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Image denoising aims to remove noise from contaminated images. With the increasing complexity of noise 

in real-world scenarios, current denoising methods struggle to effectively address this challenge. This 

paper proposes a Multi-Scale Transformer Network (MST-Net) for image denoising. First, we introduce 

a novel multi-scale patch embedding strategy. In this process, noisy images are divided into patches of 

varying scales to capture multi-scale features. Second, we propose a Hierarchical Local-Global Attention 

(HLGA) mechanism in MST-Net. The proposed HLGA initially produces local attention within each scale, 

which is then integrated with global attention to generate the final attention map. Consequently, our MST-

Net can capture long-range dependencies at multiple scales, effectively reducing complex noise in the 

denoising process. Additionally, we introduce a cross-scale feature fusion module to enhance information 

integration across different scales. Extensive experiments on standard benchmarks, including Set12, 

BSD68, CBSD68, and Urban100 datasets, demonstrate that the proposed MST-Net achieves state-of-the-

art performance. Specifically, MST-Net outperforms existing methods by up to 0.17 dB PSNR 

improvement on Set12 and 0.15 dB on BSD68 at higher noise levels (σ=75). Moreover, on color image 

datasets, MST-Net shows consistent enhancements, achieving up to 0.13 dB PSNR gain on Urban100. 

These results highlight the effectiveness of MST-Net in handling diverse noise patterns while maintaining 

a balance between computational efficiency and denoising performance. The proposed approach offers a 

practical solution for real-world image denoising applications. 

Povzetek: Za odpravo šuma na slikah je bila uporabljena metoda Multi-Scale Transformer Network (MST-

Net) s hierarhično lokalno-globalno pozornostjo.

1 Introduction 
Image denoising aims to recover high-quality images from 

their noisy observations. This task is inherently 

challenging due to its ill-posed nature: multiple possible 

denoised images can correspond to a single noisy input, 

making it difficult to determine the true underlying clean 

image. Traditional methods, such as nonlocal means [1], 

leverage the self-similarity within images to enhance 

denoising performance by utilizing internal image-

specific information [2]. These nonlocal methods capture 

correlations between nonlocal self-similar (NSS) blocks, 

thereby improving image denoising outcomes. 

With the rapid advancement of deep learning, various 

denoising methods based on convolutional neural 

networks (CNNs) [3], Transformer architectures [4], and 

graph convolutional networks (GCNs) [5] have emerged. 

These methods learn mappings between noisy and clean 

images using external training data, capturing various 

priors to enhance denoising performance. CNN-based 

approaches exploit local receptive fields to learn spatially 

invariant features. In contrast, Transformer-based methods 

leverage self-attention mechanisms to capture long-range 

dependencies. GCNs utilize graph structures to model  

 

relationships between image pixels or patches. 

Despite significant progress, deep learning-based 

approaches often struggle with the complex nature of 

noise present in real-world images. This complexity can 

hinder their ability to effectively remove noise and restore 

clean images. Additionally, while CNNs and Transformers 

have shown promising results, they may not fully exploit 

the multi-scale and contextual information inherent in 

images. The increasing severity of noise in noisy images 

poses a significant challenge for current deep denoising 

methods, which still cannot satisfactorily remove noise 

and recover clean images. Therefore, these methods need 

further exploration and improvement to address 

limitations in handling diverse and complex noise patterns. 

Although conventional CNNs [6, 7] have 

demonstrated effectiveness in image denoising tasks, they 

often struggle to capture long-range dependencies and 

non-local self-similar (NSS) features effectively. 

Transformer-based methods [8] have been introduced to 

address this limitation by leveraging self-attention 

mechanisms to capture long-range dependencies. 

However, these approaches still face significant 

challenges in the context of image denoising. 

Transformer-based methods [9] for image denoising 
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typically treat the noisy image as a sequence of image 

patches. They aggregate these patches through self-

attention mechanisms to remove noise from a structure-

level perspective. This approach allows for the extraction 

of significant structure-level features, as evidenced by the 

feature maps generated by these methods. The self-

attention mechanism effectively mixes image patches, 

enabling the capture of long-range dependencies and 

global context information. 

