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Federated Learning (FL) is an emerging technique that offers significant potential to enhance smart 

agriculture by enabling collaborative model training across distributed data sources while preserving 

data privacy. This paper provides a comprehensive overview of the integration of FL within smart 

agriculture, emphasizing its role in addressing key challenges, such as data privacy, security, 

scalability, and data heterogeneity. The paper distinguishes itself from existing reviews by 

systematically analyzing FL applications in specific agricultural domains, including crop monitoring, 

soil health management, and livestock management. In addition, it introduces new classifications of FL 

use cases, focusing on privacy-preserving techniques, scalability issues, and the non-IID nature of 

agricultural data. Case studies from real-world implementations are used to highlight practical 

applications and challenges. The paper also discusses recent advances, such as the integration of FL 

with edge computing and the adoption of personalized federated learning. By presenting a detailed 

analysis of trends, challenges, and future research directions, this overview fills gaps in existing 

literature and provides insights into how FL can be leveraged to improve precision, productivity, and 

sustainability in smart agriculture. Ultimately, the findings underscore the transformative potential of 

FL to revolutionize data-driven agricultural decision-making and contribute to the development of 

resilient, privacy-conscious agricultural systems. 

Povzetek: Podan je pregled metod in tehnik federativnega učenja ter njihove uporabe v pametnem 

kmetijstvu. Federativno učenje omogoča sodelovalno učenje modelov na porazdeljenih podatkih, kar 

ohranja zasebnost podatkov. Kljub prednostim, kot so izboljšana zasebnost in zmanjšanje potrebe po 

centraliziranem zbiranju podatkov, se pri uporabi federativnega učenja pojavljajo izzivi, kot so 

heterogenost podatkov, zagotavljanje varnosti in zasebnosti ter obvladovanje neodvisno in 

neenakomerno porazdeljenih podatkov. 

1 Introduction 

Smart agriculture, also known as precision agriculture, 

marks a significant evolution in farming practices by 

integrating modern information and communication 

technologies (ICT) to enhance efficiency, productivity, 

and sustainability (see figure 1). Often referred to as the 

Third Green Revolution, smart agriculture leverages 

technologies such as the Internet of Things (IoT), 

Artificial Intelligence (AI), Machine Learning (ML), and 

Big Data to enable real-time monitoring and control of 

agricultural processes. These technologies optimize the 

use of critical resources like water, fertilizers, and 

pesticides. The current technological landscape includes 

IoT devices and sensors that collect vast amounts of data 

from fields, offering insights into soil health, crop 

growth, and environmental conditions. Drones and 

satellite imagery provide advanced monitoring 

capabilities, enabling early detection of problems and  

 

timely corrective actions. AI and ML algorithms process 

this data to provide predictive analytics and decision 

support, helping farmers make informed decisions. 

Additionally, automation and robotics are becoming 

more prevalent in tasks like planting, weeding, and 

harvesting, enhancing operational efficiency.  

Despite these technological advancements, the vast 

distribution of agricultural data and the need to maintain 

data privacy pose significant challenges. Traditional 

centralized approaches to data collection and processing 

require the transfer of large volumes of raw data to 

centralized servers, which raises concerns about data 

privacy, security, and scalability. Federated learning 

(FL), a decentralized machine learning approach, holds 

significant potential to address these challenges by 

allowing multiple clients (e.g., edge devices or local 

servers) to collaboratively train models while keeping 

data local. This paradigm shift allows models to be 

trained without transferring raw data, as each client 

shares only model updates (e.g., gradients or parameters) 
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with a central server, which aggregates these updates to 

improve the global model. The process iterates until the 

model converges. 

The benefits of federated learning are manifold. By 

ensuring that raw data remains on local devices, it 

significantly enhances data privacy and security, 

reducing the risks associated with data breaches and 

unauthorized access. Furthermore, FL minimizes 

communication overhead and bandwidth requirements-

critical concerns when handling large datasets in 

agriculture. 

 
 

Figure 1: Smart agriculture 

It also enables the use of diverse, heterogeneous data 

from multiple sources, improving the robustness and 

generalizability of trained models. However, FL presents 

several technical challenges, such as managing non-IID 

(non-Independent and Identically Distributed) data, 

ensuring secure and efficient communication between 

clients and servers, and addressing issues related to 

model convergence and performance. The heterogeneity 

of devices and data quality can also impact FL’s 

effectiveness in agricultural environments. 

The integration of federated learning into smart 

agriculture (see figure2) is driven by the necessity to 

enhance data privacy, reduce communication costs, and 

leverage the distributed and fragmented nature of 

agricultural data. In traditional centralized systems, 

privacy concerns and the risk of data breaches are 

prominent, as vast amounts of sensitive data must be 

transferred and stored in central servers. Federated 

learning mitigates these issues by keeping data local and 

only transmitting model updates. Furthermore, the 

decentralized nature of FL aligns well with the 

geographically dispersed and heterogeneous agricultural 

landscape, allowing for the development of personalized 

and context-aware models that cater to specific regional 

needs. 

 

 
 

Figure 2: Federated learning for smart agriculture 

The primary objective of this paper is to provide a 

comprehensive overview of the current state and 

potential of federated learning in the context of smart 

agriculture. Specifically, this survey reviews the existing 

literature on federated learning and its applications in 

various domains, with a focus on agriculture. It 

highlights the current trends and technologies in smart 

agriculture that can benefit from federated learning, 

examines the challenges and opportunities associated 

with its implementation, and presents case studies and 

real-world implementations to illustrate practical 

applications. In addition, the paper discusses security and 

privacy considerations specific to federated learning in 

agriculture and identifies future research directions that 

could further enhance the integration of FL into smart 

agricultural practices. 

Unlike previous surveys that primarily focus on 

individual technical aspects of FL or specific applications 

in other industries, this paper aims to fill existing gaps by 

providing a holistic overview of FL in smart agriculture. 

It explores a wider range of applications, from crop 

monitoring and soil health management to livestock 

management, while also addressing emerging trends such 

as the integration of FL with edge computing and 

advanced privacy-preserving techniques. To strengthen 

its practical relevance, the paper includes real-world case 

studies that compare FL-based solutions to traditional 

methods, highlighting the benefits and limitations of FL 

in diverse agricultural contexts. 

The structure of the paper is as follows: First, it explores 

current trends and technologies in smart agriculture, 

focusing on IoT, sensor networks, AI, and ML. The 

literature review follows, offering an analysis of existing 

research on federated learning in agriculture and 

identifying research gaps. Next, the fundamentals and 

techniques of federated learning are detailed, including 

its core concepts and methodologies. Various 

applications of FL in agriculture, such as crop 

monitoring, soil health, and livestock management, are 

examined. Finally, case studies and real-world 

implementations are reviewed to discuss practical 

challenges and solutions, followed by a discussion of the 

challenges and future directions for FL in smart 

agriculture. This survey aims to inform researchers, 

practitioners, and policymakers about the potential of 

federated learning to revolutionize agricultural practices. 
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2 Literature review  

This literature review provides a comprehensive 

overview of the research landscape in federated learning 

(FL) and its integration with smart agriculture. It is 

organized into three main sections: (1) an overview of 

federated learning, (2) a review of technological 

advancements in smart agriculture, and (3) an 

exploration of how federated learning addresses specific 

challenges within agricultural practices. Additionally, 

this section includes a comparative analysis of existing 

overview papers on federated learning in agriculture, 

highlighting gaps and outlining how this paper 

contributes to the state-of-the-art (SOTA). 

