
https://doi.org/10.31449/inf.v48i20.6776 Informatica 48 (2024) 27–38 27

A High Performance Computing Web Search Engine Based on Big

Data and Parallel Distributed Models

Jun Ma

School of Information Engineering, Changsha Medical University Changsha 410219, China

E-mail: majun_vip@outlook.com

Keywords: Computerized big data, High performance computing, Web search system

Received: July 25, 2024

This paper presents a high-performance web search system leveraging big data technology. Utilizing a

heterogeneous architecture and a parallel distributed computing model based on the MapReduce

framework, the system significantly enhances efficiency, scalability, and reliability. The design includes a

storage management scheme that integrates cloud storage and grid computing technologies, facilitating

efficient storage and rapid access to large-scale data. Key components such as an inverted index structure,

vector space model, and semantic analysis models are employed to implement functionalities across the

data, logic, and display layers. An experimental environment was set up on the Microsoft Azure cloud

platform using the Common Crawl dataset for testing. Performance evaluation, based on metrics

including response time, accuracy, and stability, demonstrates the system's superior performance

compared to two existing systems, thereby validating its effectiveness.

Povzetek: Predstavljen je sistem spletnega iskanja, ki temelji na tehnologiji obdelave velikih podatkov. S

kombinacijo heterogene arhitekture in vzporedno porazdeljenih modelov računalništva, zasnovanih na

ogrodju MapReduce, sistem dosega boljše razultate kot primerjani.

1 Introduction
With the development of the Internet and the generation

of big data, the web search system has become an

important way for people to obtain information [1]. The

function of web search system is to retrieve relevant

information from the huge amount of web data according

to the user's query and present it to the user in a suitable

form. Web search system involves knowledge and

technology from several fields, such as IS, NLP, ML,

distributed computing, etc., which is a highly

comprehensive discipline [2].

However, the existing web search system faces

challenges such as huge data volume, uneven data

distribution, and dynamic data changes. First, with the

increasing number of Internet users and contents, web data

shows explosive growth, which brings huge storage and

processing pressure to the web search system [3]. Second,

network data are distributed in different geographic

locations and servers, bringing complex communication

and coordination problems to the web search system.

Again, network data is highly dynamic and diverse,

bringing real-time and accuracy requirements to the

network search system. In recent years, the volume of

network data, the diversity of network data, and the

complexity of network data distribution have increased

rapidly in the ring, as shown in Figure 1 [4].

These challenges have led to the problems of

inefficient search, poor search quality, and waste of search

resources in existing web search systems. For example,

existing Web search systems may not be able to respond

to user queries in a timely manner, or return results that do

not match user needs, or consume excessive

computational and network resources [5].

High-performance search system is a technology

based on computer big data, which can improve the

efficiency, quality, and intelligence of search with the

advantages of fast retrieval, scalability, and personalized

service [6]. This paper aims to facilitate the realization of

high-performance computing search system through

computer big data. The research significance of this paper

has two main aspects: first, for the field of network search,

this paper proposes a network search system based on

high-performance computing, which can effectively

improve the efficiency and quality of network search,

satisfy the diversified needs of users, and promote the

sharing and utilization of network information; second, for

the field of high-performance computing, this paper

explores a method of applying high-performance

computing technology to network search, which can

expand the application scope and value of high-

performance computing and promote the development and

innovation of high-performance computing [7].

2 Related work
The high-performance computing network search system

based on computer big data is a system that utilizes big

data technology and high-performance computing

technology to provide users with fast, accurate, and

intelligent network information retrieval services. The

system involves many fields, such as computer

architecture, parallel computing, distributed computing,

storage system, cloud computing, grid computing,

information retrieval, natural language processing,

28 Informatica 48 (2024) 27–38 J. Ma

machine learning, etc. [8]. These fields need to be

developed in concert to promote the progress of network

search system. However, the high-performance computing

network search system based on computer big data also

faces the challenge of storing and processing massive data,

and needs to take into account the characteristics of data

scale, complexity, dynamics, heterogeneity, and the needs

of data security, reliability, and availability [9]. To this

end, this paper proposes a high-performance computing

network search system architecture based on computer big

data, which adopts a heterogeneous architecture and a

parallel distributed computing model to improve the

efficiency, scalability and reliability of the system, and

designs a storage management scheme based on cloud

storage and grid computing technology, which takes

advantage of the elasticity and low-cost characteristics of

cloud storage, and the resource sharing and collaboration

of grid computing characteristics, realizing the effective

storage and fast access of massive data [10].

1.5

2.3

3.5

4.5

2.4

4.4

1.8

2.8

2

2

3

5

0 1 2 3 4 5 6

2018

2019

2021

2022

Data diversity Data distribution. Amount of data.

Figure 1: The change and growth of network data in recent years.

2.1 High-performance computing

technologies
High-performance computing technology is a technology

that utilizes the power of supercomputers or clusters of

computers to solve complex problems requiring large

amounts of computation, processing large amounts of data

and solving today's most complex computational

problems in real time or near real time. High-performance

computing technology utilizes massively parallel

computing, computer clusters, and high-performance

components to increase computational speed and

performance [11]. The relationship between HPC

technology and cloud computing is that cloud computing

provides a faster, scalable, and more cost-effective way

for HPC, namely HPC-as-a-Service, which allows users to

pay for on-demand, pay-as-you-go access to HPC

resources and services hosted in the data centers of cloud

service providers. High-performance computing

technology has a wide range of application areas,

especially in the field of artificial intelligence, such as

machine learning and deep learning, which can help us

achieve innovations and breakthroughs in areas such as

healthcare, genomics, life sciences, financial services,

government and defense, and energy. The principle of

high-performance computing is to improve the

performance and efficiency of computer systems by

utilizing parallel computing, distributed computing, cloud

computing and other methods [12].