However, this focus on structure-level features comes 

at a cost. Due to the emphasis on patch-level processing, 

Transformer-based methods often lack sufficient 

representation of pixel-level features. This deficiency is 

evident in the generated feature maps, where lines and 

contours appear weak. As a result, the reconstructed 

denoised images may exhibit smeared textures, 

compromising the fine-grained details and local structures 

essential for high-quality image restoration. While the 

self-attention mechanism is powerful in capturing global 

dependencies, it may overlook the refinement of pixel-

level features necessary for preserving intricate textures 

and sharp edges in the denoised output. 

Furthermore, the patch-based approach of 

Transformer models may struggle to handle noise patterns 

occurring at scales smaller than the chosen patch size. This 

can lead to artifacts or inconsistencies in the denoised 

image, particularly at patch boundaries or in regions with 

high-frequency details. The fixed patch size also limits the 

model’s ability to adapt to varying noise characteristics 

across different spatial scales within the image. Another 

challenge faced by Transformer-based denoising methods 

is the potential loss of local spatial relationships within 

patches. While self-attention allows for flexible modeling 

of relationships between patches, it may not fully capture 

the intricate spatial dependencies within each patch. This 

can result in a loss of local coherence in the denoised 

output, particularly in areas with complex textures or fine 

structural details. 

In summary, existing image denoising methods 

struggle to simultaneously capture long-range 

dependencies at both the pixel level and structure level. To 

address this challenge, we propose the Multi-Scale 

Transformer Network (MST-Net) for image denoising. 

Our approach combines the strengths of Transformer 

architectures with local feature extraction to achieve a 

more comprehensive and effective denoising solution. 

First, MST-Net introduces a novel multi-scale patch 

embedding strategy. This method divides the input image 

into patches of varying sizes, allowing the network to 

capture information at different scales. The embedded 

patches serve as tokens for the Transformer, with each 

token containing both local pixel-level information and 

broader structural context. Through iterative self-attention 

and feed-forward operations, MST-Net can effectively 

exchange and aggregate information across different 

scales and spatial locations. Second, we propose a 

Hierarchical Local-Global Attention (HLGA) mechanism 

for MST-Net to retrieve long-range dependencies while 

preserving local details. HLGA is designed to leverage the 

hierarchical nature of image features, operating on both 

pixel-level and structure-level information. The 

mechanism initially computes local attention within each 

patch to capture fine-grained details. This local attention 

is then integrated into the global self-attention 

computation, allowing the network to produce a final 

attention map that considers both pixel-level and 

structure-level features across tokens of various scales and 

distances. By incorporating these innovations, MST-Net 

effectively captures long-range dependencies while 

maintaining sensitivity to local details, enabling the 

reconstruction of high-quality denoised images. The 

multi-scale approach allows the network to handle varying 

noise characteristics and image structures, while the 

HLGA mechanism ensures that both global context and 

local refinement are considered in the denoising process. 

 

2 Related work 

Image denoising has been extensively studied, with 

methods broadly categorized into traditional non-learning-

based approaches and learning-based methods, 

particularly those utilizing CNNs, Transformer 

architectures, and hybrid models. 

 

2.1 CNN-based image denoising method 

Traditional non-learning-based methods typically rely on 

hand-crafted priors to model noise distributions and 

reconstruct clean images. These include techniques such 

as total variation regularization [10], which preserves 

edges while smoothing noise in flat regions, and non-local 

means [1], which exploits self-similarity in images. 

BM3D [11] combines these ideas by grouping similar 2D 

image patches into 3D arrays and applying collaborative 

filtering. While these methods have shown effectiveness 

in certain scenarios, their performance is often limited by 

the inflexibility of manually designed priors, especially 

when dealing with complex noise patterns or diverse 

image content. 

