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Table tennis requires high technical and tactical skills. The application of motion capture technology can 

improve athletes' training effectiveness and competition strategies. To further improve the collection and 

capture efficiency of table tennis sports data, a high-precision optical motion capture system, and inertial 

measurement unit sensors are first used to collect table tennis sports data. Data preprocessing is carried 

out using action windows and sliding windows. Secondly, a support vector machine classifier optimized 

with a Gaussian radial basis kernel function is used for training. The sample weights are updated based 

on the feature classification results in each iteration. Finally, the adaptive boosting algorithm is combined 

with it to propose a new type of table tennis motion capture model. The experimental results showed that 

the optimized model achieved the highest classification accuracy of 96% with the best kernel parameters 

and a normalization factor of 1.0. The model's motion capture errors ranged from 1.5% to 9.7% and had 

the shortest runtime of 7.66 seconds. In addition, the model achieved the highest capture accuracy of 

93%, 92%, 91%, and 90% for the four motions of forehand kill, forehand putt, backhand kill, and 

backhand putt, respectively. This demonstrates significant advantages in terms of accuracy and 

computational efficiency. Therefore, the proposed model not only improves the accuracy and efficiency 

of motion capture but also performs well in terms of resource consumption. This model has high practical 

application value and can provide a new reference for technological development in this field. 

Povzetek: Narejena je analiza gibanja pri namiznem tenisu z optimiziranimi algoritmi SVM in AdaBoos 

za namene analize igralnih tehnik ter treningov.

1 Introduction 
Table tennis is a sport that requires high technical and 

tactical skills. Athletes need to have quick reactions and 

precise hitting movements during competitions [1]. As 

technology advances, motion capture technology is 

gradually being applied to table tennis. This can be used to 

analyze athletes' technical movements, enhance training 

effectiveness, reduce injury risks, and refine competition 

strategies. By capturing athletes' hitting movements, 

various details of their movements can be analyzed in 

detail, including hitting angle, swing speed, body posture, 

etc. [2]. These data can help coaches and athletes identify 

deficiencies in their movements and make targeted 

improvements. Li et al. believed that traditional motion 

capture methods might be more time-consuming and less 

efficient in analyzing the rotation trajectory of table tennis 

balls. To this end, the research team proposed a novel table 

tennis motion capture method by combining spatial 

upsampling and reconstruction encoders with long short-

term memory networks. The table tennis movement 

trajectory under this method achieved an accuracy of 

96.5% and a prediction speed of 15 seconds [3]. Wu et al. 

proposed a novel table tennis pose estimation method to 

improve the processing effect of pose estimation 

technology in table tennis by combining graphics 

processor optimization and OpenPose. This algorithm 

performed well in estimating table tennis players’ posture 

in videos and was more feasible compared to before 

improvement [4]. Ren et al. explored a unique method of  

 

motion capture for table tennis players. After combining 

graph convolutional neural networks, they proposed a 

novel method for detecting incorrect postures and 

movements of table tennis players. This method performed 

well on a large number of existing datasets, with the 

highest accuracy of 96.4%. However, this method relied 

on a large amount of data for training. The initial data 

acquisition cost was relatively high [5]. Therefore, a large 

number of table tennis motion capture methods have 

demonstrated superior performance. However, there are 

still problems such as complex structure, large training 

quantity, difficulty in parameter adjustment, and the need 

to improve capture accuracy. Support Vector Machine 

(SVM) classifies data points by finding the optimal 

hyperplane in high-dimensional space, which can handle 

high-dimensional data and complex relationships. 

Adaptive Boosting (AdaBoost) generates a series of weak 

classification algorithms and then combines them 

according to certain rules to form a strong classification 

algorithm. In recent years, these two methods have been 

widely used in many motion capture scenarios. For 

example, Duan et al. added SVM to the built-in sensors of 

wearable devices. After data collection, classification and 

recognition were carried out to achieve the goal of 

capturing and recognizing human lower limb movements. 

The average recognition rate of this method after 10 cross-

validations was 97.01% [6]. Feradov et al. attempted to 

develop a baseline detector for automatically detecting 

incorrect sitting posture, which combined SVM and time-
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domain parameters for activity movement integrity 

assessment. The average recognition classification rate of 

this detector in sitting posture detection was 98.4% [7]. In 

addition, Ding et al. found that it was increasingly difficult 

to evaluate human activity status by identifying fine- 

Table 1: Comparison results of indicators for various methods. 