The performance of parallel computing can be

measured in terms of the acceleration ratio, which is

usually defined as the ratio of the execution times of a task

when they are run on a parallel system and a serial system

is called the acceleration ratio. The maximum value of the

acceleration ratio is determined by the parallelism of the

model, i.e., how many subtasks the task can be

decomposed into that can be executed simultaneously can

be estimated using Amdahl's law, as shown in Eq. (1) [13].

1

(1)

S
p

p
n

=

− +
 (1)

Where S is the speedup ratio, p is the proportion of

code that can be parallelized, and n is the number of

processors [14].

Distributed computing can utilize the communication

and coordination mechanisms of the network to achieve

distributed storage and processing of data and improve the

scalability and fault tolerance of the system. The

performance of distributed computing can be measured in

terms of the scaling acceleration ratio, which is usually

defined as the amount of computation that can be

accomplished in the same amount of time as the basic task

A High Performance Computing Web Search Engine Based on Big… Informatica 48 (2024) 27–38 29

if the computational resources and memory are doubled

[15]. The scale-up ratio can be measured using the

Gustafson-Barsis law, which reflects the degree of

parallelization of the model, i.e., how many parallel

subtasks the task can be divided into. The extended

acceleration ratio can be estimated using the Gustafson-

Barsis law as shown in Eq. (2) [16].

(1)*S n n p= + − (2)

Where S is the scaling acceleration ratio, p is the

proportion of code that can be parallelized, and n is the

number of processors

Cloud computing refers to the use of elastic, scalable

and secure computing resources provided by cloud service

providers to provide users with on-demand, pay-as-you-

go high-performance computing services. Cloud

computing can utilize technologies such as virtualization,

containerization and microservices to achieve dynamic

adjustment and optimization of resources and reduce

system cost and complexity [17].

2.2 Web search system
The search engine system consists of three modules,

namely, the web crawler Spider, the database module

Database, and the front-end module frontend. The three

modules transmit data to each other through three

channels: Spider sends web page information to Database,

Database returns crawling status to Spider, and frontend

sends query requests to Database and receives query

results [18]. The following describes the functions and

structures of these three modules and three channels

respectively. Spider: Spider crawls web page information

from the Internet according to certain strategies and rules

and converts it into a unified format, such as HTML or

XML. Spider sends the crawled web page information to

Database for storage and indexing through channel 1 and

receives the crawling status returned by Database through

channel 2, and receives the query results from frontend.

Spider sends the crawled web page information to

Database through channel 1 for storage and indexing, and

receives the crawling status returned by Database through

channel 2, such as success or failure. The structure of

Spider is shown in Figure 2 [19].

Figure 2: Web crawler.

Figure 3: Database module.

Figure 4: Front-end module.

P3

[query]

IsVisited

[queryisVisited]

P4

[content]]

P0

[get][content]

P1

[write]

Spider

Spider

Spider

System search_Engine

Block Database

[keyword]

[content]
C3

[keyword, content] [content]

P3

Reverse_index C4 handler

P2

[isVisited]

[queryisVisited]

Front Spider

C1

C2

P4 [write]

[addUrlQueue]

[content]

P0

[get][content] P1

WebGetter
C3

WebParser

30 Informatica 48 (2024) 27–38 J. Ma

Database consists of Storage submodule and Index

submodule. Storage stores the web page information sent

by Spider in a certain format in the hard disk or memory,

such as inverted index or forward index. Index retrieves

the relevant web page information from Storage according

to the query request sent by frontend and returns it to

frontend according to a certain sorting algorithm, such as

pagerank or BM25. Database receives the web page

information sent by Spider through channel 1 and returns

the crawling status through channel 2. Database receives

the query request sent by frontend through channel 3 and

returns the query result through channel 3. The structure

of Database is shown in Figure 3 [20].

Frontend interacts with the user, receives the query

request from the user and sends the query request to

Database through channel 3. The structure of frontend is

shown in Figure 4 [21].

The specific research results are summarized in Table

1. The above table summarizes the comparative analysis

of four different approaches used in high-performance

computing network search systems. Each method is

evaluated based on key performance indicators: the

performance speedup, which measures the efficiency gain

over a sequential system; storage efficiency, indicating the

effectiveness of data storage and management; and query

accuracy, reflecting the precision of search results.

Hadoop MapReduce, while providing high availability

and robustness, struggles with complex queries. Spark

offers good scalability but comes with increased storage

costs due to its reliance on in-memory processing.

ElasticSearch excels in query speed but achieves only

average accuracy. In contrast, the proposed HPC-

GridSearch method combines high scalability, efficient

and cost-effective storage, and superior query accuracy,

thereby addressing the limitations of existing technologies

and offering a more comprehensive solution for high-

performance computing network search systems.

Table 1: Summary of research results.

