mobility-on-demand
(MOD) Projects: A study of the best practices
adopted in United States. Transportation Research
Interdisciplinary Perspectives, 14:100601, June 2022.
https://doi.org/10.1016/j.trip.2022.100601.

[36] Ronik Ketankumar Patel, Roya Etminani-
Ghasrodashti, Sharareh Kermanshachi, Jay Michael
Rosenberger, and Ann Foss. Exploring will-
ingness to use shared autonomous vehicles.
International Journal of Transportation Science
and Technology, 12(3):765–778, September 2023.
https://doi.org/10.1016/j.ijtst.2022.06.008.

[37] Marco Pavone. Autonomous Mobility-on-Demand
Systems for Future Urban Mobility. In Markus Mau-
rer, J. Christian Gerdes, Barbara Lenz, and Hermann
Winner, editors, Autonomes Fahren: Technische,
rechtliche und gesellschaftliche Aspekte, pages 399–
416. Springer, Berlin, Heidelberg, 2015. https://doi.
org/10.1007/978-3-662-45854-9_19.

[38] Harilaos N. Psaraftis. A Dynamic Programming So-
lution to the Single Vehicle Many-to-Many Imme-
diate Request Dial-a-Ride Problem. Transportation
Science, 14(2):130–154, May 1980. https://doi.org/
10.1287/trsc.14.2.130.

[39] Harilaos N. Psaraftis. An Exact Algorithm for
the Single Vehicle Many-to-Many Dial-A-Ride Prob-
lem with Time Windows. Transportation Science,
17(3):351–357, August 1983. https://doi.org/10.
1287/trsc.17.3.351.

[40] Lisa Rayle, Danielle Dai, Nelson Chan, Robert
Cervero, and Susan Shaheen. Just a better taxi? A
survey-based comparison of taxis, transit, and rides-
ourcing services in San Francisco. Transport Policy,
45:168–178, January 2016. https://doi.org/10.1016/j.
tranpol.2015.10.004.

[41] M. Schilde, K. F. Doerner, and R. F. Hartl. Meta-
heuristics for the dynamic stochastic dial-a-ride prob-
lem with expected return transports. Computers &
Operations Research, 38(12):1719–1730, December
2011. https://doi.org/10.1016/j.cor.2011.02.006.

[42] Susan Shaheen and Adam Cohen. Shared ride ser-
vices in North America: definitions, impacts, and the
future of pooling. Transport Reviews, 39(4):427–442,
July 2019. https://doi.org/10.1080/01441647.2018.
1497728.

[43] Shuo Ma, Yu Zheng, and O. Wolfson. T-share:
A large-scale dynamic taxi ridesharing service. In
2013 IEEE 29th International Conference on Data
Engineering (ICDE), pages 410–421, Brisbane, QLD,
April 2013. IEEE. https://doi.org/10.1109/ICDE.
2013.6544843.

[44] Sacha Varone and Vytenis Janilionis. Inser-
tion heuristic for a dynamic dial-a-ride problem
using geographical maps. In MOSIM 2014,
10ème Conférence Francophone de Modélisation,
Optimisation et Simulation, Nancy, France, Novem-
ber 2014. https://hal.science/hal-01166662.

[45] YuandongWang, Hongzhi Yin, Hongxu Chen, Tianyu
Wo, Jie Xu, and Kai Zheng. Origin-Destination
Matrix Prediction via Graph Convolution: a New
Perspective of Passenger Demand Modeling. In
Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery &DataMining,
pages 1227–1235, Anchorage AK USA, July 2019.
ACM. https://doi.org/10.1145/3292500.3330877.

[46] Salomon Wollenstein-Betech, Mauro Salazar, Arian
Houshmand, Marco Pavone, Ioannis Ch. Paschalidis,
and Christos G. Cassandras. Routing and Rebal-
ancing Intermodal AutonomousMobility-on-Demand
Systems in Mixed Traffic. IEEE Transactions
on Intelligent Transportation Systems, 23(8):12263–
12275, August 2022. https://doi.org/10.1109/TITS.
2021.3112106.