2.1 Overview of federated learning 

Federated learning represents a paradigm shift in 

machine learning, enabling multiple participants to 

collaboratively train a shared model while maintaining 

data localization. This approach is particularly valuable 

in addressing data privacy concerns and minimizing the 

need for large-scale data transfers. The Federated 

Averaging (FedAvg) algorithm, introduced by McMahan 

et al. [1], is a cornerstone technique in FL, allowing 

efficient model training across numerous devices by 

aggregating local model updates from participants 

without sharing raw data. 

Recent research has focused on enhancing the 

robustness and scalability of FL in real-world 

environments. A major challenge in federated learning is 

handling non-IID (non-Independent and Identically 

Distributed) data, which arises when data distribution 

varies across clients, as is often the case in agriculture. 

To address this, several studies have proposed strategies 

to improve the performance of FL algorithms in 

heterogeneous environments [2], such as modifying the 

aggregation process to account for variations in data 

distributions. 

Privacy remains a critical concern in FL, especially 

when dealing with sensitive agricultural data. Secure 

aggregation and differential privacy techniques, as 

introduced by [3], provide strong privacy guarantees by 

ensuring that individual data points cannot be re-

identified from the aggregated updates. These techniques 

are particularly useful in agricultural settings where 

protecting sensitive data (e.g., soil conditions or crop 

yields) is paramount. 

In addition to privacy concerns, the emergence of 

personalized federated learning has gained traction. 

Personalized FL [4] enables global models to be fine-

tuned to better align with individual clients' data, 

addressing the challenge of heterogeneity in local data. 

This method improves the relevance and accuracy of 

predictions, particularly in agricultural contexts where 

environmental conditions and farming practices can vary 

significantly across regions. 

2.2 Research on smart agriculture 

technologies 

Smart agriculture integrates advanced technologies 

to improve farming practices, efficiency, and 

productivity. Key among these technologies are Internet 

of Things (IoT) devices and sensor networks, which 

enable real-time monitoring of environmental conditions 

and facilitate data-driven decision-making. In their 

comprehensive review of IoT applications in precision 

agriculture, [5] highlighted how these technologies 

enhance crop yield predictions and resource 

management. By collecting granular data on soil 

moisture, temperature, and nutrient levels, IoT-enabled 

systems offer valuable insights that optimize agricultural 

practices. 

Machine learning (ML) also plays a pivotal role in 

processing the vast amounts of data generated by IoT 

systems. Deep learning algorithms have been shown to 

significantly improve the detection of crop diseases and 

the prediction of crop yields. For example, [6] 

demonstrated that convolutional neural networks (CNNs) 

outperform traditional methods in identifying early 

symptoms of crop diseases, leading to timely 

interventions and improved agricultural outcomes. 

Beyond deep learning, reinforcement learning (RL) 

has been explored as a technique for optimizing resource 

allocation in agriculture. For instance, [7] applied 

reinforcement learning to irrigation management, 

showing how RL models dynamically adjust water usage 

based on real-time environmental data, resulting in 

substantial water conservation. 

2.3 Federated learning in smart agriculture 

The integration of federated learning into smart 

agriculture offers several benefits, particularly in 

addressing challenges such as data privacy and 

fragmentation. In traditional centralized systems, 

agricultural data (e.g., from multiple farms) must be 

transferred to a central server, raising privacy concerns 

and the risk of data breaches. Federated learning 

mitigates these issues by allowing farms to 

collaboratively train models without sharing raw data, 

making it a powerful tool for privacy-conscious 

applications. 

For instance, a study by [8] demonstrated the 

effectiveness of federated learning in collaborative crop 

monitoring. Their work showed that federated models 

improved the accuracy of disease prediction and crop 

management without compromising individual farm data 

privacy. Similarly, [9] explored the use of FL for soil 

health management, revealing that decentralized data 

from different farms could be used to develop highly 

accurate soil quality prediction models. By preserving 

data privacy, federated learning enabled better insights 

into soil management strategies without risking exposure 

of proprietary data. 

However, while these studies highlight the potential 

of federated learning, several gaps remain in the existing 

literature. Most prior reviews focus narrowly on specific 
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applications or technical aspects of FL without offering a 

comprehensive overview of its integration across various 

domains within smart agriculture. Additionally, many 

existing works overlook emerging trends in federated 

learning, such as its integration with edge computing or 

its application to personalized farming models that 

address the non-IID nature of agricultural data. 

2.4 Comparative analysis of existing 

overview papers 

To provide context for the contribution of this paper, 

it is essential to compare the current work with existing 

overviews in the field. The table below summarizes key 

overview papers in federated learning for smart 

agriculture, identifying their focus areas and highlighting 

the gaps they leave unaddressed. 

 

Table 1: Comparative analysis of federated learning in 

smart agriculture 

 
Overview 

Paper 
Focus Areas     Gaps 

Contribution of 

This Paper 

[1] General FL 

applications in 
IoT 

Minimal 

coverage of 
agriculture-

specific 

challenges, no 
discussion of 

FL integration 

with edge 
computing 

Comprehensive focus 

on agriculture-
specific use cases, 

emerging trends, and 

privacy concerns in 
FL 

[2] FL for 

data privacy in 
smart 

agriculture 

Limited 

focus on 
application-

specific 

challenges 
(e.g., non-IID 

data, regional 

differences) 

In-depth analysis of 

technical challenges 
like data 

heterogeneity and 

model convergence 
in agriculture 

[3] FL for 
crop disease 

monitoring 

Lacks 
broader 

application in 

soil and 
livestock 

management 

Explores 
multiple agricultural 

domains, including 

soil health and 
livestock 

management 

[4] Privacy-
preserving 

techniques in 

FL for 
agriculture 

Insuffici
ent analysis of 

emerging 

trends in FL 
(e.g., FL with 

edge 

computing) 

Detailed 
exploration of 

emerging trends like 

FL-Edge integration 
and personalized FL 

for specific farm 

needs 

 

As shown in the table 1, many existing reviews lack 

a holistic approach to federated learning in agriculture, 

focusing on either narrow technical aspects or specific 

applications. This paper seeks to fill these gaps by 

providing a more comprehensive overview of FL's 

integration into various agricultural domains, exploring 

both established and emerging trends, and presenting 

real-world case studies to highlight practical applications 

and challenges. 

3 Federated learning fundamentals 

and techniques  
Federated learning (FL) is a transformative approach in 

machine learning that emphasizes decentralized data 

processing and collaborative model training. It allows 

multiple clients to train a shared model locally on their 

data, addressing the challenges of data privacy, security, 

and data silos [10]. This section explores the core 

principles, key algorithms, and recent advancements in 

federated learning, including new methodologies and 

emerging trends that are critical for its applications in 

smart agriculture. 

3.1   Fundamentals of federated learning 

Federated learning is a decentralized machine learning 

paradigm designed to address privacy concerns and 

eliminate the need for transferring raw data between 

clients and central servers. It allows clients, such as IoT 

devices or institutions, to keep their data locally while 

contributing to a global model by sharing only model 

updates (e.g., gradients or parameters). This 

decentralized approach significantly enhances privacy 

and security while enabling collaboration across diverse 

data sources [11]. 

The FL process typically involves several steps: 

• Initialization: A global model is initialized and 

distributed to all participating clients. This 

model, often a deep learning model, is trained 

locally by each client on its data [12]. 

• Local training: Each client trains the model 

using its local data and standard machine 

learning techniques (e.g., gradient descent) to 

update model parameters [13]. 