Algorithm Dataset 
Accuracy 

(%) 

Runtime 

(s) 
Key Limitation Reference 

Spatial 

Upsampling + 

LSTM Encoder 

Custom 

Table Tennis 

Motion 

Trajectory 

Dataset 

96.5 15.33 

Complex 

structure, high 

computational 

resource demand 

[3] 

OpenPose + 

GPU 

Optimization 

Video-

based Table 

Tennis Player 

Pose Estimation 

Dataset 

92.7 12.18 

Mainly 

applicable to video 

data, limited 

generalizability 

[4] 

Graph 

Convolutional 

Network 

Large-Scale 

Table Tennis 

Player Pose 

Dataset 

96.4 18.24 

Requires large 

amounts of training 

data, high initial data 

acquisition cost 

[5] 

SVM (for 

lower limb 

motion capture) 

Wearable 

Device Sensor 

Dataset 

97.1 10.03 

Limited to lower 

limb motion, 

restricted application 

scenarios 

[6] 

SVM + 

Temporal 

Parameters 

Posture 

Detection 

Dataset 

98.4 8.89 

Mainly for 

posture detection, 

limited motion 

capture types 

[7] 

AdaBoost + 

IoT Technology 

Human 

Activity 

Recognition in 

Corridor 

Environment 

Dataset 

96.6 14.17 

Depends on IoT-

based environment 

limitations 

[8] 

AdaBoost + 

Inertial 

Measurement 

Unit 

Arm 

Motion Dataset 
94.3 11.56 

Limited to arm 

motion, angular error 

of 1.1 degrees 

[9] 

 

grained channel state information. To this end, they 

proposed a human motion perception model by combining 

AdaBoost and Internet of Things technology. This model 

achieved an average recognition accuracy of 96% for 

human activities in corridor environments [8]. Zhu et al. 

developed a human arm motion model suitable for remote 

operation, which integrated AdaBoost and inertial 

measurement units. This method could capture the position 

and orientation information of the end of the arm for 

transformation regression modeling. This model 

demonstrated an average angle error of 1.1 degrees in arm 

motion capture during on-site experiments, demonstrating 

good capture performance [9]. The results of the 

comparison of the indicators for each method are shown in 

Table 1. 

In summary, existing table tennis motion capture 

methods have demonstrated good performance. However, 

there are also some shortcomings. The main problems 

include complex model structure, high computational 

resource requirements, large training data demands, and 

difficulty in parameter adjustment. To solve these 

problems, the study adopts a hybrid approach based on 

SVM and AdaBoost to improve the accuracy and 

efficiency of table tennis motion capture. First, the motion 

data are collected using a high-precision optical capture 

system and inertial measurement unit sensors. Then, the 

key feature vectors are generated by data preprocessing. 

Subsequently, a Gaussian Radial Basis Function (GRBF)-

optimized SVM is employed for preliminary 

classification. Thereafter, the sample weights are 

adaptively adjusted by the AdaBoost algorithm to enhance 

the overall performance of the classifier, thereby 

facilitating efficient table tennis motion capture. The 

research innovation lies in the combination of SVM and 

AdaBoost. This significantly improves motion capture 

models’ classification accuracy, reduces computational 

resource requirements, and enhances model robustness. 

The research contribution lies in providing more precise 

and efficient training tools for table tennis players, while 
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promoting the application and development of motion 

capture technology in sports. 

2 Methods and materials 
The study first uses high-precision optical motion capture 

systems and inertial measurement unit sensors to record 

athletes' swing motion data to improve the accuracy and 

efficiency of table tennis motion capture. Key feature 

vectors are generated through denoising, standardization, 

and feature extraction. Secondly, the sliding window 

technique is utilized to segment these data and extract 

segments containing swinging movements. Then, by 

initializing the sample weights, a GRBF-optimized SVM 

classifier is utilized to train these data. The sample weights 

are updated based on the classification results in each 

iteration. Finally, a table tennis motion capture model that 

integrates SVM and AdaBoost is proposed. 

2.1 Table tennis sports data collection and 

preprocessing 

In table tennis, data collection and preprocessing are key 

steps in achieving efficient motion capture and accurate 

analysis. To ensure the accuracy and consistency of the 

collected data, a high-precision optical motion capture 

system OptiTrack Prime 13 is studied. This system is 

equipped with 12 cameras with a resolution of 1280×1024 

pixels, a frame rate of 240 frames per second, a capture 

accuracy of less than 0.5 millimeters, and a working range 

of 5m×5m×3m [10-11]. In addition, the inertial 

measurement unit sensor Xsens MVN Awinda is utilized 

to supplement data acquisition. This sensor consists of 17 

units, with a gyroscope range of ±2000 degrees per second, 

an accelerometer range of ±16G, a magnetometer range of 

±8 Gauss, and a data transmission rate of 100 Hz [12-13]. 

The high-speed camera Phantom VEO 640S has a 

resolution of 2560×1600 pixels, a frame rate of 1000 

frames per second, and an exposure time of 1 microsecond. 

To standardize the collection of table tennis movements, 

two types of grip methods have been defined in Figure 1. 

Figure 1 (a) is a schematic diagram of the first type of table 

tennis racket grip posture. Figure 1 (b) is a schematic 

diagram of the second type of table tennis racket grip 

posture. The area below the grip of a table tennis racket is 

defined as the original point. Space is established along 

three axes. When the X-axis points towards the inside of 

the hand, it is defined as the first type of grip. When the X-

axis points to the outside of the hand, it is defined as the 

second type of grip. Repeated data collection is conducted 

on commonly used basic actions. After completion, to 

enhance the action analysis accuracy and efficiency, the 

study introduces action windows and sliding windows for 

data processing and analysis. Compared to other methods, 

action windows and sliding windows have simpler 

operations, richer detail capture, and higher accuracy in 

action processing [14]. Figure 2 shows the segmentation of 

the action window and sliding window. 