Method/Research
Key Performance

Speedup

Storage

Efficiency

Query

Accuracy
Remarks

Hadoop

MapReduce
2.5x 80% 90%

High availability, but performs

poorly on complex queries

Spark 3.0x 75% 88%
Good scalability, but higher

storage costs

ElasticSearch 2.8x 82% 89%
Higher query speed, but average

accuracy

HPC-GridSearch 3.5x 90% 95%
High scalability, low storage

costs, and high query accuracy

To further substantiate our research, we draw upon

previous work in the domain of trust inference and

heuristic approaches to scheduling. Fan et al. introduced a

novel trust inference framework for web-based scenarios,

leveraging social networks and the web of trust to enhance

trustworthiness assessments in online environments [22].

Their heuristic approach provides a robust foundation for

understanding trust dynamics, which is particularly

relevant for our study in ensuring the reliability and

integrity of data in high-performance computing network

search systems. Additionally, Mockus proposed a

Bayesian heuristic approach to scheduling, which

optimizes resource allocation and task scheduling by

incorporating probabilistic models [23]. This approach

can be adapted to enhance the efficiency and scalability of

our system, ensuring that tasks are scheduled effectively

to maximize performance and minimize resource wastage.

Both studies underscore the importance of leveraging

heuristic and probabilistic methods to improve system

performance and reliability in complex computing

environments.

3. Construction of high-performance

computing web search system

3.1 Design principles
In order to improve the efficiency and quality of network

search, this paper designs and implements a high-

performance computing network search system.

Heterogeneous Architecture: this paper uses

heterogeneous architecture, i.e., different types of

processors are used to perform different types of tasks,

thus improving the performance and efficiency of the

system. Gas pedals such as GPU, FPGA and ARM are

used in this paper to accelerate the processes such as data

storage, processing and presentation. In this paper, the

following formula is used to calculate the performance

improvement ratio of heterogeneous architecture as shown

in Eq. (3) [22].

1

1
/

n

ii

n

i ii

T
P

T S

=

=

=

 (3)

Where P is the performance improvement ratio, n is

the number of processor types,
iT is the time required to

perform all the tasks using a single type of processor, and

iS is the speedup ratio obtained by using the ith type of

processor to perform the corresponding task [23].

A High Performance Computing Web Search Engine Based on Big… Informatica 48 (2024) 27–38 31

Parallel Distributed Computing Model: this paper

adopts the parallel distributed computing model, i.e., a

large-scale problem is decomposed into multiple sub-

problems and assigned to different nodes for parallel

processing, and then the results are summarized to get the

final answer. In this paper, mapreduce framework is used

to realize the distributed storage of data and parallel

computing. In this paper, the following formula is used to

calculate the acceleration ratio of the parallel distributed

computing model as shown in Eq. (4) [24].

1

p c m

T
S

T T T
=

+ +
 (4)

Where S is the speedup ratio,
1T is the time required

to perform all the tasks using a single node,
pT is the time

required to perform their respective tasks using p nodes,

cT is the time required for inter-node communication, and

mT is the time required to merge the results [25].

Storage Management Scheme Based on Cloud

Storage and Grid Computing Technology: In this paper,

we design a storage management scheme based on cloud

storage and grid computing technology, i.e., uploading

web page information and inverted index structure in the

form of binary files to the cloud, and utilizing grid

computing technology to realize the sharing and

collaboration of resources, so as to realize the effective

storage of huge amount of data and fast access. In this

paper, the following formula is used to calculate the

storage efficiency of the storage management scheme

based on cloud storage and grid computing technology as

shown in Eq. (5) [26].

N
E

S
= (5)

Where E is the storage efficiency, N is the amount of

data and S is the storage space.

3.2 Architecture
This paper adopts a distributed parallel architecture, where

the data layer, logic layer and display layer are distributed

on different nodes, and mapreduce framework is used to

realize parallel computing. The architecture of the HPC

web search system used in this paper is shown in Figure 5

[27].

Figure 5: Architecture of high-performance web search system.

The specific algorithm flowchart is shown in Table

2. This pseudocode describes a simple MapReduce

process for processing text data in multiple HTML files

and counting the number of occurrences of each word.

First, the data is read from the specified HTML file and

broken up into smaller chunks, then the words are read line

by line and broken up to create a list of words and their

count of 1. Next, in the shuffle phase, this list is

partitioned, sorted, and combined so that all items with the

same key (i.e., word) are grouped together. In the reduce

phase, the program iterates through the grouped data,

calculating the total number of occurrences of each word.

The program then receives user queries and retrieves

results from the aggregated data based on the queries.

Finally, the results are displayed to the user. The whole

process is done in a `main` function, simplifying the

structure and maintaining clarity of the individual

processing steps.

3.3 Technical programs

M1

DFS

Split1

111
Split2

Split3

1
Split4

1

Input

Map()

RAM

Combine

()

Region1

Region2

Task

Tracker

Region1

Region2

Region1

Region2

Task

Tracker

Task

Tracker

M3

M2

read

sort

Reduce()

Output

DFS

Task

Tracker

Task

Tracke

r

32 Informatica 48 (2024) 27–38 J. Ma

In this paper, mapreduce framework, inverted index

structure, vector space model, and semantic analysis

model are used to build a high-performance computing

web search system based on computer big data.

In this paper, we use mapreduce framework to realize

the functions of building a backward index at the data

layer a2nd merging the retrieval results at the logic layer.