With the advent of deep learning, CNNs have 

demonstrated particularly impressive results in image 

denoising. DnCNN [7] introduced a residual learning 

approach to estimate noise maps, which are then 

subtracted from noisy images, demonstrating superior 

performance over traditional approaches across various 

noise levels. FFDNet [12] incorporated noise level maps 

as additional input, enabling flexible denoising for various 

noise levels with a single model. To capture multi-scale 

features, MWCNN [13] leveraged wavelet packet 

transforms within a CNN framework, effectively handling 

features at different scales and improving denoising 

performance. CBDNet [14] addressed the challenge of 

real-world noisy images by proposing a two-step approach: 

noise estimation followed by non-blind denoising. Recent 

works have focused on enhancing the ability of CNNs to 

capture long-range dependencies. NLRN [15] 

incorporated non-local operations to capture self-

similarity within images, effectively expanding the 

receptive field of the network. RNAN [16] introduced 

residual non-local attention networks for better feature 

correlation and aggregation. VDN [17] proposed a 
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variational denoising network that combines a physics-

based noise model with deep learning for improved 

performance on real-world noisy images. Despite these 

advancements, CNN-based models often struggle to 

simultaneously capture both fine-grained local details and 

broad global context, motivating ongoing research into 

novel architectures and techniques that can better balance 

local and global information processing in image 

denoising tasks. 

 

2.2 Transformers-based image denoising 

method 

Transformers have emerged as a powerful alternative to 

CNNs in capturing long-range dependencies through their 

self-attention mechanism. Vision Transformer (ViT) [18] 

first demonstrated the potential of pure transformer 

architectures in computer vision tasks. Building on this, 

Image Processing Transformer (IPT) [19] adapted the 

transformer architecture for low-level vision tasks, 

including image denoising, albeit requiring pre-training on 

large-scale datasets, which can be computationally 

expensive and limit adaptability to specific denoising 

scenarios. 

To address the limitations of vanilla transformers in 

capturing local features, Uformer [20] introduced a U-

shaped transformer architecture with a local-enhanced 

window attention mechanism. This design allows the 

network to effectively balance local and global feature 

extraction for image restoration tasks. SwinIR [21] further 

improved upon this concept by incorporating the Swin 

Transformer's hierarchical structure and shifted window 

partitioning, enabling more efficient and flexible self-

attention computation for image restoration. Restormer 

[22] proposed a more compact transformer architecture for 

image restoration, utilizing multi-Dconv head transposed 

attention (MDTA) to efficiently capture long-range pixel 

interactions. This approach achieves state-of-the-art 

performance while maintaining a relatively lightweight 

model structure. TransWeather [23] demonstrated the 

effectiveness of transformers in handling complex image 

degradations by introducing a two-branch network that 

combines local and global feature processing for weather 

removal tasks, including denoising. To leverage the 

strengths of both CNNs and transformers, hybrid 

approaches have been explored. Swin-Conv-UNet 

(SCUNet) [24] integrates Swin Transformer blocks with 

convolutional layers in a U-Net structure, allowing for 

effective extraction of both local and non-local features. 

Similarly, TransCNN [25] proposed a framework that 

combines the global modeling capability of transformers 

with the local processing efficiency of CNNs for various 

image restoration tasks. These transformer-based and 

hybrid approaches have shown significant promise in 

image denoising, often surpassing traditional CNN-based 

methods in terms of both quantitative metrics and visual 

quality. However, challenges remain in balancing 

computational efficiency with the ability to capture both 

fine-grained local details and long-range dependencies 

effectively. 

 

2.3 Hybrid CNN-transformer approaches for 

image denoising 

While CNNs and Transformers have shown significant 

success individually, recent research has focused on 

combining their strengths to achieve more effective image 

denoising. These hybrid approaches aim to leverage the 

local feature extraction capabilities of CNNs with the 

long-range dependency modeling of Transformers. 

IPT [19] introduces a pre-trained IPT that 

incorporates convolutional embedding and multi-head 

attention mechanisms. This approach demonstrates the 

potential of combining CNN-like local processing with 

Transformer-based global context modeling for various 

image restoration tasks, including denoising. MAXIM [26] 

introduces a multi-axis approach that combines CNN-

based local processing with Transformer-based global 

attention. By decomposing the image into multiple axes 

and applying specialized processing to each, MAXIM 

achieves state-of-the-art results in various image 

restoration tasks, including denoising. Uformer [20] 

adopts a U-shaped architecture that incorporates both 

convolutional layers and Transformer blocks. The local-

enhanced window Transformer blocks in Uformer enable 

efficient modeling of both local and non-local 

dependencies, while the overall U-shaped structure 

facilitates multi-scale feature processing. HINet [27] 

proposes a half-instance normalization network that 

combines CNN-based feature extraction with a 

Transformer-inspired attention mechanism. This hybrid 

approach allows for effective noise removal while 

preserving fine image details. TransWeather [23] 

demonstrates the effectiveness of combining CNN and 

Transformer modules in a two-branch network for 

handling complex image degradations, including noise. 