Figure 2 (a) shows the data segmentation of the action 

window. Figure 2 (b) shows the data segmentation of the 

sliding window. In Figure 2 (a), the sample point between 

the two data peaks is labeled as an action. The peak point 

is the hitting point. According to this logic, the data  

(a) Grip mode 1 (b) Grip mode 2

X

Y

Z
Z

Y

X

 

Figure 1: Schematic diagram of the two types of grips. 
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Figure 2: Segmentation of the action window and sliding window. 

 

sampling frequency is set to 50Hz. After multiple data 

collections, 30 sets of window data are established with a 

ping pong swing action of 0.7 seconds. The first 14 groups 

are one segment, the 15th group is the hitting point, and 

the last 15 groups are the second segment. In Figure 2 (b), 

the swinging motion of table tennis has discontinuity. 

Therefore, real-time data are captured using a sliding 

window, that is, window data are captured before and after 

the hitting point. To classify table tennis movements more 

accurately, this study introduces a MeACC threshold for 

acceleration to make judgments. The acceleration 

judgment is represented by equation (1) [15]. 

 

 

3

1 1

1 n

ij

i j

Accelerations x
n = =

=   (1) 

 

In equation (1), ijx  refers to the data in row i  and 

column j . Accelerations  refers to the judgment criteria. 

n  refers to window specifications. The criterion for 

determining angular velocity is represented by equation 

(2). 
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In equation (2), varS  refers to the criterion for 

determining angular velocity. i  refers to the angular 

velocity value of the i th data. x , y , and y  refer to 

the angular velocities of the x , y , and z , respectively. 
  refers to the sum of angles in three directions. If the 

acceleration of the window data is greater than MeAcc , 

the data in the window are defined as the hitting action. On 

the contrary, it is a non-hitting action. In addition, if the 

angular velocity of the window data is greater than varS , 

it is also defined as a hitting action. On the contrary, it is a 

non-hitting action. Through the above methods, the real-

time collected table tennis movement data have been 

reasonably divided. This not only improves the 

effectiveness of the original table tennis motion data, but 

also facilitates subsequent motion capture and recognition. 

This can improve the training quality and competition 

performance of table tennis players. 

2.2 Table tennis swing action classification 

based on SVM 

After collecting and optimizing table tennis movements 

data through windowing preprocessing, this study attempts 

to introduce SVM to recognize and classify different table 

tennis swing postures. Table tennis is a sport that requires 

extremely high technical and tactical skills, covering a 

variety of basic movements. At present, there are many 

basic movements in table tennis, including serving, 

receiving, pulling, dunking, drawing, blocking, chopping, 

rubbing, etc., as well as comprehensive movements such 

as side pulling, picking, and rotation control [16-17]. To 

reduce the dimensionality of the data and facilitate 

subsequent action analysis, the study only considers the 

frequent use of forehand kills, forehand pushes, backhand 

kills, and backhand pushes. When faced with such high 

requirements for sports action classification, SVM 

performs well in handling high-dimensional data and small 

sample datasets compared to traditional classification 

methods, which has strong generalization ability [18-19]. 

Figure 3 is a schematic diagram of a linearly separable 

SVM [20]. 

In Figure 3, a simple dataset is divided into two 

categories by a dashed line: a red circular dataset and a 

blue square dataset. This dashed line is the decision 

boundary of SVM. The data points closer to the decision 

boundary are called support vectors. To define this 

decision boundary, generally, two parallel lines with 

intervals of 1d  and 2d  are chosen. By infinitely 

differentiating these two lines, the most realistic decision 

boundary is approximated. This process is represented by 

equation (3). 

 

{( , ) 1,2, , }, , {1, 1}D x y i n x R yi i i i= =   −  (3) 
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In equation (3), D  refers to a complete dataset. ix  

and iy  correspond to two 2D data points on the dataset. 

The calculation for correctly classifying the dataset into 

straight lines is represented by equation (4). 

 

 0wx b+ =  (4) 

 

In equation (4), both w  and b  belong to the weights 

and biases of the samples in the given dataset. x  

represents the feature space. At this point, the two parallel 

lines and the decision boundary’s distance is represented 

by equation (5). 

 

 

1
1

2
2
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 (5) 

 

The related variables in equation (5) are explained in 

a consistent manner. However, for problems that cannot be 

classified by a 2D straight line, they need to be mapped to 

a high latitude environment before classification. This 

method generally converts data from low latitudes to high 

latitudes in the form of vector points. Figure 4 is a 

schematic diagram of a linearly inseparable SVM [21-22]. 

In Figure 4, SVM can map 2D data to 3D space. In 

high-dimensional environments, data are easier to 

separate, effectively partitioning the original data. 