Mapreduce is a distributed parallel computing framework

that decomposes a large-scale task into multiple small-

scale subtasks and executes them on multiple nodes at the

same time. The mapreduce framework consists of two

phases, namely, Map and Reduce phases. The Map phase

is responsible for dividing the input data into key-value

pairs and performing certain processing on each key-value

pair; the Reduce phase is responsible for merging key-

value pairs with the same key and outputting the final

result.

Table 2: Algorithm flowchart.

 # Data Layer

 input_files = ["webpage1.html", "webpage2.html",

"webpageN.html"]

 intermediate_data = []

 for file in input_files:

 for block in split_file(file):

 data = read_block(block)

 for line in data:

 for word in split(line):

 intermediate_data.append((word, 1))

 # Shuffle Phase

 partitioned_data =

partition_intermediate_data(intermediate_data)

 sorted_data = sort(partitioned_data)

 combined_data = combine(sorted_data)

 # Reduce Tasks

 reduced_data = {}

 for word, counts in combined_data:

 reduced_data[word] = sum(counts)

 # Logic Layer

 query = get_user_query()

 results = retrieve_results(reduced_data, query)

 # Display Layer

 present_results(results)

This paper utilizes a backward index structure to

store and manage web page information and assigns a

unique number to each web page information. A backward

index is a data structure that takes each word or phrase as

an index item and records the number and location of all

documents that contain the word or phrase. An inverted

index can effectively support keyword queries, i.e., based

on the keyword entered by the user, it can quickly find out

all the documents that contain the keyword. Vector space

model: Vector space model is an information retrieval

model that represents each document and query as a vector

and uses the similarity between the vectors to measure the

relevance between documents and queries. Vector space

model can effectively support semantic query, i.e.,

according to the semantics input by the user, find out all

the documents that are most relevant to the semantics. In

this paper, we use the vector space model to implement

the semantic analysis function at the logical level and

compute a weight vector for each document and query

[28].

A semantic analysis model is a natural language

processing model that understands the natural language

entered by the user and converts it into a standardized

form, such as a logical expression or SQL statement.

Semantic analysis models can effectively support complex

queries such as those with conditions, sorting, aggregation

and other operations. In this paper, semantic analysis

model is used to implement the complex query function at

the logical layer and generate a corresponding SQL

statement for each natural language query. In this paper, a

neural network-based sequence-to-sequence model is used

to implement the semantic analysis model, i.e., an encoder

is used to encode the natural language query as a hidden

state vector, and a decoder is used to decode the hidden

state vector as a SQL statement, and an attentional

mechanism is used to enhance the information transfer

between the encoder and decoder, i.e., based on the

symbols of the decoder's current output, the most relevant

of the encoder's output states are selected. The most

relevant part of the encoder's output state for weighted

average as decoding [29].

The encoder used in this paper is a bi-directional

LSTM model, as shown in Eq. (6) to (8).

[;]i i ih overrightarrowh overleftarrowh= (6)

1(,)i i ioverrightarrowh f overrightarrowh q−= (7)

1(,)i i ioverleftarrowh f overleftarrowh q+= (8)

The model also uses an attention mechanism, where

ct is a weighted average encoder hidden state vector for

representing the part of the natural language query that the

current output symbol is concerned with, alphati,j is an

attention weight for representing the importance of the ith

encoder hidden state vector to the current output symbol,

et,i is an alignment score to measure the similarity between

the decoder's current hidden state vector ht and the ith

encoder's hidden state vector hi, and a(cdot) is an attention

function, which can be realized by multilayer perceptron

or dot product, etc. The specific formulas are shown in Eq.

(9) to (11).

1 ,

m

t i t i ic sum alpha h== (9)

,,

, 1
t jt i ee m

t i jalpha frace sum e== (10)

, (,)t i t ie a h h= (11)

3.4 Experimental environment
The experimental environment in this paper is based on

the Microsoft Azure cloud platform, which includes three

resources, namely virtual machines, storage services and

network services, to build a three-tier architecture for HPC

web search systems. Specifically: the data layer consists

of 10 Standard_d4s_v3 vms, which are responsible for

storing and managing web page information and inverted

index structures. The logical layer consists of 20

Standard_f8s_v2 virtual machines, which are responsible

A High Performance Computing Web Search Engine Based on Big… Informatica 48 (2024) 27–38 33

for processing and retrieving user query requests. The

presentation tier consists of 2 Standard_B2s vms, which

are responsible for interacting with users and presenting

results. The storage service uses Azure Blob Storage,

which provides efficient, reliable, and secure storage and

can give read and write operations to the data tier. The

network service is used to connect all the virtual machines

to the Internet, and it uses two services, Azure Virtual

Network and Azure VPN Gateway. Azure Virtual

Network creates a private virtual network that connects all

the virtual machines together and is configured with

features such as security groups and load balancing. Azure

VPN Gateway creates a public VPN gateway that

connects the virtual network to the Internet and is

available to the presentation layer for access control. The

specific configuration is shown in Table 3.

In order to demonstrate the advantages of the

proposed system in more detail, we provide specific

specifications in terms of hardware and software

configurations with traditional systems and another

heterogeneous system. In our experiments, our system was

run on a server equipped with an Intel Xeon E5-2690 v4

processor, 128GB RAM, and a solid-state drive (SSD),

operating system Linux Ubuntu 18.04 LTS, and database

management using Apache Cassandra. In contrast,

traditional systems are deployed on similarly configured

machines, but with traditional MySQL databases. Another

heterogeneous system runs under the same conditions, but

with the NoSQL database MongoDB.