[47] Zixuan Yu, Ping Zhang, Yang Yu, Wei Sun, and Min
Huang. An Adaptive Large Neighborhood Search
for the Larger-Scale Instances of Green Vehicle Rout-
ing Problem with Time Windows. Complexity,
2020:1–14, October 2020. https://doi.org/10.1155/
2020/8210630.

[48] Junbo Zhang, Yu Zheng, and Dekang Qi. Deep
Spatio-Temporal Residual Networks for Citywide
Crowd Flows Prediction. Proceedings of the AAAI
Conference on Artificial Intelligence, 31(1), February
2017. https://doi.org/10.1609/aaai.v31i1.10735.

[49] Linjiang Zheng, Dong Xia, Xin Zhao, Longyou Tan,
Hang Li, Li Chen, and Weining Liu. Spatial–
temporal travel pattern mining using massive taxi tra-
jectory data. Physica A: Statistical Mechanics and its

https://doi.org/10.1287/trsc.2014.0520
https://doi.org/10.1287/trsc.2014.0520
https://doi.org/10.1016/j.cor.2009.10.003
https://doi.org/10.1016/j.cor.2009.10.003
https://doi.org/10.1016/j.cor.2012.08.004
https://doi.org/10.1016/j.cor.2012.08.004
https://doi.org/10.1016/j.trip.2022.100601
https://doi.org/10.1016/j.ijtst.2022.06.008
https://doi.org/10.1007/978-3-662-45854-9_19
https://doi.org/10.1007/978-3-662-45854-9_19
https://doi.org/10.1287/trsc.14.2.130
https://doi.org/10.1287/trsc.14.2.130
https://doi.org/10.1287/trsc.17.3.351
https://doi.org/10.1287/trsc.17.3.351
https://doi.org/10.1016/j.tranpol.2015.10.004
https://doi.org/10.1016/j.tranpol.2015.10.004
https://doi.org/10.1016/j.cor.2011.02.006
https://doi.org/10.1080/01441647.2018.1497728
https://doi.org/10.1080/01441647.2018.1497728
https://doi.org/10.1109/ICDE.2013.6544843
https://doi.org/10.1109/ICDE.2013.6544843
https://hal.science/hal-01166662
https://doi.org/10.1145/3292500.3330877
https://doi.org/10.1109/TITS.2021.3112106
https://doi.org/10.1109/TITS.2021.3112106
https://doi.org/10.1155/2020/8210630
https://doi.org/10.1155/2020/8210630
https://doi.org/10.1609/aaai.v31i1.10735

38 Informatica 49 (2025) 19–38 C. Liu et al.

Applications, 501:24–41, July 2018. https://doi.org/
10.1016/j.physa.2018.02.064.

https://doi.org/10.1016/j.physa.2018.02.064
https://doi.org/10.1016/j.physa.2018.02.064

	Introduction
	Related works
	MoD systems
	Static DARP
	Learning travel patterns

	A target prospective RSMoD system
	Dealing With a virtual static large-scale dial-a-ride problem
	Encoding a route: notion of key point
	A best-fit insertion heuristic
	The insertion procedures
	A best-fit insertion heuristic

	Performing step 2.1: checking the feasibility of an insertion
	A cascade strategy
	The constraint propagation procedure

	Dealing with the original dynamic large-scale dial-a-ride problem
	Two-phase algorithmic scheme for D_DARP(Re)
	Preprocessing
	Solving reference static problem
	Deriving travel patterns

	Phase 1: the guided insertion mechanism
	Phase 2: the filtering system

	Numerical experiments
	Instances
	Fleet sizing and the reference S_DARP problem
	The behavior of the RSMoD system
	The behavior of the GIM-FS algorithmic scheme
	General results
	Sensitivity analysis

	Conclusion