However, this process usually requires the assistance of 

kernel functions. Choosing the appropriate kernel function 

can improve mapping and classification efficiency as well 

as reduce computational complexity. Therefore, in 

calculations, the focus should be on the kernel function 

rather than the mapping itself. Common kernel functions 

include linear kernel, polynomial kernel, GRBF, and 

Sigmoid kernel [23-24]. Considering the diverse types and 

complex characteristics of table tennis swing movements, 

combined with the sample size, a new model for 

classifying table tennis swing movements is proposed by 

combining SVM with GRBF. Figure 5 shows the model 

operation process. 

In Figure 5, the entire process includes 6 steps. Firstly, 

initial data are collected. Various sensors and camera 

devices are utilized to record the raw data of table tennis 

H
H1

H2

d1

d2

 

Figure 3: Schematic diagram of linearly separable SVM. 

Separating 

hyperplane

Line dimension 

improvement

 

Figure 4: Schematic diagram of linearly inseparable SVM. 
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Figure 5: Flowchart of the new table tennis swing movement classification model. 

swing movements. Then, sliding window technology is 

utilized to segment the collected data and extract segments 

containing swinging movements. Thirdly, the hitting point 

is determined and the corresponding swing data are 

captured. Next, these action data are preprocessed, noise is 

removed, and these data are standardized. Then the 

features of these preprocessed data are extracted to 

generate feature vectors for classification. Finally, the 

feature vectors are input into the trained SVM model for 

classifying swing actions. The acceleration and angle 

characteristics of table tennis swing during this period are 

represented by equation (6). 

 

 

2 2 2

2 2 2

( ) ( ) ( )
( ) ( , , )

( )
( ) arctan( )

( )

d x t d y t d z t
A t

dt dt dt

y t
t

x t



=



 =


 (6) 

In equation (6), ( )A t  refers to the acceleration vector 

at time t . ( )t  refers to the racket angle at time. In 

addition, the classification decisions of GRBF and SVM 

are represented by equation (7). 
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In equation (7), both ux  and rx  refer to the input 

feature vectors. u rx x−  refers to the Euclidean distance 

between two vectors.   refers to a kernel parameter that 

can control the width of the kernel function. 'b  refers to a 

bias term. i  stands for Lagrange multiplier. ( ),u rK x x  

stands for GRBF. 'y  refers to category labels that 

Weighting Train
The classifier updates the 

weights by the error rate

Force learning 

device 
N samples

Update of weights

Update of weights

 

Figure 6: Schematic of how the AdaBoost algorithm works. 

 

correspond to different swing movements, such as 

forehand pull and backhand pull. 

2.3 Construction of table tennis motion 

capture model integrating SVM and 

AdaBoost algorithm 

After classifying the swing posture of table tennis using 

SVM with GRBF, the study further introduces AdaBoost 

to enhance the motion capture effect. Boosting is a 

machine learning ensemble meta-algorithm that 

transforms weak learners into strong learners. Compared 

to other methods, AdaBoost has the advantage of 

adaptively adjusting sample weights and combining 

multiple weak classifiers in table tennis motion capture. 

This significantly improves classification accuracy and 

model robustness [25-26]. Its ability to automate feature 

processing and reduce overfitting makes it particularly 

suitable for handling high-dimensional and complex table 
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tennis motion data. Figure 6 shows the principle of 

AdaBoost [27-28]. 

In Figure 6, starting from the initial dataset, each 

sample is assigned the same weight. Then the separator 

training, classification testing, and weight updating are 

repeated. After repeated multiple times, a new weak 

classifier is generated in each round [29-30]. Ultimately, 

the AdaBoost combines the weighted voting results of all 

weak classifiers to form a strong classifier, thereby 

improving the overall classification accuracy. The 

classification error is represented by equation (8). 

 

 1 ( ( ))N

e e e e e iw I y h x==  ò  (8) 

 

In equation (8), eò  refers to the weak classifier e ’s 

classification error. ew  refers to the i th sample’s weight. 

( ( ))e e iI y h x  refers to the indicator function, which is 1 

when ey  is not equal to ( )e ih x . Otherwise, it is 0. ey  

refers to e ’s actual category. ( )e ih x  refers to e 's 

prediction result for the i th sample. At this point, the 

weights of the weak classifier are represented by equation 

(9). 

 
11

ln( )
2 e

e

ew
−

=
ò

ò
 (9) 

In equation (9), ew  increases as eò  decreases, 

indicating that the classifier’s error rate is smaller and its 

proportion in the final classifier is larger. The weight 

update is represented by equation (10). 

 

 1 exp( ( ))e

e e e i

e

w
w y h x

Z
+  −  (10) 

In equation (10), eZ  refers to a normalization factor. 

1ew +  refers to a weight value updated after 1e+  times. 

After combining SVM with AdaBoost, the weight 

adjustment needs to be incorporated into optimization, 

represented by equation (11). 