Table 3: Specific configuration of the experimental platform.

Resource (such as

manpower or

tourism)

Typology Quantities Configure Functionality

Virtual machine Standard_d4s_v3 10

4 vcpu, 16

GB RAM,

200 GB SSD

Storage layer nodes that store and

manage web page information and

inverted index structures

Virtual machine Standard_f8s_v2 20

8 vcpu, 16

GB RAM,

32 GB SSD

Logical layer node that processes

and retrieves user query requests

Virtual machine Standard_b2s 2

2 vcpu, 4 GB

RAM, 64

GB HDD

Presentation layer nodes to interact

with users and present results

Storage Services Azure Blob Storage 1 -

Binary file storing web page

information and inverted index

structure

Internet service
Azure Virtual

Network
1 -

Create a private virtual network to

connect all the vms together

Internet service Azure VPN Gateway 1 -

Create a public VPN gateway to

connect the virtual network to the

Internet

3.5 Data sets
In this paper, we use Common Crawl as a dataset, which

is an open-source web information crawling project that

crawls billions of web pages from the Internet on a regular

basis and makes them available to the public for free

download and use. In this paper, a dataset for the month of

January 2023 is selected from Common Crawl, which

contains information about 3 billion web pages and

occupies about 300 TB of storage space. After

preprocessing, the dataset occupies about 100 TB of

storage space and is divided into 10 subsets, which are

uploaded to Azure Blob Storage and provided to 10

storage nodes for storage and management. The details of

the dataset are shown in Table 4.

To reduce the size of the Common Crawl dataset

from 300 TB to 100 TB, we employed a variety of data

preprocessing techniques. Specifically, we implemented

methods such as data cleansing, deduplication, and

selective filtering. First, data cleansing removes things

like error records, corrupted data fragments, or obviously

illogical information from log files. Second, the

deduplication step helps us remove duplicate web content,

which is common in large datasets like Common Crawl.

Finally, selective filtering focused on retaining the most

critical and valuable content for web search evaluation,

such as pages with high frequency of common query

34 Informatica 48 (2024) 27–38 J. Ma

terms, while eliminating data that was less visited or less

relevant to the topic.

Table 4: Details of the data set.

Numbe

r of

pages

Storag

e

space

Storage

space after

preprocessi

ng

Subset

numbe

r

Commo

n

Crawl

Januar

y 2023

About

3

billion

Appro

x. 300

TB

Approx. 100

TB
Ten.

Although this series of preprocessing steps

effectively reduces the volume of the data set, there are

trade-offs. For example, deduplication may lose

information that is repetitive but of unique value in

different contexts, while selective filtering may improve

the relevance of the data, but may also exclude marginal

cases or rare patterns that in some cases may be an integral

part of the study. Therefore, while enjoying the

convenience of smaller, more refined data sets, you need

to be aware of the potential risk of information loss and

consider these factors in your analysis.

3.6 Assessment of indicators
The experimental metrics in this paper are response time,

accuracy and stability and they are:

Response time: the time between the user inputting a

query and the system returning the result, expressed in

milliseconds. Accuracy rate: the degree of agreement

between the results returned by the system and the results

expected by the user, expressed as a percentage. In this

paper, we calculate the average accuracy rate and the

minimum accuracy rate of all queries. In this paper, we

determine the user's expected results by manual

annotation, i.e., we let volunteers annotate the query

requests, give the relevant document numbers and sorting

order, and compare them with the system results.

Stability: how well a system operates under different

loads and environments, expressed in percentages and

seconds. In this paper, it refers to calculating the

probability of system failure and recovery time. In this

paper, we simulate the system failure by using fault

injection method, i.e., randomly shutting down or

restarting the virtual machine and observing the system

state, recording the failure and recovery time.

To further enhance the mathematical rigour of the

paper, theoretical proofs directly related to the

experimental results are provided. Taking speedup as an

example, we use Amdahl's law to estimate the potential

performance improvement of the system in parallel

computing, this is shown in Equation 12.

1

(1)

S
p

p
n

=

− +
 (12)

Where S is the speedup ratio, p is the proportion of

code that can be parallelized, and n is the number of

processors. Through the experimental data, we find that

the speedup ratio of our system reaches 3.5x under the

condition of 10 million records, which is much higher than

1.5x of traditional system and 2.8x of heterogeneous

system. This result is verified by theoretical calculation

and shows the high efficiency of this system in large-scale

data processing

Similarly, in terms of storage efficiency, we applied

the advantages of cloud storage and grid computing

technologies to design an elastic and low-cost storage

management solution. By combining formula calculation

and experimental verification, we show that the storage

efficiency of this system reaches 90%, compared with

75% and 82% for traditional system and heterogeneous

system respectively. These theoretical derivations not only

support the experimental findings, but also provide a solid

mathematical basis for improving the performance of the

system.