• Aggregation: The trained model updates from 

all clients are sent to a central server, where an 

aggregation method, such as Federated 

Averaging (FedAvg), combines the updates 

[14]. 

• Update distribution: The central server 

distributes the refined global model back to the 

clients, repeating the process until the model 

converges or meets a predefined performance 

threshold [15]. 

• Model evaluation: The global model is 

periodically evaluated using a validation set to 

ensure its generalization across different data 

distributions. 

Federated learning addresses the need for privacy-

preserving machine learning while benefiting from the 

diversity of data sources. However, it presents challenges 

in managing communication overhead, non-IID data, and 

ensuring efficient convergence in heterogeneous 

environments. 
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3.2   Core algorithms and techniques 

3.2.1   Federated averaging (FedAvg) 

Federated Averaging (FedAvg), introduced by McMahan 

et al. [16], is a foundational algorithm in federated 

learning. It aggregates local model updates from all 

participating clients to create a global model. The steps 

involved in FedAvg are: 

• Local training: Clients train the model locally 

over several epochs, generating updates (e.g., 

gradients) based on their local data [17]. 

• Aggregation: The server aggregates these 

updates by calculating a weighted average, 

accounting for the size of each client’s dataset 

[18]. 

• Model update: The aggregated global model is 

sent back to the clients for further training. 

While FedAvg is effective for clients with similar data 

distributions, it struggles with heterogeneous 

environments, such as those found in agriculture, where 

data distributions across clients may differ significantly 

[19]. 

3.2.2   Secure aggregation 

Privacy is a primary concern in federated learning, and 

secure aggregation techniques are essential for ensuring 

that individual client updates cannot be inferred from the 

aggregated data. Secure aggregation uses encryption to 

protect updates during transmission [20]. Key techniques 

include: 

• Homomorphic Encryption: Enables 

computation on encrypted data, allowing the 

server to aggregate model updates without 

needing to decrypt them [21]. 

• Secure Multi-Party Computation (MPC): 

MPC allows multiple clients to compute a 

function over their inputs while keeping those 

inputs private, ensuring the confidentiality of 

individual updates [22]. 

These techniques ensure privacy while preserving the 

utility of the aggregated global model, which is critical in 

privacy-sensitive applications like agriculture, where 

farm data can be proprietary or sensitive. 

3.2.3   Differential privacy 

Differential privacy offers mathematical guarantees that 

individual data points cannot be distinguished within a 

dataset, making it a crucial technique for ensuring 

privacy in federated learning. In FL, differential privacy 

is applied to model updates to prevent the extraction of 

sensitive information from the aggregated data [23]. 

Methods include: 

• Noise addition: Random noise is added to 

model updates before they are sent to the server, 

with the amount and type of noise controlling 

the level of privacy [24]. 

• Privacy budget: This manages the trade-off 

between model accuracy and privacy by limiting 

the number of iterations and the amount of noise 

added [25]. 

Differential privacy is particularly valuable in smart 

agriculture, where protecting sensitive farm data, such as 

crop yields or soil conditions, is essential while still 

allowing for collaborative model training. 

 

3.2.4   Personalization techniques 

Personalized federated learning aims to adapt the global 

model to meet the specific needs of individual clients. 

This approach is especially useful when clients have 

diverse data distributions, as is common in agricultural 

environments where farms may differ significantly in 

climate, soil, and crop types [26]. Personalization 

techniques include: 

• Local fine-tuning: After receiving the global 

model, each client can perform additional 

training on its local data to fine-tune the model 

for its specific requirements [27]. 

• Meta-Learning: This approach involves 

training models to learn how to adapt quickly to 

new tasks or data distributions, enabling clients 

to personalize the global model more effectively 

[28]. 

These personalization techniques improve the 

relevance and performance of federated learning models 

in heterogeneous environments like agriculture, where 

region-specific adaptations are necessary. 

3.3   Eerging trends and techniques 

3.3.1   Federated transfer learning 

Federated transfer learning extends FL to scenarios 

where clients may have different, but related, tasks. It 

leverages pre-trained models from one task to improve 

learning on another related task, making it particularly 

useful in agriculture, where different farms or regions 

may have overlapping but distinct data needs [29]. The 

key aspects of federated transfer learning include: 

• Shared representation learning: Shared model 

layers capture common features across tasks, 

enabling knowledge transfer between different 

agricultural tasks (e.g., pest detection in 

different regions) [30]. 

• Task-specific fine-tuning: Models can be 

customized for each client’s specific task while 

retaining the benefits of shared learning [31]. 

This technique allows for improved model performance 

in scenarios with limited data or highly specialized tasks, 

such as detecting rare diseases in crops. 

3.3.2   Federated multi-task learning 

Federated multi-task learning allows for the simultaneous 

training of models on multiple tasks within a federated 

setting. This is highly beneficial in agriculture, where 

different farming operations (e.g., crop yield prediction, 

soil quality monitoring) may need to be optimized 

concurrently [32]. Techniques include: 
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• Joint model training: A single model is trained 

to perform multiple tasks, with task-specific 

heads or layers to handle different outputs [33]. 

• Task aggregation: Gradients from different 

tasks are combined to update the model in a way 

that benefits all tasks [34]. 

This approach improves efficiency and generalization, 

making it ideal for complex, multi-dimensional 

agricultural environments where different data sources 

need to be integrated. 

 

3.3.3   Federated learning with edge computing 

The integration of federated learning with edge 

computing is a key trend that aims to leverage 

computational resources at the edge of the network, such 

as IoT devices and edge servers. This approach reduces 

latency and improves the efficiency of federated learning 

by enabling more computation to be done locally, rather 

than sending data back and forth between clients and the 

central server [35]. Key benefits include: 

• Local computation: Performing model training 

and updates locally on edge devices reduces the 

need for large-scale data transmission, making it 

particularly useful in rural or bandwidth-limited 

agricultural settings [36]. 

• Edge aggregation: Model updates can be 

aggregated at the edge before being sent to the 

central server, optimizing the communication 

process [37]. 

This trend is critical for smart agriculture, where IoT 

devices are increasingly deployed in fields for real-time 

monitoring of crops and environmental conditions. 

4 Applications of federated learning 

in smart agriculture 

Federated learning (FL) provides a decentralized 

approach to machine learning, enabling collaborative 

model training across multiple data sources while 

preserving data privacy [38]. In the context of smart 

agriculture, FL offers significant advantages by 

leveraging distributed data to enhance agricultural 

practices while maintaining data security. This section 

explores the various applications of FL in smart 

agriculture, focusing on its potential to improve crop 

management, optimize resource use, enhance livestock 

management, and drive innovation in precision 

agriculture. Additionally, this section compares the 

discussed applications with existing methods to highlight 

how FL addresses gaps left by traditional and centralized 

approaches. 

4.1 Crop Management and Yield 

Prediction 

4.1.1 Federated learning for crop disease 

prediction 

Federated learning has the potential to significantly 

enhance crop disease prediction by aggregating data 

from various farms and research institutions without 

centralizing sensitive information. This approach 

addresses critical issues of data privacy and 

fragmentation that often hinder disease prediction 

models. Key applications include: 

• Disease detection models: FL enables the 

development of robust disease detection models 

by training on diverse data sources, such as 

images from different regions. The ability to 

integrate data from various environmental 

conditions and farming practices enhances the 

generalization capabilities of these models, 

improving disease detection across different 

crops and regions [39]. 