 

1 1 1( ) (
1
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In equation (11), ( )L   represents a Lagrangian 

function. The final classifier after adding the sign function 

is represented by equation (12). 
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In equation (12), ( )g x  refers to a classifier composed 

of multiple weak classifiers combined. The combination of 

SVM and AdaBoost can adaptively adjust sample weights 

and enhance attention to difficult to classify samples. SVM 

is combined with AdaBoost for motion capture in table 

tennis. The adaptive weighting mechanism of AdaBoost 

and the powerful classification ability of SVM are utilized. 

A strong classifier is formed by combining multiple SVM 

weak classifiers and applied to the motion capture of table 

tennis. Figure 7 shows the model process. 

In Figure 7, the entire table tennis motion capture 

includes three major modules, namely data acquisition and 

preprocessing, feature extraction and SVM training, as 

well as AdaBoost optimization and classification. Firstly, 

high-precision motion capture systems and inertial sensors 

are utilized to record table tennis players’ swing motion 

data. Secondly, the collected data are denoised, 

standardized, and feature extracted to generate feature 

vectors for classification. These feature vectors include 

key features such as position, velocity, acceleration, and 

angle. Then, these sample data weights are initialized. In 

each iteration, an SVM classifier is trained using the 

GRBF 
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Sample weights 

update
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SVM classifiersGrip mode2
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Figure 7: SVM-AdaBoost table tennis ball motion capture modeling process. 

 

current sample weight ew . GRBF and related parameters 

are selected for classifier performance optimization. After 

completion, these sample weights are updated based on the 

weak classifier’s weights and the classification results. 
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After repeating multiple times, multiple SVM weak 

classifiers are trained until the predetermined number of 

weak classifiers or classification error meets the 

requirements. 

3 Results 
The study first established a suitable experimental 

environment to validate the new table tennis motion 

capture model. Secondly, the optimal parameters, namely 

kernel parameters and gauge factors, were determined. 

Ablation testing and comparative testing of similar 

methods were conducted. In addition, several types of 

basic table tennis movements were randomly selected for 

simulation testing. Quantitative and visual methods were 

utilized for comparative verification. The results show: 

- Classification accuracy: the classification accuracy 

of the proposed model was studied up to 96% on the Table 

Tennis Stroke Dataset (TTSD) and 95.13% on the Table 

Tennis Trajectory Dataset (TTTD). 

- Running time: The running time of the proposed 

model was 7.66 seconds on the TTSD dataset and 8.15 

seconds on the TTTD dataset, which is significantly faster 

than the other compared models. 

- Memory usage: The memory usage of the proposed 

model was studied to be 120MB and 125MB on TTSD and 

TTTD datasets respectively, which shows a high 

efficiency of resource utilization. 

- Robustness: The motion capture errors of the 

proposed model ranged from 1.5% to 9.7% under different 

noise conditions, which outperforms other models such as 

SVM-KPCA and AdaBoost-RF.  

- Multi-metric performance: The Precision, Recall, 

and F1 values of the proposed model were 95.79%, 

94.58%, and 95.18% on the TTSD dataset, and 92.69%, 

91.35%, and 92.02% on the TTTD dataset, respectively. 

- Specificity: The specificity of the proposed model 

reached 92.75% in the TTSD dataset and 90.34% in the 

TTTD dataset, both of which are better than the other 

compared models. 

- Real-time application potential: The performance of 

the proposed model in real-time sports training and motion 

capture analysis was outstanding. It is suitable for 

providing fast and accurate feedback in real-time 

scenarios. 

3.1 Performance testing of table tennis 

motion capture model 

The CPU used in this experiment is Intel Xeon Gold 6230, 

2.1 GHz, with 20 cores. The GPU is NVIDIA Tesla V100, 

32 GB. The operating system is Ubuntu 20.04 LTS. The 

software environment is Python 3.8. GRBF’s kernel 

parameter is 0.1. The maximum iteration is 1000 times. 

The weak classifier’s iteration is 50 times. The learning 

rate is 0.005. The TTSD and TTTD are utilized as 

experimental test data sources. TTSD is a high-quality 

dataset containing various table tennis movements, mainly 

used for action recognition and classification research. 

This dataset contains 5000 table tennis action samples, 

covering common actions such as serving, dribbling, and 

dunking. TTTD is a dataset focused on table tennis 

trajectory analysis, widely used in sports science and 

computer vision research. This dataset contains 3000 table 

tennis trajectory samples, covering various hitting actions 

and rotation effects. The study first utilizes classification 

accuracy as an indicator to test the model performance 

under different kernel parameters   and normalization 

factors eZ  to determine the optimal hyperparameter 

values. Figure 8 shows the test results. 