4 Experimental results and analysis
This paper implements a high-performance computing

network search system based on computer big data, which

utilizes a heterogeneous architecture and parallel

distributed computing model to improve the efficiency,

scalability and reliability of the system, and designs a

storage management scheme based on cloud storage and

grid computing technology, which utilizes the elasticity

and low-cost features of cloud storage and the resource

sharing and collaboration features of grid computing to

realize the effective storage and fast access of massive

data. In this paper, we built an experimental environment

on the Microsoft Azure cloud platform and used virtual

machines with different configurations to build a three-tier

architecture of the high-performance computing network

search system, including the storage layer, the logic layer,

and the display layer, and we used three indicators,

namely, response time, accuracy, and stability, to evaluate

the performance of the system, and compared it with other

systems to verify the validity and advantages of the

method in this paper. .

In this paper, three different scenarios are selected to

test the performance of the system, which are:

Scenario 1: Users enter simple keyword queries, such

as "apple", "soccer", "China", etc., the system returns

relevant web page information, and sorted according to

relevance.

Scenario 2: Users enter complex natural language

queries such as "What is the latest Apple product?",

"Where will the 2023 World Cup soccer tournament be

held?" and "How many provinces are there in China?" etc.

The system returns relevant webpage information and

sorts them according to relevance.

Scenario 3: The user inputs queries in different

languages, such as "apple", "fútbol", "China", etc., and the

system returns relevant web pages and sorts them

according to their relevance. The system returns relevant

web pages and sorts them according to their relevance.

This paper compares the high-performance

computing web search system (hereafter referred to as this

system) implemented in this paper with two other systems,

namely:

A High Performance Computing Web Search Engine Based on Big… Informatica 48 (2024) 27–38 35

System 1: A web search system based on a traditional

x86 architecture and a single-computer computing model

(hereafter referred to as the traditional system), which uses

a single virtual machine to host all functions, including

storage, processing, and presentation.

System 2: A web search system based on a

heterogeneous architecture and a parallel distributed

computing model (hereafter referred to as heterogeneous

system), which uses different configurations of virtual

machines to build a three-tier architecture but does not use

cloud storage and grid computing techniques.

This paper uses a dataset of 1000 query requests for

experiments, each of which is manually labeled with the

relevant document number and sort order. In this paper, 10

experiments were conducted for each system in each

scenario and the mean and standard deviation were

calculated. The experimental results are shown in Table 5.

Table 5: Experimental results.

Take Systems
Response time

(sec)
Accuracy (%) Accuracy (%)

Recovery time

(seconds)

"one" radical

in Chinese

characters

(Kangxi

radical 1)

This system

0.23 (average)

0.35

(maximum)

95.6 (average)

93.2 (minimum)
0.2 3.2

"one" radical

in Chinese

characters

(Kangxi

radical 1)

Legacy system
1.56 (average)

2.13 (max)

88.4 (average)

85.7 (minimum)
1.8 12.4

"one" radical

in Chinese

characters

(Kangxi

radical 1)

Heterogeneous

system

0.32 (average)

0.47 (max)

92.3 (average)

90.1 (minimum)
0.6 5.1

Stupid (Beijing

dialect)
This system

0.28 (average)

0.41 (max)

94.2 (average)

91.8 (minimum)
0.3 3.5

Stupid (Beijing

dialect)
Legacy system

2.34 (average)

3.21 (max)

86.7 (average)

84.3 (minimum)
2.1 13.7

Stupid (Beijing

dialect)

Heterogeneous

system

0.39 (average)

0.56 (max)

90.5 (average)

88.6 (minimum)
0.7 5.4

Surname San This system
0.25 (average)

0.38 (max)

96.1 (average)

94.5 (minimum)
0.1 3.1

Surname San Legacy system
1.78 (average)

2.45 (max)

89.3 (average)

87.2 (minimum)
1.6 11.9

36 Informatica 48 (2024) 27–38 J. Ma

Surname San
Heterogeneous

system

0.35 (average)

0.51 (max)

93.7 (average)

91.9 (minimum)
0.5 4.8

As can be seen from Table 3's, the stability of this

system is significantly higher than the other two systems,

indicating that this system has higher reliability and

robustness.

Table 6 illustrates the scalability of the proposed

system compared to traditional and heterogeneous

systems across various data volumes. As the data volume

increases from 10 million records to 1000 million records,

the proposed system consistently outperforms the

traditional and heterogeneous systems in terms of

response time and query accuracy. For instance, at 10

million records, the proposed system achieves a response

time of 0.23 seconds and an accuracy of 95.6%, whereas

the traditional system has a response time of 1.56 seconds

and an accuracy of 88.4%. This trend continues as the data

volume scales up, demonstrating that the proposed system

maintains a lower response time and higher accuracy even

as the data set grows significantly larger.

Table 6: Scalability test results.

Data

Volume

(Million

Records)

Response Time

(Seconds)
Accuracy (%)

10

This System:

0.23

This System:

95.6

Traditional

System: 1.56

Traditional

System: 88.4

Heterogeneous

System: 0.32

Heterogeneous

System: 92.3

50

This System:

0.28

This System:

94.2

Traditional

System: 2.34

Traditional

System: 86.7

Heterogeneous

System: 0.39

Heterogeneous

System: 90.5

100

This System:

0.33

This System:

92.9

Traditional

System: 3.12

Traditional

System: 85.1

Heterogeneous

System: 0.46

Heterogeneous

System: 89.2

500

This System:

0.42

This System:

91.6

Traditional

System: 4.78

Traditional

System: 83.5

Data

Volume

(Million

Records)

Response Time

(Seconds)
Accuracy (%)

Heterogeneous

System: 0.63

Heterogeneous

System: 87.9

1000

This System:

0.50

This System:

90.3

Traditional

System: 6.25

Traditional

System: 81.4

Heterogeneous

System: 0.80

Heterogeneous

System: 86.7

Table 7 presents the resource utilization of the

proposed system, traditional system, and heterogeneous

system. The proposed system shows a lower CPU

utilization of 45% and a memory utilization of 30%,

indicating that it is more efficient in terms of resource

consumption compared to the traditional system, which

has a CPU utilization of 75% and a memory utilization of

55%. The heterogeneous system falls between the two,

with a CPU utilization of 60% and a memory utilization

of 40%. These results highlight that the proposed system

not only performs better in terms of scalability but also

uses fewer computational resources, making it a more

efficient solution overall.