• Early warning systems: Models trained 

through FL can analyze environmental data 

(e.g., temperature, humidity) and historical 

disease patterns to provide early warnings of 

potential disease outbreaks. This early detection 

system helps farmers take preventive measures 

before diseases spread, reducing crop losses and 

improving overall yield [40]. 

Compared to traditional centralized systems, FL offers a 

significant advantage in terms of data privacy, as raw 

data remains decentralized while model performance 

improves through collaborative training. 

4.1.2 Yield prediction and optimization 

Yield prediction models also benefit from federated 

learning by integrating diverse data from multiple farms, 

regions, and weather stations. Applications include: 

• Aggregated yield forecasting: FL aggregates 

yield data from various sources—such as 

satellite imagery, weather forecasts, and 

historical yield records allowing for more 

reliable predictions. These aggregated models 

enable better planning and resource allocation 

by factoring in diverse environmental conditions 

[41]. 

• Precision agriculture: Federated learning 

improves precision agriculture by integrating 

data on soil conditions, crop health, and weather 

patterns. These models help optimize variable-

rate applications of fertilizers, pesticides, and 

water, leading to more efficient resource use and 

improved crop productivity [42]. 

FL enables yield forecasting and optimization at a 

broader scale, addressing the heterogeneity of data from 

different regions while preserving data privacy. 

4.2 Soil and irrigation management 

4.2.1 Soil quality monitoring 

FL enhances soil quality monitoring by aggregating 

data from a variety of sources, including sensors and 

research stations, allowing for a more comprehensive 

understanding of soil health. 

• Soil health models: By training models on data 

from multiple sensors (e.g., soil moisture, 

nutrient sensors) and laboratory analyses, FL 
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can provide detailed assessments of soil quality. 

This approach leads to better recommendations 

for soil management practices, helping farmers 

optimize soil health across regions with 

different soil conditions [43]. 

• Nutrient management: FL-based models 

analyze soil nutrient levels and crop nutrient 

requirements across various regions, optimizing 

fertilizer application. This data-driven approach 

reduces waste, improves soil fertility, and 

promotes sustainable farming practices [44]. 

By preserving data privacy while enabling broader 

collaboration, FL provides a more effective method for 

soil monitoring compared to traditional centralized 

systems that require data aggregation at a single site. 

4.2.2 Smart irrigation systems 

Federated learning improves the efficiency of smart 

irrigation systems by aggregating data from diverse 

sensors and weather stations to optimize water use: 

• Water usage optimization: FL models 

aggregate data from soil moisture sensors, 

weather forecasts, and historical irrigation 

practices, leading to more efficient watering 

schedules. This reduces water waste and ensures 

that crops receive the right amount of water 

based on real-time conditions [45]. 

• Adaptive irrigation: FL models continuously 

learn from data collected across different farms, 

allowing them to adjust irrigation practices in 

real-time based on environmental changes and 

crop needs. This adaptability improves water 

use efficiency, a critical factor in regions facing 

water scarcity [46]. 

FL’s ability to aggregate data while maintaining privacy 

makes it ideal for optimizing irrigation systems, 

particularly in regions where water management is a 

critical concern. 

4.3 Livestock management 

4.3.1 Health monitoring and disease management 

In livestock management, FL offers significant 

advantages in health monitoring and disease 

management: 

• Health prediction models: FL models trained 

on data from wearable sensors (e.g., heart rate 

monitors, activity trackers) can predict early 

signs of health issues in livestock. These models 

enable timely intervention, reducing disease 

spread and improving overall herd health [47]. 

• Disease outbreak prediction: By aggregating 

data on livestock health, environmental 

conditions, and disease history, FL models can 

predict potential disease outbreaks. This allows 

farmers to implement preventive measures, 

leading to better disease management [48]. 

The decentralized nature of FL helps protect sensitive 

livestock data while facilitating more accurate health and 

disease predictions across different farms. 

4.3.2 Productivity optimization 

FL also supports the optimization of livestock 

productivity by integrating data on feeding patterns, 

growth rates, and environmental conditions: 

• Feed efficiency models: FL-based models 

analyze data from automated feed systems and 

sensors to optimize feed formulations and 

delivery schedules. This improves feed 

efficiency, reduces costs, and enhances animal 

growth [49]. 

• Performance monitoring: Models trained 

using FL can monitor livestock performance 

metrics (e.g., weight gain, reproductive rates) 

across farms, helping identify best practices and 

optimize management strategies [50]. 

FL enables collaboration among farms without 

compromising proprietary data, making it an ideal 

solution for productivity optimization in livestock 

management. 

4.4 Precision agriculture and resource 

management 

4.4.1 Precision planting and harvesting 

FL can significantly enhance precision planting and 

harvesting practices: 

• Planting recommendations: FL models 

analyze data on soil conditions, crop varieties, 

and weather forecasts to provide personalized 

planting recommendations. These models 

ensure crops are planted under optimal 

conditions, leading to better yields and more 

efficient resource use [51]. 

• Harvest timing optimization: By integrating 

data on crop growth stages and environmental 

conditions, FL models predict the best times for 

harvesting, minimizing losses and maximizing 

crop quality [52]. 

Compared to centralized systems, FL offers a more 

flexible and privacy-preserving approach to precision 

agriculture, allowing for more tailored recommendations 

based on local data. 

4.4.2 Resource allocation and management 

FL enhances resource allocation and management by 

aggregating data on resource usage (e.g., water, fertilizer) 

and environmental conditions: 

• Resource efficiency models: These models 

analyze data on water, fertilizer, and pesticide 

usage to optimize resource allocation, reducing 

waste and ensuring that resources are used 

efficiently across different farms [53]. 

• Environmental impact assessment: FL models 

assess the environmental impact of agricultural 

practices by integrating data on soil health, 

water usage, and emissions. This helps in 

developing sustainable practices that mitigate 

environmental impacts [54]. 
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FL supports more sustainable agricultural practices by 

enabling efficient resource management while preserving 

sensitive data. 

4.5 Emerging trends and innovations 

4.5.1 Integration with edge computing 

The integration of FL with edge computing is an 

emerging trend that enhances real-time decision-making 

in agriculture: 

• Edge-based learning: Edge devices, such as 

sensors and IoT devices, can perform local 

federated learning to analyze data in real-time. 

This reduces latency and improves the 

responsiveness of agricultural applications, such 

as automated irrigation and disease detection 

[55]. 

• Collaborative edge networks: FL models can 

be deployed across collaborative edge networks, 

allowing farms and agricultural institutions to 

share insights and improve model performance 

without compromising data privacy [56]. 

4.5.2 Federated transfer learning 

Federated transfer learning allows knowledge transfer 

across related but different tasks, further enhancing FL’s 

capabilities: 

• Knowledge transfer: Federated transfer 

learning allows for the transfer of knowledge 

from one agricultural task or region to another. 

For example, a model trained to detect pests in 

one region can be adapted for another region 

with similar pest characteristics [57]. 

• Adaptation to local conditions: Transfer 

learning models can be fine-tuned using local 

data to adapt to specific agricultural conditions, 

improving model performance and relevance 

[58]. 

5 Case studies and real-world 

implementations  

Federated learning (FL) is transforming smart 

agriculture by enabling farms to collaboratively develop 

advanced machine learning models without centralizing 

sensitive data. This approach is particularly effective in 

real-world scenarios where decentralized data sources, 

such as farms and agricultural institutions, can be utilized 

to solve complex agricultural challenges. By applying 

FL, farms can improve predictive accuracy, optimize 

resource management, and enhance operational 

efficiency, all while ensuring data privacy and security. 