Figure 8 (a) shows the model components under 

different  . Figure 8 (b) shows the model components 

under eZ . In Figure 8, as the test samples increase,   is 

not necessarily bigger. On the contrary, the model 

performs the best in classification performance when   is 

1.0, with a maximum classification accuracy of 96% and  
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Figure 8: Comparison of model performance tests with different kernel parameters and specification factors. 
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Figure 9: Motion capture models’ ablation test results. 

only 230 iterations. In addition, eZ  is similar to  , with 

the highest classification performance of 96% and 190 

iterations at 1.0. Upon investigation, both   and eZ  

control the influence range of a single training sample. The 

larger these values, the smaller the sample’s influence 

range, making the model more complex and prone to 

overfitting. The smaller these values, the larger the 

sample’s influence range, and the simpler this model will 

become, which is prone to underfitting. Therefore, the 

study selects 1.0 GG and 1.0 HH as fixed parameters for 

subsequent experimental testing. The study continues to 

validate the proposed new motion capture model through 

ablation testing, with training time as the indicator. Figure 

9 shows the measurement results. 

Figure 9 (a) shows the ablation test results of the 

motion capture model under TTSD. Figure 9 (b) shows the 

ablation test results of the motion capture model under 

TTTD. The influence of each component on the overall 

performance is determined by comparing the models with 

varying configurations, such as SVM without AdaBoost 

and SVM with distinct kernel functions, as illustrated in 

Figure 9. The SVM-GRBF-AdaBoost model achieves a 

classification accuracy of 97% after about 180 iterations 

and remains stable. In contrast, the SVM and AdaBoost 

models has lower classification accuracy and slower 

convergence. Meanwhile, when only SVM is used and 

AdaBoost is not combined, the classification accuracy 

decreases significantly. This indicates the importance of 

AdaBoost in dealing with difficult-to-classify samples and 

improving model robustness. In addition, the optimization 

improvement of each module in the SVM-GRBF-

AdaBoost model is crucial and valuable. For example, the 

GRBF kernel function is selected for optimization in SVM, 

which improves the classification accuracy of SVM from 

a maximum of 85% to nearly 90%. The study continues to 

introduce methods similar to SVM and AdaBoost to 

explore the motion capture errors changes of various 

algorithms under different noise environments. They 

include Support Vector Machine-Kernel Principal 

Component Analysis (SVM-KPCA), Support Vector 

Machine-Genetic Algorithm (SVM-GA), and Adaptive 
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Figure 10: Motion capture error test results under different noise interference. 
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Table 2: Multi-metric test results for different algorithms. 

Data 

set 
Algorithm P/% R/% F1/% 

Average 

accuracy/% 

Running 

time/s 

TTSD 

SVM-KPCA 88.21 85.83 87.02 87.11 12.34 

SVM-GA 91.27 90.19 90.73 91.28 15.67 

AdaBoost-RF 93.86 92.14 93.03 92.36 10.45 

Our model 95.79 94.58 95.18 96.25 7.66 

TTTD 

SVM-KPCA 86.44 82.37 84.45 84.77 13.29 

SVM-GA 85.41 87.56 86.48 88.96 16.58 

AdaBoost-RF 91.32 91.28 91.37 91.32 11.34 

Our model 95.07 93.22 94.14 95.13 8.15 

Boosting-Random Forest (AdaBoost-RF). Figure 10 

shows the test results. 

Figure 10 (a) shows the motion capture error under 

SVM-KPCA. Figure 10 (b) shows the motion capture error 

under SVM-GA. Figure 10 (c) shows the motion capture 

error under AdaBoost-RF. Figure 10 (d) shows the motion 

capture error under the proposed method. As the 

proportion of noisy data continues to increase, there is 

some interference in the actual motion capture 

performance of various methods, especially SVM-KPCA 

and AdaBoost-RF. These two methods exhibit significant 

fluctuations in motion capture errors under different noise 

interference, with the highest capture error being 13% and 

the lowest being only 2%. These results indicate that these 

methods’ performance is easily affected and their 

robustness is poor in strong interference environments. 

Although the SVM-GA’s performance has improved and 

the capture errors have significantly reduced, the overall 

motion capture error is still relatively large. Relatively 

speaking, the proposed method has a smaller range of 

motion capture errors, with a maximum error of only 9.7% 

and a minimum error of 1.5%. Therefore, the proposed 

method has demonstrated certain functional superiority 

and stability among these existing similar methods. The 

study conducts tests using Precision (P), Recall (R), F1, 

average accuracy, and running time as indicators for action 

classification. Table 2 shows the test results. 

From Table 2, the proposed model performs well on a 

number of performance metrics, especially on the TTSD 

and TTTD. Its F1 values reach 95.18% and 92.02%, 

respectively, indicating that the model maintains a good 

balance between precision and recall. Meanwhile, the 

precision and recall of the proposed model reach 95.79% 

and 94.58% on TTSD, and 92.69% and 91.35% on TTTD. 

This further proves that the new model not only accurately 

classifies most of the samples but also efficiently identifies 

all the positive class samples. In addition, the running time 

of the research model in the TTSD is 7.66 seconds, while 
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Figure 11: Different motion capture accuracy tests for different models.

the running time of other models such as AdaBoost-RF and 

SVM-GA is 10.45 seconds and 15.67 seconds, 

respectively, which is significantly longer. This indicates 

that the research model has a significant advantage in 

processing speed. This high efficiency makes the research 

model particularly suitable for live sports training and real-

time motion capture analysis, providing athletes and 

coaches with fast and accurate feedback to enhance 

training effects and game strategy development. In 

contrast, other models perform slightly less well in these 

metrics, especially in specificity and memory usage. The 

research model shows higher efficiency and stability. 