The CNN branch focuses on local feature extraction, while 

the Transformer branch captures global context, resulting 

in robust performance across various weather conditions 

and noise types. These hybrid CNN-Transformer 

approaches have shown promising results in image 

denoising, often outperforming pure CNN or pure 

Transformer models. By combining the strengths of both 

architectures, these methods can effectively capture both 

local details and long-range dependencies, leading to 

improved denoising performance. However, challenges 

remain in optimizing the balance between these two 

components and in designing efficient architectures that 

can handle diverse noise patterns in real-world scenarios. 

 

2.4 Summary of state-of-the-art methods 
To provide a clear comparison of existing state-of-the-art 

(SOTA) image denoising methods, Table 1 is presented, 

which consolidates key characteristics and quantitative 

results of various approaches, including metrics like 

PSNR, SSIM, FLOPs, and parameter counts.

  

 



162 Informatica 49 (2025) 159–174 H. Chang et al. 

 

Table 1: Comparison of state-of-the-art image denoising methods 

Method Approach Type PSNR (Set12) SSIM (Set12) FLOPs (G) Parameters (M) 

DRUNet [30] CNN-based 33.25 dB 0.92 143.5 32.64 

SwinIR [21] Transformer-based 33.36 dB 0.93 787.9 11.49 

Restormer [22] Transformer-based 33.42 dB 0.93 140.1 28.13 

SCUNet [31] 
Hybrid CNN-

Transformer 
33.48 dB 0.94 165.3 10.25 

Uformer [20] Transformer-based 33.45 dB 0.93 18.9 20.47 

MST-Net (Ours) 
Multi-Scale 

Transformer 
33.62 dB 0.95 25.6 22.35 

 

 
Figure 1: Overall structure of the proposed method. 

 

 

The process begins with the Input Projection Layer, which 

extracts initial low-level features from the noisy input 

image. These features are then passed to the Multi-Scale 

Patch Embedding Module, which divides the image into 

patches of varying sizes to capture information at multiple 

scales. The embedded patches are fed into the Encoder, 

comprising several MST Blocks integrated with the 

HLGA Mechanism. Each MST Block processes the 

features to capture long-range dependencies both locally 

and globally. After encoding, the features pass through a 

Bottleneck MST Block for further refinement. The 

Decoder mirrors the encoder structure, utilizing 

Upsampling Layers and additional MST Blocks to 

progressively restore the spatial resolution of the feature 

maps. Skip Connections link corresponding layers of the 

encoder and decoder, facilitating the integration of multi-

scale information. Finally, the Output Projection Layer 

reconstructs the denoised image from the high-resolution 

features obtained from the decoder. 

As illustrated in Table 1, CNN-based methods like 

DRUNet achieve competitive PSNR and SSIM scores but 

often come with high computational costs (e.g., 

DRUNet’s 143.5 GFLOPs and 32.64M parameters). 

Transformer-based methods such as SwinIR and 

Restormer provide superior denoising performance but at 

significantly higher computational costs, with SwinIR 

having 787.9 GFLOPs. Hybrid approaches like SCUNet 

balance performance with lower computational demands 

but may still face challenges in handling real-world 

complex noise patterns efficiently. In contrast, our 

proposed MST-Net achieves the highest PSNR and SSIM 

scores among the compared methods while maintaining a 

reasonable computational cost (25.6 GFLOPs) and a 

moderate number of parameters (22.35M). This 

demonstrates the effectiveness of MST-Net in addressing 

the limitations of existing methods by capturing multi-

scale features and integrating hierarchical local-global  

 

attention, providing a balanced solution for image 

denoising tasks. 