The following case studies illustrate the practical benefits 

and transformative potential of FL in modern farming. 

 

5.1 Weather-driven pest management 

• Scenario: In the Mediterranean region, a 

network of farms collaborates to improve pest 

management using FL. Each farm collects data 

on local weather conditions (e.g., temperature, 

humidity, rainfall) and pest occurrences. This 

data includes detailed records of pest 

populations, environmental conditions, and crop 

types [59]. 

• Federated learning application: Each farm 

trains a local model to analyze the relationship 

between weather patterns and pest activity. FL 

aggregates these local models to build a 

comprehensive global model that predicts pest 

outbreaks based on weather data. For instance, 

the global model might uncover correlations 

between certain weather conditions and 

increased pest activity, enabling farmers to 

anticipate and manage pest issues proactively. 

• Benefits: This approach allows farmers to take 

preventive actions, such as applying pesticides 

or implementing integrated pest management 

strategies, before pest populations reach 

damaging levels. The FL model is updated 

continuously with new weather and pest data, 

improving its predictive accuracy over time. 

This decentralized approach preserves farm-

specific data while benefiting from collective 

insights. 

5.2 Yield optimization in greenhouses 

• Scenario: In Europe, a consortium of 

greenhouse operators collaborates to optimize 

crop yields through FL. Each greenhouse 

deploys sensors to monitor key environmental 

factors like light intensity, temperature, 

humidity, and CO2 levels, along with crop 

growth metrics such as plant height, leaf area, 

and flowering rates [60]. 

• Federated learning application: Local models 

are trained at each greenhouse using its specific 

environmental data. FL aggregates these local 

models to develop a global model that 

generalizes optimal growing conditions across 

different greenhouses. For instance, the global 

model may suggest ideal temperature and light 

settings for maximizing tomato yields in various 

greenhouse environments. 

• Benefits: By pooling insights from multiple 

greenhouses, operators can fine-tune 

environmental controls without sharing 

proprietary data. The global model helps 

improve resource efficiency and crop yields, 

while new data continuously updates the model, 

ensuring its relevance and adaptability. 
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5.3 Climates-adaptive crop selection 

• Scenario: In Southeast Asia, farmers 

collaborate to identify the most suitable crop 

varieties for different microclimates using FL. 

Each farm collects data on local climate 

variables (e.g., temperature ranges, rainfall, and 

humidity) and crop performance metrics (e.g., 

growth rates, yield, and disease resistance) [61]. 

• Federated learning application: Local models 

are trained on each farm's data to predict crop 

performance based on climatic conditions. FL 

aggregates these models into a global model that 

provides recommendations on the best crop 

varieties for specific climatic zones. For 

instance, the global model might suggest 

drought-resistant varieties for regions with low 

rainfall and high temperature fluctuations. 

• Benefits: This enables farmers to make 

informed crop selection decisions, improving 

resilience to climate variability and optimizing 

yields. The global model is continuously refined 

with new farm data, allowing it to adapt to 

evolving climate conditions and provide more 

accurate recommendations. 

5.4 Automated harvesting systems 

• Scenario: In the United States, a network of 

farms collaborates to improve automated 

harvesting systems using FL. Each farm uses 

robotic harvesters equipped with sensors and 

cameras to collect data on crop quality, size, 

ripeness, and harvesting efficiency [62]. 

• Federated learning application: Each farm 

trains a local model to refine harvesting 

algorithms based on its specific data. FL 

aggregates these models into a global model that 

enhances the performance of robotic harvesters 

across different environments. For instance, the 

global model might improve the robot's ability 

to distinguish between ripe and unripe fruits, 

reducing waste and optimizing harvesting 

efficiency. 

• Benefits: This collaborative effort optimizes the 

operation of robotic harvesters, reducing manual 

labor and minimizing crop damage. The global 

model is regularly updated with new data, 

allowing it to continuously improve in accuracy 

and effectiveness, particularly in identifying 

optimal harvesting times across diverse crop 

types. 

5.5 Water quality monitoring in 

aquaculture 

• Scenario: In Southeast Asia, aquaculture farms 

collaborate to monitor and manage water quality 

using FL. Each farm installs sensors to measure 

water parameters such as pH, dissolved oxygen, 

and nutrient levels [63]. 

• Federated learning application: Local models 

are trained on each farm’s water quality data to 

predict potential issues. FL aggregates these 

models into a global model that improves water 

management practices across different 

aquaculture systems. For example, the global 

model might recommend specific treatments or 

adjustments based on trends observed in 

collective farm data. 

• Benefits: This approach helps maintain optimal 

water conditions for aquatic life, enhancing fish 

health and productivity. The global model is 

updated regularly with new data, ensuring it 

adapts to changing water quality challenges 

while safeguarding farm-specific data privacy. 

5.6 Greenhouse gas emission reduction in 

livestock operations 

• Scenario: In New Zealand, a network of dairy 

farms collaborates to reduce greenhouse gas 

emissions using FL. Each farm collects data on 

methane emissions, feed types, dietary 

adjustments, and animal health [64]. 

• Federated learning application: Local models 

are trained to predict methane emissions based 

on farm-specific data. FL aggregates these 

models to create a global model that identifies 

effective emission reduction strategies. For 

instance, the global model might suggest dietary 

changes that reduce methane production without 

compromising milk yield. 

• Benefits: This collaborative approach helps 

farmers implement best practices for reducing 

emissions, contributing to environmental 

sustainability. The global model is continuously 

updated with new data to refine its 

recommendations and address emerging 

challenges in emission reduction. 

These case studies illustrate how federated learning 

can address real-world challenges in smart agriculture. 

By facilitating collaborative, privacy-preserving model 

development, FL enhances decision-making, optimizes 

operations, and fosters innovation. The decentralized 

nature of FL is particularly well-suited to agriculture, 

where data is often fragmented across various farms and 

institutions, making it difficult to centralize without 

privacy risks. 

The case studies cover a wide range of applications, 

from precision crop management and livestock health 

monitoring to soil management and automated 

harvesting, demonstrating the versatility of FL in 

agricultural contexts. In addition, FL addresses data 

heterogeneity, scalability, and privacy concerns more 

effectively than traditional centralized approaches. 

Federated learning proves to be a game-changer in 

addressing real-world agricultural challenges. It 

facilitates data-driven decision-making while 
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maintaining privacy, helping farmers manage complex 

agricultural operations in a decentralized yet 

collaborative manner. Applications such as weather-

driven pest management, yield optimization, and 

automated harvesting underscore its potential to integrate 

decentralized data and provide actionable insights. As 

technology continues to evolve, FL will play a crucial 

role in advancing sustainable and resilient farming 

practices, paving the way for a smarter and more 

connected agricultural future. 

6 Smart agriculture: current trends 

and technologies  
Smart agriculture integrates advanced technologies and 

data-driven approaches to enhance the efficiency, 

productivity, and sustainability of farming practices. This 

section delves into the latest trends and technologies 

shaping the field, including Internet of Things (IoT) 

applications, machine learning (ML) techniques, remote 

sensing, and precision agriculture tools. By leveraging 

these technologies, smart agriculture aims to address the 

unique challenges of modern farming, such as data 

fragmentation, resource management, and the need for 

more sustainable practices. 

6.1 Internet of things (IoT) in agriculture 

The Internet of Things (IoT) is playing a transformative 

role in agriculture by connecting sensors, devices, and 

systems to collect and analyze data in real time. IoT 

provides the infrastructure for data-driven decision-

making in farming by facilitating the continuous 

monitoring of key parameters that affect crop health, soil 

conditions, and livestock management. 