These results suggest that the proposed model has a 

significant advantage in classification performance, 

especially when dealing with unbalanced datasets. 
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3.2 Simulation testing of table tennis motion 

capture model 

Multiple simulation tests are conducted on TTSD and 

TTTD to validate the performance of the new table tennis 

motion capture model in real-world scenarios. These tests 

include capturing and analyzing different table tennis 

movements, covering common actions such as serving, 

receiving, pulling, smashing, drawing, are utilized for 

recording. The average duration, resolution, frame rate, 

acceleration range, and angular velocity range are 

optimized according to the actual needs. To reduce the 

dimensionality of the test data, the study randomly selects 

four actions: forehand kill, forehand push, backhand kill, 

and backhand push. More advanced models are introduced 

for comparison, such as Pose Estimation-based Motion 

Capture (PEMC), Optical Flow-based Motion Capture 

(OFMC), and Spatio-Temporal Graph Convolutional 

Network (ST-GCN). Figure 11 shows the test blocking, 

chopping, and rubbing. Table 3 shows the data collection 

and related parameters for each action. 

In Table 3, to ensure the accuracy and consistency of 

the data, the data samples for each action are set to 500. 

High precision capture devices such as OptiTrack Prime 

13, Xsens MVN Awinda, and Phantom VEO 640S results.  

Figure 11 (a) shows the capture accuracy of four table 

tennis movements by different models under TTSD. 

Figure 11 (b) shows the capture accuracy of four table 

tennis movements by different models under TTTD. In the 

forehand and backhand kill movements, the proposed 

model has the highest capture accuracy, reaching 93% and 

91% respectively. PEMC has the lowest capture accuracy 

among these actions, at 83% and 71% respectively. The 

new model’s capture accuracy for forehand and backhand 

push movements reaches 78% and 90%, respectively. In 

contrast, other models have relatively lower capture 

accuracy in these actions. Especially in the forehand push 

and backhand kill movements, PEMC's capture accuracy 

is only 66% and 71%, respectively. Overall, this new 

model has high capture accuracy in various movements, 

demonstrating its potential for application in table tennis 

motion capture, especially in forehand and backhand kills. 

However, PEMC performs relatively poorly and has lower 

capture accuracy. Although OFMC performs relatively 

stable in different movements, its overall capture accuracy 

is slightly lower than the proposed model’s. The study 

visually verifies different methods’ motion capture results 

through chaos testing in Figure 12. 

Figure 12 (a) shows the visualization results of four 

types of motion capture for PEMC. Figure 12 (b) shows 

the visualization results of four types of motion capture for 

OFMC. Figure 12 (c) shows the visualization results of 

four types of motion capture for ST-GCN. Figure 12 (d) 

shows the visualization results of four types of motion 

capture for this proposed model. There is a significant 

overlap in the distribution of PEMC's capture results, 

especially in the blurred boundary between forehand and 

backhand kills, resulting in low accuracy. OFMC’s capture 

results have improved compared to PEMC. However, 

there is still a certain degree of motion confusion, 

especially in the low distinction between backhand push 

and backhand kill. ST-GCN’s capture results are 

significantly better than the first two methods, and the 

distribution of each action is clearer. However, there is still 

some overlap between the forehand and backhand push 

movements. In contrast, the proposed model has a 
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Figure 12: Motion capture visualization results for different methods. 
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Table 4: Multi-metric test results for different models. 

Data 

set 
Algorithm 

M

AE 

MS

E 

RMS

E 
Memory usage/MB 

Specificity/

% 

TTSD 

PEMC 
0.1

5 
0.03 0.17 150 85.32 

OFMC 
0.1

4 
0.02 0.14 140 87.45 

ST-GCN 
0.1

3 
0.02 0.14 135 89.23 

Our model 
0.1

0 
0.01 0.10 120 92.75 

TTTD 

PEMC 
0.1

7 
0.03 0.18 160 82.47 

OFMC 
0.1

6 
0.03 0.17 150 85.64 

ST-GCN 
0.1

4 
0.02 0.15 145 87.98 

Our model 
0.1

1 
0.01 0.11 125 90.34 

significant advantage in capturing results with high 

accuracy. These four actions’ distribution is very clear, 

with almost no overlap. The boundaries between each type 

of action are distinct. This indicates that the proposed 

model has high recognition and accuracy in capturing table 

tennis movements, which can better distinguish different 

movements. Finally, the study conducts tests using Mean 

Absolute Error (MAE), Mean Squared Error (MSE), Root 

Mean Squared Error (RMSE), memory usage, and 

specificity as indicators. Table 4 shows the test results. 

In Table 4, the proposed model outperforms other 

algorithms in all metrics on both TTSD and TTTD. 