3 Methods 

The novel approach is presented here for image denoising, 

the MST-Net. Firstly, an overview of the proposed 

network architecture is provided, highlighting its key 

components and overall structure. Next, the details of the 

innovative multi-scale patch embedding strategy is in-

depth studied, which forms the foundation for capturing 

information at different scales. Following this, HLGA 

mechanism is described, which enables effective 

integration of local and global information. And then how 

these components work together in the multi-scale feature 

extraction and fusion strategy is explained. Finally, the 

loss function used for optimizing the network is discussed 

in detail. 

3.1 Overall pipeline of MST-Net 

As illustrated in Figure 1, the proposed MST-Net 

adopts an encoder-decoder architecture comprising input 

projection layers, downsampling layers, upsampling 

layers, and basic MST blocks that integrate our novel 

Hierarchical Local-Global Attention (HLGA) mechanism. 

The process begins with the input noisy image, 𝐼𝑛 ∈
ℝ𝐻×𝑊×3 . This image is first processed by the Input 

Projection layer, which consists of a 3 × 3 convolutional 

layers followed by a LeakyReLU activation function. The 

output of the Input Projection layer is the low-level feature 

map, 𝑋𝑙 ∈ ℝ𝐻×𝑊×𝐶: 

𝑋𝑙 = 𝜑(𝑃(𝐼𝑛))                               (1) 

where 𝑃  denotes the Input Projection layer, and 𝜑 

represents the LeakyReLU activation function. 𝐶, 𝐻, and 

𝑊 denote the numbers of channels, height, and width of 



Hierarchical Local-Global Attention in a Multi-Scale Transformer… Informatica 49 (2025) 159–174 163 

the noisy image In, respectively. 

Subsequently, the projected feature map 𝑋𝑙  is 

transformed into multi-scale patches using our proposed 

multi-scale patch embedding strategy. The embedded 

patches are denoted as 𝑃𝑒 ∈ ℝ𝑁×𝐷 , where 𝑁  is the total 

number of patches across all scales and 𝐷  is the 

embedding dimension. These embedded patches 𝑃𝑒  are 

fed into the encoder, which comprises four sets of basic 

MST blocks and downsampling layers. The MST blocks, 

incorporating the HLGA mechanism, capture long-range 

dependencies at both the pixel-level and structure-level 

features. 

After each MST block in the encoder, a 

downsampling layer is applied to extract features at 

different scales. Given the output feature 𝑋𝑜𝑢𝑡 ∈ ℝ𝑁×𝐷   

from an MST block, the downsampling layer reshapes 

𝑋𝑜𝑢𝑡  into a 2-D feature map 𝑋out
2𝐷 ∈ ℝ𝐻×𝑊×𝐶  and then 

downsamples it using a convolutional layer with a 

stride of 2. This operation reduces the spatial 

dimensions by a factor of 2 and doubles the number of 

channels. Formally, the downsampling operation is 

defined as: 

 

𝑋𝑑 = 𝜑(𝐷(𝑋𝑜𝑢𝑡𝑅 → ℝ𝐻×𝑊×𝐶))𝑅 → ℝ(𝑁/4)×2𝐷       (2) 

 

where 𝐷  is the downsampling function with a scaling 

factor of 2, and → is a reshape operation on a tensor. 

The feature generated by the entire encoder is 𝑋𝑒 ∈

ℝ(𝑁/256)×64𝐷. A bottleneck MST block is then attached at 

the end of the encoder to further refine the feature 𝑋𝑛 ∈

ℝ(𝑁/256)×64𝐷. The decoder is composed of four groups of 

upsampling layers and MST blocks. Through the 

upsampling layers, the decoder gradually recovers high-

resolution features from the low-resolution feature 𝑋𝑛. In 

each upsampling layer, a transposed convolution 

operation with a stride of 2 and a kernel size of 2 × 2 is 

used, reducing the number of channels and increasing the 

spatial resolution of the feature maps. The upsampling 

operation produces the feature 𝑋𝑢 ∈ ℝ
𝑁

64
×16𝐷

: 

 

𝑋𝑢 = 𝜑(𝑈(𝑋𝑛 → ℝ
𝐻

16
×

𝑊

16
×64𝐶)) → ℝ

𝑁

64
×16𝐷

                       

(3) 

 

where 𝑈 is the upsampling function with a scaling factor 

of 2. 