6.1.1 Sensor networks 

IoT sensor networks enable comprehensive, real-time 

monitoring of environmental conditions and crop health. 

These sensors track parameters such as soil moisture, 

temperature, humidity, and nutrient levels, providing 

crucial data for optimizing resource use and improving 

crop outcomes. For instance: 

• Soil moisture sensors: Used to monitor soil 

water content, allowing for precise irrigation 

management. Capacitive and resistive sensors 

are commonly employed to reduce water usage 

while maximizing crop yields. 

• Climate sensors: These sensors track 

environmental conditions like temperature and 

humidity, helping to predict weather impacts on 

crop growth. IoT-enabled climate sensors are 

vital for implementing predictive models that 

guide farming decisions [65]. 

6.1.2 Smart irrigation systems 

Smart irrigation systems, powered by IoT, optimize 

water usage by analyzing real-time data from soil 

moisture sensors and weather forecasts. These systems 

automate irrigation schedules and adjust water delivery 

according to crop needs. Key innovations include: 

• Drip irrigation: By delivering water directly to 

plant roots, drip irrigation minimizes 

evaporation and runoff. Integration with soil 

moisture sensors allows precise control of water 

application, ensuring efficient use. 

• Sprinkler systems: These systems are equipped 

with weather sensors that adjust watering 

schedules based on precipitation and 

evapotranspiration rates, further enhancing 

water conservation efforts [66]. 

6.1.3 Livestock monitoring 

IoT devices also improve livestock management through 

wearable sensors and tracking systems. These 

technologies monitor health metrics, activity levels, and 

location, enabling better management of livestock health 

and productivity. Examples include: 

• Wearable collars: These devices track animal 

movement, health parameters, and reproductive 

status, providing real-time data to optimize 

breeding and care. 

• Automated feed systems: IoT-enabled systems 

adjust feed delivery based on livestock health 

and consumption patterns, improving feed 

efficiency and reducing costs. 

6.2 Machine learning and artificial 

intelligence 

Machine learning (ML) and artificial intelligence (AI) 

are critical tools in smart agriculture, enabling the 

analysis of large datasets to optimize various aspects of 

farming. From crop disease detection to yield prediction, 

ML and AI help farmers make informed decisions that 

increase efficiency and productivity. 

6.2.1 Crop disease detection 

AI-driven image recognition algorithms are widely used 

to detect crop diseases and pests. These techniques allow 

farmers to identify problems early, reducing crop losses 

and enabling timely interventions. Key technologies 

include: 

• Deep learning: Convolutional Neural Networks 

(CNNs) are employed to analyze images of 

crops, detecting disease symptoms from leaf 

patterns or discoloration. 

• Image classification: AI models classify 

images into categories, such as healthy or 

diseased, helping farmers apply targeted 

treatments where needed [67]. 

6.2.2 Yield prediction 

Machine learning models are extensively used to predict 

crop yields based on historical data, weather conditions, 

and soil health. Accurate yield prediction allows farmers 

to optimize planting, fertilization, and harvesting 

strategies. Techniques include: 
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• Regression models: Both linear and nonlinear 

regression models are applied to predict yields 

by correlating input features, such as soil 

conditions and climate patterns, with historical 

yield data. 

• Time series analysis: ML models use time 

series data to forecast future yields, identifying 

trends and seasonal variations that affect crop 

output [68]. 

6.2.3 Precision agriculture 

Precision agriculture utilizes AI to optimize farming 

practices at a micro-level, allowing for better resource 

management and improved yields. Common applications 

include: 

• Variable rate application: AI systems adjust 

the application rates of inputs like fertilizers and 

pesticides, based on the spatial variability of 

crop needs. This technique minimizes waste and 

maximizes crop health. 

• Yield mapping: Analyzing yield data across 

different areas of a field enables the creation of 

detailed maps that guide resource allocation, 

ensuring efficient use of inputs such as water 

and nutrients [69]. 

6.3 Remote sensing technologies 

Remote sensing technologies, including satellites, 

drones, and aerial sensors, offer valuable insights into 

crop health, soil conditions, and environmental factors. 

These technologies provide critical data for precision 

agriculture, enabling farmers to monitor large areas and 

make data-driven decisions. 

6.3.1 Satellite imagery 

Satellites capture high-resolution images of agricultural 

fields, providing information on crop health, growth 

patterns, and land use. Key applications include: 

• Vegetation indices: Metrics like the 

Normalized Difference Vegetation Index 

(NDVI) are used to assess plant health and 

biomass by measuring the reflectance of 

vegetation at different wavelengths. 

• Land cover classification: Satellite data 

supports land cover classification, allowing 

farmers to monitor changes in land use over 

time and optimize their practices accordingly 

[70]. 

6.3.2 Drones 

Drones equipped with multispectral and hyperspectral 

sensors provide detailed aerial views of fields, enabling 

real-time monitoring of crop health and identifying areas 

that require intervention. 

• Crop monitoring: Drones capture high-

resolution images that can detect plant stress, 

disease, or nutrient deficiencies at an early 

stage, helping farmers address issues before 

they spread. 

• Field mapping: Drones are used to generate 

detailed maps that support precision agriculture 

by identifying areas of the field that require 

specific interventions, such as targeted 

fertilization or pest control [71]. 

6.3.3 Aerial and ground-based sensors 

Combining aerial and ground-based sensors enhances 

monitoring by integrating data from multiple sources. 

Ground sensors validate and complement aerial data, 

providing a more comprehensive view of farm 

conditions. 

• Multispectral sensors: These sensors measure 

reflectance across different wavelengths to 

assess crop health and identify stress factors, 

such as drought or disease. 

• Ground truthing: Ground-based sensors 

provide on-the-ground measurements that 

validate the data collected from aerial platforms, 

ensuring the accuracy of remote sensing 

technologies [72]. 

6.4 Precision agriculture tools 

Precision agriculture tools are designed to optimize field-

level management based on varying field conditions, 

making farming more efficient and sustainable. These 

tools leverage spatial data to inform decisions about 

planting, fertilization, and harvesting. 

6.4.1 GPS and GIS technologies 

Global Positioning System (GPS) and Geographic 

Information System (GIS) technologies are fundamental 

to precision agriculture. These systems provide spatial 

data that enables: 

• Field mapping: Detailed maps of soil 

properties, crop health, and yield potential allow 

farmers to manage their fields with precision, 

ensuring optimal input use and minimizing 

waste. 

• Automated machinery: GPS-guided tractors 

and harvesters improve operational efficiency 

by reducing overlaps and ensuring that inputs, 

such as seeds and fertilizers, are applied with 

high accuracy [73]. 

6.4.2 Variable rate technology (VRT) 

Variable Rate Technology (VRT) adjusts the application 

rates of inputs based on spatial variability within the 

field. This technology enables: 

• Prescription maps: These maps indicate 

varying application rates based on data from soil 

and crop sensors, helping farmers apply inputs 

where they are most needed. 

• Real-Time adjustments: VRT equipment 

automatically adjusts application rates in real 

time, responding to sensor data and optimizing 

resource use [74]. 



128 Informatica 49 (2025) 117–136 B. Mohammed 

6.4.3 Smart greenhouses 

Smart greenhouses use a combination of sensors, 

automation, and AI to optimize growing conditions, 

allowing for more efficient and sustainable crop 

production. Technologies include: 

• Climate control systems: Automated systems 

regulate temperature, humidity, and CO2 levels, 

ensuring optimal growing conditions for 

different crops. 