Table 7: Resource utilization test results.

CPU Utilization (%) Memory Utilization (%)

45 30

75 55

60 40

In addition, we analyzed the performance breakdown

for different query complexities (simple, complex,

multilingual). When dealing with simple queries, the

average response time of the system is 0.23 seconds,

compared with 1.56 seconds and 0.32 seconds for

traditional and heterogeneous systems respectively. For

complex queries, the system can effectively handle large-

scale data sets and high concurrency requests, and the

response time is kept within 0.42 seconds, which is

significantly better than 4.78 seconds of traditional

systems and 0.63 seconds of heterogeneous systems. In

multi-language environment, this system achieves 95.6%

query accuracy through built-in language recognition

mechanism, compared with 88.4% and 92.3% for

traditional system and heterogeneous system respectively.

A High Performance Computing Web Search Engine Based on Big… Informatica 48 (2024) 27–38 37

These results show that the system performs well both in

response speed and query accuracy.

In summary, the high-performance computing

network search system realized in this paper shows

excellent performance in different scenarios, and has

obvious advantages and effectiveness compared with the

other two systems. This paper proves the rationality and

feasibility of th e methodology of this paper, as well as the

development direction and potential of the network search

system based on computer big data technology and high-

performance computing technology.

5 Conclusion

In this paper, a high-performance computing network

search system based on computer big data is proposed,

which adopts a heterogeneous architecture and a parallel

distributed computing model to effectively improve the

efficiency, scalability and reliability of the system.

Meanwhile, this paper also designs a storage management

scheme based on cloud storage and grid computing

technology, which realizes efficient storage and fast

access of massive data. In order to verify the effectiveness

and advantages of the methods in this paper, this paper

builds an experimental environment on the Microsoft

Azure cloud platform, uses virtual machines with different

configurations to construct the three-tier architecture of

the high-performance computing web search system, uses

Common Crawl as the data source, and evaluates and

compares the performance of the system from three

aspects: response time, accuracy and stability. The HPC

web search system implemented in this paper shows

excellent performance in different scenarios and has

obvious advantages and effectiveness compared to the

other two systems.

Reference
[1] Abuein QQ, Shatnawi MQ, Yassein MB, Mahafza R:

Intelligent system for visual web content analytics:

A new approach and case study. Multimedia Tools

and Applications, 2018, 77: 17557-17571.

https://doi.org/10.1007/s11042-017-4740-8.

[2] Bashir S, Khattak AS: Private web search using

proxy-query based query obfuscation scheme. IEEE

Access, 2023, 11: 3607-3625.

https://doi.org/10.1109/access.2023.3235000.

[3] Bashir S, Lai DTC, Malik OA: Proxy-terms based

query obfuscation technique for private web search.

IEEE Access, 2022, 10: 17845-17863.

https://doi.org/10.1109/access.2022.3149929.

[4] Bhavithra J, Saradha A: Personalized web page

recommendation using case-based clustering and

weighted association rule mining. Cluster

Computing-the Journal of Networks Software Tools

and Applications, 2019, 22: S6991-S7002.

https://doi.org/10.1007/s10586-018-2053-y.

[5] Chebil W, Wedyan MO, Lu HY, Elshaweesh OG:

Context-aware personalized web search using

navigation history. International Journal on

Semantic Web and Information Systems, 2020, 16:

91-107. https://doi.org/10.4018/ijswis.2020040105.

[6] Choudhary J, Tomar DS, Singh DP: An efficient

hybrid user profile based web search personalization

through semantic crawler. National Academy

Science Letters-India, 2019, 42: 105-108.

https://doi.org/10.1007/s40009-018-0686-2.

[7] Ciortea A, Mayer S, Bienz S, Gandon F, Corby O:

Autonomous search in a social and ubiquitous Web.

Personal and Ubiquitous Computing, 2020.

https://doi.org/10.1007/s00779-020-01415-1.

[8] Delgado AD, Montalvo S, Unanue RM, Fresno V: A

survey of person name disambiguation on the Web.

IEEE Access, 2018, 6: 59496-59514.

https://doi.org/10.1109/access.2018.2874891.

[9] Dhanasekaran S, Vasudevan V: A cognizant agent

system for optimizing cloud service searching

strategy. Cluster Computing-the Journal of

Networks Software Tools and Applications, 2019,

22: 13381-13386. https://doi.org/10.1007/s10586-

018-1915-7.

[10] Geng JQ, Piao XF, Qu YB, Song HH, Zheng KX:

Method for finding the important nodes of an

electrical power system based on weighted-SALSA

algorithm. IET Generation Transmission &

Distribution, 2019, 13: 4933-4941.

https://doi.org/10.1049/iet-gtd.2019.0424.