Specifically, this new model has MAE, MSE, and RMSE 

of 0.10, 0.01, and 0.10 on TTSD, with a memory usage of 

120 MB and a specificity of 92.75%. The MAE, MSE, and 

RMSE on TTTD are 0.11, 0.01, and 0.11, respectively, 

with a memory usage of 125 MB and a specificity of 

90.34%. In contrast, other algorithms have shown certain 

shortcomings in these indicators, especially in terms of 

specificity and memory usage, which are significantly 

different from the proposed model. This indicates that the 

proposed model not only performs well in accuracy and 

robustness, but also is more efficient in resource 

consumption, making it suitable for widespread promotion 

in practical applications. 

4 Discussion 
The study proposes a novel table tennis motion capture 

model by combining SVM with AdaBoost, and 

experimentally verifies its significant advantages in terms 

of classification accuracy and computational efficiency. 

Compared with the model proposed by Li et al., which 

combines spatial sampling reconstruction encoder with 

LSTM, the new model achieves a classification accuracy 

of 96%. Although the two are similar in accuracy, the 

running time of the new model is significantly reduced to 

7.66 seconds, while the latter requires 15 seconds. This 

result is attributed to the effective combination of SVM 

and AdaBoost, which improves the robustness and 

adaptability of the classifier by dynamically adjusting the 

sample weights, especially when dealing with complex 

ping-pong actions. In addition, the pose estimation 

algorithm based on OpenPose and GPU optimization 

proposed by Wu et al. performs well in video data. 

However, its 92.7% accuracy and limitations mainly 

applied to video data limit its generalization ability in real 

table tennis motion capture. In contrast, in this study, 

TTSD and TTTD are used for training and testing in the 

selection of datasets to further validate the applicability 

and robustness of the model for the characteristics of table 

tennis movements. The two datasets cover a rich variety of 

table tennis movement types. Especially in noisy 

environments, the new model significantly reduces the 

error range when dealing with high noise and complex 

backgrounds through the powerful classification ability of 

SVM and the adaptive sample weight adjustment of 

AdaBoost, while maintaining high accuracy in motion 

capture. Its motion capture error range is 1.5% to 9.7%, 

which is significantly lower than other models. Other 

studies, such as that conducted by Li W in 2023, which 

employed a CNN-LSTM combined with a PCA 

optimization algorithm for lower limb motion prediction, 

encountered overfitting issues in noisy environments. 

However, the model demonstrated satisfactory 

performance on clean datasets [31]. In contrast, the test 

results of the proposed model on multiple datasets show 

that it is more robust in dealing with different complex 

scenarios. In summary, the study develops a model that can 

effectively capture table tennis movements by combining 

SVM and AdaBoost algorithms, especially performing 

well under noise interference. Compared with other 

methods, the new model has significant advantages in 

terms of accuracy, efficiency, and robustness, which 

provides new references and ideas for future sports motion 

capture technology. 
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5 Conclusion 
The rapid development of artificial intelligence and big 

data technology has gradually made table tennis training 

and competition more technological and intelligent. 

However, the existing motion capture technology for table 

tennis is affected by factors such as the field, environment, 

and other non-objective factors, whose accuracy and 

efficiency need to be improved. To this end, a motion 

capture model that integrates SVM and AdaBoost is 

developed. When both   and eZ  were 1.0, the model 

performed the best in classification performance, with a 

maximum classification accuracy of 96%. In TTSD and 

TTTD, the shortest iteration of the proposed model was 

180 times, and the highest classification accuracy was 

97%, which remained stable. In contrast, SVM and 

AdaBoost had lower classification accuracy and slower 

convergence speed. In addition, the proposed method had 

a smaller range of motion capture errors, with the highest 

value being only 9.7% and the lowest value being 1.5%, 

which was about 3.3% lower compared to SVM alone. 

After multiple repeated tests, its highest P, R, F1, average 

accuracy, and shortest running time were 95.79, 94.58%, 

95.18%, 96.25%, and 7.66 seconds, respectively. 

Compared with PEMC, OFMC, and ST-GCN, the 

proposed model had the highest capture accuracy of 93%, 

92%, 91%, and 90% for the four movements of forehand 

kill, forehand push, backhand kill, and backhand push, 

respectively. In the visualization results, the proposed 

model had a very clear capture distribution for the four 

actions, with almost no overlap. The boundaries between 

various actions were clear. The minimum MAE, MSE, 

RMSE, and memory usage were 0.10, 0.01, 0.10, and 

120MB, respectively, with the highest specificity of 

92.75%. In summary, the model that integrates SVM and 

AdaBoost has significant advantages in the accuracy and 

efficiency of motion capture. This method can provide 

more accurate training data for table tennis players, 

improving their training effectiveness and competition 

performance. However, this study only tested a few 

common table tennis movements. Although existing 

TTSD and TTTD are sufficient to validate the performance 

and robustness of the model, future work can be further 

expanded. Considering expanding to more action types, 

future research can use larger datasets to test the model's 

generalization and robustness. 
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