• Lighting systems: Smart lighting adjusts light 

intensity and duration based on plant needs and 

growth stages, maximizing photosynthesis and 

improving crop yield [75]. 

6.5 Emerging trends and future directions 

6.5.1 Blockchain for traceability 

Blockchain technology is increasingly being explored to 

enhance traceability in the agricultural supply chain. By 

creating immutable records of every stage of food 

production, blockchain ensures: 

• Transparency: Consumers and stakeholders 

can access verified records of agricultural 

practices, ensuring food safety and authenticity. 

• Security: Blockchain protects against fraud and 

ensures the integrity of data across the supply 

chain, from farm to table [76]. 

6.5.2 Autonomous machinery 

Autonomous machinery, including self-driving tractors 

and robotic harvesters, is becoming more prevalent in 

agriculture. These machines: 

• Increase efficiency: Autonomous systems 

perform tasks such as planting, weeding, and 

harvesting with minimal human intervention, 

reducing labor costs and enhancing precision. 

• Reduce labor costs: By automating repetitive 

tasks, autonomous machinery decreases the 

reliance on manual labor while ensuring 

consistent performance [77]. 

6.5.3 Advanced data analytics 

Advanced data analytics, powered by big data and 

predictive analytics, is revolutionizing decision-making 

in agriculture. Techniques include: 

• Predictive modeling: Algorithms forecast crop 

yields, disease outbreaks, and market trends, 

helping farmers make informed decisions that 

optimize production and minimize risk. 

• Data integration: Integrating data from various 

sources such as sensors, satellites, and historical 

records improves the accuracy and scope of 

predictive models, enabling more efficient farm 

management [78]. 

Smart agriculture is rapidly evolving, driven by advances 

in IoT, machine learning, remote sensing, and precision 

agriculture tools. These technologies enable real-time 

monitoring, predictive analytics, and data-driven 

decision-making, leading to more efficient, sustainable 

farming practices. Emerging trends such as blockchain, 

autonomous machinery, and advanced data analytics 

further promise to transform the agricultural landscape, 

making it more connected, transparent, and resilient. 

7 Challenges and future directions  
Federated learning (FL) offers immense potential for 

advancing smart agriculture by enabling decentralized 

model training while preserving data privacy. However, 

several challenges need to be addressed for FL to achieve 

widespread adoption in agriculture. This section explores 

these challenges in detail and outlines potential future 

directions that can further enhance the role of FL in the 

agricultural sector. 

 

 

 

 

7.1 Challenges in federated learning for 

smart agriculture 

7.1.1 Data heterogeneity 

Challenge: Agricultural data is highly heterogeneous 

across different farms and regions. This diversity 

includes variations in data quality, format, type, and 

scale, making it difficult to create a unified model that 

generalizes effectively across diverse environments [79]. 

Impact: 

• Model performance: Heterogeneous data can 

degrade model performance by making it harder 

for FL models to generalize across varying 

distributions. 

• Training inefficiencies: Models may require 

more iterations and extensive fine-tuning to 

achieve acceptable performance, resulting in 

longer training times and higher resource 

consumption. 

Solutions: 

• Advanced aggregation techniques: New 

aggregation methods, such as robust federated 

averaging, personalized FL, or meta-learning 

approaches, can help models better adapt to 

diverse data distributions. 

• Data preprocessing and normalization: 

Standardizing and normalizing data before 

training can reduce the impact of heterogeneity, 

improving model convergence and accuracy 

across diverse data sources. 

7.1.2 Communication overhead 

Challenge: FL involves frequent communication 

between local nodes and central servers, which can result 

in high communication overhead. This is particularly 

problematic when working with large models or a high 

number of participants [80]. 

Impact: 

• Network congestion: The strain on network 

resources can cause delays, reducing the 
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efficiency of model updates and making the 

process more costly in areas with poor 

connectivity. 

• Cost: High communication demands lead to 

increased operational costs, especially in rural 

or remote areas where connectivity is limited or 

expensive. 

Solutions: 

• Efficient communication protocols: 

Techniques such as model compression, sparse 

updates, and quantization can reduce the volume 

of data exchanged during model training. 

• Adaptive communication strategies: 

Implementing adaptive strategies that adjust the 

frequency and volume of updates based on 

network conditions and model performance can 

optimize communication and reduce overhead. 

7.1.3 Privacy and security 

Challenge: Ensuring the privacy and security of data and 

model updates remains a critical concern. Although 

techniques like differential privacy and secure 

aggregation are used, FL is still vulnerable to risks such 

as model inversion attacks and data leakage [81]. 

Impact: 

• Data breaches: Weak privacy protection can 

expose sensitive agricultural data, such as crop 

yields, soil conditions, or farming practices, 

potentially leading to competitive disadvantages 

or violations of regulatory requirements. 

• Trust issues: Inadequate security can erode 

trust between participants, limiting collaboration 

and reducing the overall effectiveness of FL 

systems. 

Solutions: 

• Enhanced privacy techniques: Research into 

advanced privacy-preserving technologies, such 

as secure multi-party computation (SMPC) and 

fully homomorphic encryption (FHE), can 

provide stronger guarantees of data 

confidentiality. 

• Comprehensive security frameworks: 

Developing robust, end-to-end security 

frameworks that address all attack vectors and 

ensure data and model integrity during updates 

is crucial for protecting sensitive agricultural 

data. 

7.1.4 Computational and resource constraints 

Challenge: Many agricultural environments, particularly 

small-scale farms, may not have the computational 

resources necessary for running FL algorithms, which 

require significant processing power and memory [82]. 

Impact: 

• Limited adoption: Resource constraints can 

limit the adoption of FL technologies among 

resource-poor farms that lack the necessary 

hardware or network infrastructure. 

• Performance bottlenecks: Insufficient 

computational power can slow down training 

and lead to suboptimal model performance, 

reducing the benefits of FL for small farms. 

Solutions: 

• Edge computing: By integrating FL with edge 

computing, computational tasks can be 

offloaded to edge devices or servers, reducing 

the burden on individual farms while enabling 

real-time data processing. 

• Resource-efficient algorithms: Designing 

lightweight FL algorithms that can run 

efficiently on low-power devices will make FL 

more accessible to a wider range of agricultural 

stakeholders. 

7.1.5 Scalability 

Challenge: Scaling FL systems to handle large datasets 

and increasing numbers of participants presents 

significant challenges. As the system scales, the 

complexity of data aggregation, model synchronization, 

and system management increases [83]. 

Impact: 

• System complexity: As more farms and devices 

join the FL network, the complexity of 

coordinating updates and managing 

communication grows, which can lead to 

inefficiencies. 

• Performance degradation: With more 

participants, the system may experience slower 

convergence times and reduced overall 

performance if not properly managed. 

Solutions: 

• Scalable architectures: Implementing scalable 

FL architectures that efficiently manage large 

numbers of participants and datasets through 

techniques like hierarchical FL or distributed 

computing can improve system performance. 

• Cloud integration: Using cloud-based solutions 

to handle scalability issues will allow for more 

flexible data aggregation, processing, and 

storage, ensuring efficient system management 

at scale. 

7.2 Future directions 

7.2.1 Integration with IoT and sensor technologies 

Future direction: Integrating FL with IoT and advanced 

sensor networks can improve real-time data collection 

and model training in smart agriculture [84]. 