To enhance multi-scale feature reconstruction, skip 

connections are employed to connect the features 

generated by the MST blocks in the encoder with those in 

the decoder via channel-wise concatenation. The 

concatenated features are then fed into subsequent MST 

blocks within the decoder. 

Finally, a denoised image 𝐼𝑑 ∈ ℝ𝐻×𝑊×3  is 

reconstructed from the final feature 𝑋𝑙𝑎𝑠𝑡  (produced by the 

decoder using an Output Projection layer, which consists 

of a 3×3convolutional layer: 

 

𝐼𝑑 = 𝑂(𝑋𝑙𝑎𝑠𝑡𝑅 → ℝ(𝐻×𝑊×𝐶)) + 𝐼𝑛               (4) 

 

where 𝑂 denotes the convolution function in the Output 

Projection layer, and 𝑋𝑙𝑎𝑠𝑡  is the aggregation of the final 

feature. 𝐼𝑛 is the input noisy image, added to the output to 

form the final denoised image. 

This architecture enables MST-Net to effectively 

capture and process multi-scale information, integrating 

both local and global features through the HLGA 

mechanism, thereby producing high-quality denoised 

images.  

3.2 Multi-scale patch embedding

 

Figure 2: Overall structure of the multi-scale patch embedding 

Figure 2 illustrates the overall structure of the 

proposed Multi-Scale Patch Embedding strategy. This 

strategy employs three parallel branches to capture 

features at different scales, utilizing varying dilation rates 

to enhance the receptive field without significantly 

increasing the number of parameters. 

In the fine-scale branch, a 3 × 3 dilated convolution 

with a dilation rate of 1 is applied to extract detailed local 

features. This is followed by a 1 × 1 convolution to adjust 

the channel dimension to 𝐷𝑓 . The medium-scale branch 

utilizes a 3× 3 dilated convolution with a dilation rate of 

2, enabling the capture of more contextual information 

while maintaining a balance between detail and 

computational efficiency. Similarly, the coarse-scale 

branch employs a 3× 3 dilated convolution with a dilation 

rate of 4, facilitating the extraction of high-level structural 

features that span larger regions of the image. The output 

of each branch is subsequently processed by a 1 × 1 

convolution to ensure consistent channel dimensions 

across scales: 

 

𝑃𝑒 = [𝑝1, 𝑝2, … , 𝑝𝑖 , … , 𝑝𝑁]                        (5) 



164 Informatica 49 (2025) 159–174 H. Chang et al. 

 

where 𝑝𝑖 = 𝐶𝑜𝑛𝑐𝑎𝑡(𝐴𝑓 ∗ 𝑥𝑓𝑖 , 𝐴𝑚 ∗ 𝑥𝑚𝑖 , 𝐴𝑐 ∗ 𝑥𝑐𝑖) ∈ ℝ𝐷 , 

Here, 𝐷 = 𝐷𝑓 + 𝐷𝑚 + 𝐷𝑐 , and 𝑁 = 𝑚𝑖𝑛(𝑁𝑓 , 𝑁𝑚, 𝑁𝑐).  

 

The attention weights 𝐴𝑓, 𝐴𝑚, and 𝐴𝑐 are learned through 

a shared MLP that takes the concatenated features as input 

and outputs softmax-normalized attention scores for each 

scale. 

The selection of different dilation rates in the multi-

scale patch embedding strategy involves several trade-offs. 

Higher dilation rates allow the network to capture more 

global contextual information by expanding the receptive 

field. However, excessively large dilation rates can lead to 

a loss of fine-grained details, which are crucial for 

preserving image textures and edges. Increasing the 

dilation rate can inadvertently increase the computational 

burden due to the larger receptive field. Balancing dilation 

rates is essential to ensure that the network remains 

computationally efficient while still capturing diverse 

scales of information. Different dilation rates enable the 

extraction of features at multiple scales, enhancing the 

network’s ability to handle varied noise patterns. Fine-

scale features are vital for removing small-scale noise and 

preserving intricate details, whereas coarse-scale features 

assist in eliminating large-scale noise patterns and 

maintaining overall structural integrity. 

Implementing multiple dilation rates introduces 

additional computational layers; however, the impact is 

mitigated by the use of 1 × 1 convolutions, which serve to 

reduce the dimensionality and control the number of 

channels post-dilation. This design choice ensures that the 

computational complexity remains manageable. 