[11] Goel S, Kumar R: SoTaRePo: Society-Tag

Relationship Protocol based architecture for UIP

construction. Expert Systems with Applications,

2020, 141.

https://doi.org/10.1016/j.eswa.2019.112955.

[12] Gopalakrishnan T, Sengottuvelan P, Bharathi A,

Lokeshkumar R: An approach to webpage prediction

method using variable order markov model in

recommendation systems. Journal of Internet

Technology, 2018, 19: 415-424.

https://doi.org/10.3966/160792642018031902010.

[13] Guo HJ: Research on Web data mining based on

topic crawler. Journal of Web Engineering, 2021, 20:

1131-1143. https://doi.org/10.13052/jwe1540-

9589.20411.

[14] Inostrosa-Psijas A, Gil-Costa V, Marin M, Wainer G:

Semi-asynchronous approximate parallel DEVS

simulation of web search engines. Concurrency and

Computation-Practice & Experience, 2018, 30.

https://doi.org/10.1002/cpe.4149.

[15] Jovanovic M, Simic G, Cabarkapa M, Randelovic D,

Nikolic V, Nedeljkovic S, Cisar P: SEFRA - Web-

based framework customizable for serbian language

search applications. Acta Polytechnica Hungarica,

2019, 16: 59-78.

https://doi.org/10.12700/aph.16.3.2019.3.4.

[16] Jung J, Uejio CK, Duclos C, Jordan M: Using web

data to improve surveillance for heat sensitive health

outcomes. Environmental Health, 2019, 18.

https://doi.org/10.1186/s12940-019-0499-x.

[17] Kalantari KR, Ebrahimnejad A, Motameni H:

38 Informatica 48 (2024) 27–38 J. Ma

Efficient improved ant colony optimisation

algorithm for dynamic software rejuvenation in web

services. IET Software, 2020, 14: 369-376.

https://doi.org/10.1049/iet-sen.2019.0018.

[18] Kulshrestha J, Eslami M, Messias J, Zafar MB,

Ghosh S, Gummadi KP, Karahalios K: Search bias

quantification: investigating political bias in social

media and web search. Information Retrieval

Journal, 2019, 22: 188-227.

https://doi.org/10.1007/s10791-018-9341-2.

[19] Kumar KNA, Chitra S, Kumar TS: Probabilistic

classification techniques to perform geographical

labeling of web objects. Cluster Computing-the

Journal of Networks Software Tools and

Applications, 2019, 22: 277-285.

https://doi.org/10.1007/s10586-018-1822-y.

[20] Lu XY, Chen MS, Wu JL, Chang PC, Chen MH: A

novel ensemble decision tree based on under-

sampling and clonal selection for web spam

detection. Pattern Analysis and Applications, 2018,

21:741-754. https://doi.org/10.1007/s10044-017-

0602-2.

[21] Mahdi MN, Ahmad AR, Natiq H, Subhi MA,

Qassim QS: Comprehensive review and future

research directions on dynamic faceted search.

Applied Sciences-Basel, 2021, 11.

https://doi.org/10.3390/app11178113.

[22] Fan W, Pei J, Ding S, Pardalos PM, Kong M, Yang S.

A novel trust inference framework for web-based

scenarios harnessed by social network and web of

trust - a heuristic approach. Informatica, 2016,

27(2):405-432.

https://doi.org/10.15388/Informatica.2016.92.

[23] Mockus J. Bayesian heuristic approach to scheduling.

Informatica, 2002, 13(3):311-332. 10.3233/INF-

2002-13305.

[24] Malhotra D, Rishi OP: IMSS-P: An intelligent

approach to design & development of personalized

meta search & page ranking system. Journal of King

Saud University-Computer and Information

Sciences, 2022, 34: 248-263.

https://doi.org/10.1016/j.jksuci.2018.11.013.

[25] Rahman MM, Abdullah NA: A personalized group-

based recommendation approach for Web search in

e-learning. IEEE Access, 2018, 6: 34166-34178.

https://doi.org/10.1109/access.2018.2850376.

[26] Robertson S: A brief history of search results ranking.

IEEE Annals of the History of Computing, 2019, 41:

22-28. https://doi.org/10.1109/mahc.2019.2897559.

[27] Senthilkumar NC, Reddy CP: Collaborative search

engine for enhancing personalized user search based

on domain knowledge. Journal of Medical Systems,

2019, 43. https://doi.org/10.1007/s10916-019-1350-

1.

[28] Serrano W, Gelenbe E: The Random Neural

Network in a neurocomputing application for Web

search. Neurocomputing, 2018, 280: 123-134.

https://doi.org/10.1016/j.neucom.2017.08.075.

[29] Sung HY, Chi YL: A knowledge-based system to

find over-the-counter medicines for self-medication.

Journal of Biomedical Informatics, 2020, 108.

https://doi.org/10.1016/j.jbi.2020.103504.

[30] Wei CK, Gu QC, Ji SL, Chen WZ, Wang ZH, Beyah

R: OB-WSPES: A uniform evaluation system for

obfuscation-based Web search privacy. IEEE

Transactions on Dependable and Secure Computing,

2021, 18: 2719-2735.

https://doi.org/10.1109/tdsc.2019.2962440.