Potential benefits : 

• Real-Time data: IoT sensors provide 

continuous, real-time data that enhances the 

accuracy and relevance of FL models. 

• Enhanced precision: The combination of FL 

and sensor data can significantly improve 

precision in applications like precision farming, 

irrigation management, and livestock 

monitoring. 
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Approaches: 

• IoT-Enabled FL: Developing FL frameworks 

tailored for IoT environments, which consider 

data from diverse sensors and optimize model 

training for real-time analytics. 

• Real-Time model updates: Implementing real-

time analytics and model updates to leverage the 

continuous data streams from IoT devices in 

agriculture. 

7.2.2 Advanced privacy-preserving techniques 

Future direction: Researching and deploying next-

generation privacy-preserving techniques will strengthen 

data confidentiality and security in FL applications [85]. 

Potential benefits: 

• Stronger privacy guarantees: Improved 

privacy techniques will address current security 

vulnerabilities, such as model inversion attacks 

and data inference risks. 

• Increased trust: Stronger privacy mechanisms 

will foster greater collaboration and trust among 

participants, encouraging broader adoption of 

FL. 

Approaches: 

• Next-generation encryption: Implementing 

advanced encryption methods like fully 

homomorphic encryption (FHE) and secure 

enclave technologies for enhanced data security. 

• Privacy-enhancing technologies: Integrating 

emerging privacy-enhancing technologies, such 

as differential privacy in conjunction with 

secure hardware, to create more robust FL 

systems. 

7.2.3 Cross-domain federated learning 

Future direction: Investigating cross-domain FL, where 

models trained on data from different agricultural 

domains or regions can be integrated, offers significant 

potential [86]. 

Potential benefits: 

• Comprehensive insights: Cross-domain models 

provide broader insights by leveraging diverse 

datasets from different agricultural practices, 

environments, and crops. 

• Enhanced generalization: Models trained 

across multiple domains have better 

generalization capabilities, offering more robust 

predictions. 

Approaches: 

• Domain adaptation: Developing domain 

adaptation techniques that allow FL models to 

bridge differences between data from different 

agricultural domains. 

• Federated transfer learning: Implementing 

federated transfer learning to transfer 

knowledge across agricultural tasks, allowing 

for improved model adaptability and 

performance. 

7.2.4 Collaborative research and standardization 

Future direction: Promoting collaborative research and 

establishing standards will accelerate the development 

and adoption of FL technologies in agriculture [87]. 

Potential benefits: 

• Innovation and knowledge sharing: 

Collaborative research will drive innovation and 

facilitate knowledge sharing across academia, 

industry, and agricultural stakeholders. 

• Consistency and interoperability: 

Standardization will ensure consistency and 

interoperability across FL systems, making 

adoption easier and more seamless. 

Approaches: 

• Industry partnerships: Forming partnerships 

between academic institutions, industry players, 

and agricultural practitioners to drive innovation 

and address real-world challenges. 

• Standards development: Collaborating on the 

development of standardized protocols and best 

practices for implementing FL in agriculture. 

7.2.5 User-friendly tools and interfaces 

Future Direction: Developing accessible tools and 

interfaces will make FL more accessible to non-expert 

users, particularly small-scale farmers [88]. 

Potential benefits: 

• Wider adoption: User-friendly tools will 

encourage adoption of FL technologies among 

farmers and agricultural workers with varying 

technical expertise. 

• Simplified implementation: Simplified 

interfaces will lower the technical barriers to 

implementing and managing FL systems, 

ensuring broader participation. 

Approaches: 

• Accessible platforms: Creating FL platforms 

with intuitive interfaces and workflows that 

simplify the implementation process for non-

experts. 

• Training and support: Providing training 

programs and support resources to help farmers 

and practitioners effectively use FL 

technologies. 

Federated learning presents numerous opportunities for 

advancing smart agriculture, but it faces challenges 

related to data heterogeneity, communication overhead, 

privacy, computational constraints, and scalability. By 

addressing these challenges through innovative solutions, 

such as advanced privacy techniques, scalable 

architectures, and IoT integration, FL can revolutionize 

agricultural practices. Future directions—such as cross-

domain learning, collaborative research, and user-

friendly tools will be essential in driving widespread 

adoption and enabling FL to fully realize its potential in 

agriculture. 
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8 Conclusion  
Federated learning (FL) is poised to revolutionize data-

driven decision-making in smart agriculture by enabling 

collaborative model training across decentralized data 

sources while preserving the privacy and security of 

sensitive agricultural information. This transformative 

approach addresses some of the most pressing challenges 

in agricultural data management, including data privacy, 

scalability, and the need for efficient, adaptable solutions 

in diverse farming environments. 

This paper has provided an in-depth exploration of the 

fundamental principles of federated learning and its 

applications in smart agriculture. We discussed how FL 

can enhance various aspects of modern agriculture, 

including precision farming, livestock management, soil 

and irrigation optimization, and precision breeding. 

These applications benefit significantly from FL’s ability 

to derive data-driven insights without centralizing 

sensitive information, allowing farmers and agricultural 

stakeholders to collaborate more effectively while 

safeguarding proprietary data. 

The literature review underscored the growing research 

interest in federated learning within agriculture, 

highlighting its potential to enhance agricultural 

productivity and sustainability. It also showcased the 

advantages of privacy-preserving data sharing, 

particularly in a sector where privacy and data ownership 

are paramount. We explored key FL techniques, such as 

model aggregation, communication protocols, and 

privacy-preserving methods, emphasizing their relevance 

to overcoming the unique challenges faced by the 

agricultural industry. 

Through case studies and real-world examples, we 

demonstrated how federated learning can drive 

innovation in key areas like yield prediction, livestock 

health monitoring, soil and irrigation management, and 

precision breeding. These case studies illustrated the 

potential of FL to improve decision-making, optimize 

resource use, and boost productivity—all while 

maintaining data privacy and minimizing the risk of data 

breaches. By decentralizing model training and enabling 

collaboration across diverse data sources, FL offers a 

practical and scalable solution for modern agriculture. 

However, the implementation of federated learning in 

agriculture is not without challenges. Data heterogeneity, 

communication overhead, privacy and security concerns, 

computational limitations, and scalability issues pose 

significant obstacles to widespread adoption. Addressing 

these challenges will require ongoing research and 

development in areas such as advanced aggregation 

techniques, communication-efficient protocols, enhanced 

privacy measures, and resource-efficient algorithms. 

Looking to the future, several promising directions have 

emerged for advancing federated learning in agriculture. 

These include deeper integration with IoT and sensor 

networks for real-time data collection, the exploration of 

next-generation privacy-preserving techniques, the 

development of cross-domain federated learning models, 

and fostering collaborative research efforts across the 

agricultural sector. Moreover, creating user-friendly tools 

and platforms will be essential to ensure that FL 

technologies are accessible to farmers and agricultural 

stakeholders, particularly those with limited technical 

expertise. 

In conclusion, federated learning offers a powerful 

paradigm for advancing smart agriculture. Its ability to 

preserve data privacy, enhance model accuracy, and 

optimize resource utilization aligns with the goals of 

modern, sustainable agricultural practices. As research in 

this field continues to evolve and technology advances, 

federated learning will play an increasingly critical role 

in improving agricultural productivity, sustainability, and 

resilience in the face of global challenges such as climate 

change, resource scarcity, and food security. By 

addressing the existing challenges and embracing future 

innovations, federated learning can help shape the future 

of agriculture, making it more efficient, secure, and data-

driven. 
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