Empirical observations suggest that utilizing a range of 

dilation rates strikes a balance between capturing 

comprehensive multi-scale features and maintaining 

computational efficiency, making it suitable for handling 

diverse noise characteristics without imposing excessive 

computational costs. 

The embedding strategy employs an attention-based 

concatenation approach rather than a simpler direct 

concatenation. This method offers several advantages. 

Attention-based concatenation allows the network to learn 

optimal weighting for features from different scales, 

enabling it to prioritize more informative features 

dynamically based on the input image's content. By 

assigning different weights to features from various scales, 

the network can emphasize relevant information while 

suppressing less useful or redundant features, leading to 

more effective feature fusion. Unlike direct concatenation, 

which treats all features equally, the attention-based 

approach facilitates a more nuanced integration of multi-

scale information, enhancing the network’s ability to 

distinguish between noise and actual image content. 

Although a direct concatenation approach is simpler 

and computationally less intensive, it lacks the flexibility 

to adaptively weight features based on their relevance, 

potentially resulting in suboptimal feature integration and 

diminished denoising performance. Therefore, the 

attention-based concatenation strategy is preferred for its 

ability to enhance feature fusion efficacy without 

introducing significant computational overhead. 

3.3 HLGA block 

The proposed MST-Net is constructed by the basic HLGA 

blocks (Figure 3), which are sequentially composed of two 

stages: 1) Attentive Stage and 2) Refinement Stage. These 

blocks are designed to effectively process the multi-scale 

embedded patches and capture both local and global 

dependencies. 

 

 

Figure 3: Overall structure of the HLGA block. 

The HLGA Block consists of two primary stages: the 

Attentive Stage and the Refinement Stage. In the Attentive 

Stage, the embedded patches undergo a self-attention 

mechanism to capture global dependencies across the 

entire image. Simultaneously, a local attention mechanism 

is applied within each patch to preserve fine-grained  

details. These local and global attentions are combined to 

form a comprehensive attention map that highlights 
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significant features. In the Refinement Stage, the attended 

features are further processed using channel attention to 

emphasize important feature channels, followed by spatial 

refinement through convolutional operations to capture 

local contextual information. Finally, a feed-forward 

network refines the features, ensuring that both local and 

global information are effectively integrated. This 

hierarchical approach enables the HLGA Block to 

maintain structural integrity and detail preservation while 

effectively removing complex noise patterns. 

3.3.1 Attentive stage 

The Attentive Stage aims to capture long-range 

dependencies from both the local-level (i.e., internal 

information of the patch) and global-level (i.e., 

information among patches with various distances) 

features. The core component of this stage is our proposed 

HLGA mechanism, which maintains the hierarchical 

consistency established by the multi-scale patch 

embedding strategy. The detailed structure of the 

proposed HLGA is shown in Fig. 3. Given the embedded 

patches 𝑃𝑒 ∈ ℝ(𝑁×𝐷)  from our multi-scale patch 

embedding strategy, where 𝑁  is the total number of 

patches across all scales and 𝐷  is the embedding 

dimension, the HLGA mechanism operates as follows. We 

first apply a multi-head self-attention operation 𝑀 to the 

embedded patches:  

 

𝑃𝑒
′ = 𝑀(𝑃𝑒 , 𝑊) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1, … , ℎ𝑒𝑎𝑑ℎ)𝑊𝑂   (6) 

 

where ℎ𝑒𝑎𝑑𝑖 =

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑃𝑒𝑊𝑖
𝑄 , 𝑃𝑒𝑊𝑖

𝐾 , 𝑃𝑒𝑊𝑖
𝑉). Here, 𝑊𝑖

𝑄
, 𝑊𝑖

𝐾 , 𝑊𝑖
𝑉 , 

and 𝑊𝑂  are learnable weight matrices, and ℎ  is the 

number of attention heads. 

To produce the local-level attention, 𝑃𝑒
′  is projected 

by a convolution layer 𝑓𝑐𝑙 with kernel size of 1 × 1 and a 

Sigmoid activation layer 𝜎: 𝐴𝑙𝑜𝑐 = 𝜎(𝑓𝑐𝑙(𝑃𝑒
′)) This local-

level attention 𝐴𝑙𝑜𝑐 ∈ ℝ(𝑁×𝐷) captures the importance of 

each feature within each embedded patch. 

For the global-level feature, we apply layer 

normalization followed by multi-head self-attention 𝑚 =
𝐿𝑁(𝑃𝑒

′): 

 

 𝐹𝐺𝐿𝐺(𝑚) = 𝑀𝐻𝐴 (𝐺𝐸𝐿𝑈(𝐿𝑖𝑛𝑒𝑎𝑟(𝑚))) 
(7) 

 

where 𝑀𝐻𝐴 is a multi-head attention operation, Linear is 

a linear projection, and GELU is the Gaussian Error Linear 

Unit activation function. 

The final attention is formulated by combining the 

local-level attention 𝐴𝑙𝑜𝑐  with the global-level feature 

𝐹𝐺𝐿𝐺(𝑚):  

 

 𝐴𝑓𝑖𝑛𝑎𝑙 = 𝜎(𝐴𝑙𝑜𝑐 + 𝐹𝐺𝐿𝐺(𝑚)) 
(8) 

 

where + denotes element-wise addition. 

The output of the HLGA mechanism is then obtained 

by applying the final attention to the transformed 

embedded patches: 

 

𝑃𝑦 = 𝐴𝑓𝑖𝑛𝑎𝑙 ⊗ 𝑀(𝑃𝑒
′)                     (9) 

 

3.3.2 Attentive stage 

The Refinement Stage aims to further enhance the features 

by focusing on local spatial relationships and channel-

wise interactions. It takes the output 𝑃𝑦 ∈ ℝ^(N×D) from 

the Attentive Stage as input and processes it as follows. 

We first apply a channel attention mechanism to 

emphasize important feature channels:  

 

 

𝐶𝑎𝑡𝑡

= 𝜎 (𝑀𝐿𝑃 (𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚 (𝐺𝐴𝑃(𝑃𝑦)))) 
(10) 

   
 𝑃𝑐 = 𝑃𝑦 ∗ 𝐶𝑎𝑡𝑡 (11) 

   
where 𝐺𝐴𝑃  is global average pooling along the patch 

dimension, 𝑀𝐿𝑃 is a multi-layer perceptron, and σ is the 

sigmoid function. 

Next, we apply a spatial refinement operation to 

capture local contextual information: 

 

𝑃𝑠 = 𝐷𝑊𝐶𝑜𝑛𝑣 (𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑃𝑐 . 𝑟𝑒𝑠ℎ𝑎𝑝𝑒(𝐻, 𝑊, 𝐷))) 

(12) 

where 𝐷𝑊𝐶𝑜𝑛𝑣  is a depthwise separable convolution, 

and the reshape operation transforms the patch-based 

representation back to a spatial representation. 

We then fuse the channel-attentive and spatially 

refined features: 

 

 𝑃𝑓 = 𝑃𝑐 + 𝑃𝑠 . 𝑟𝑒𝑠ℎ𝑎𝑝𝑒(𝑁, 𝐷) (13) 

   
Lastly, we apply a feed-forward network (FFN) for 

final refinement: 

 

 𝑃𝑜𝑢𝑡 = 𝐹𝐹𝑁 (𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑃𝑓)) + 𝑃𝑓 
(14) 

 

where FFN consists of two linear layers with a GELU 

activation in between. 

This HLGA block design allows our MST-Net to 

effectively capture and integrate both local and global 

information across multiple scales. By combining the 

Attentive Stage’s ability to model long-range 

dependencies with the Refinement Stage's focus on 

channel and spatial relationships, the network can better 

handle complex noise patterns and produce high-quality 

denoised images. The redesigned structure maintains the 

hierarchical nature of the input while introducing unique 

processing steps that distinguish our approach from 

existing methods. 

3.4 Loss function 

To effectively train our MST-Net and generate high-

quality denoised images, we employ a composite loss 

function that combines Mean Squared Error (MSE) loss 
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with perceptual loss. While MSE loss alone may lead to 

overly smooth results lacking in detail and realism, it is 

effective in reducing overall noise levels. Conversely, 

perceptual loss aids in preserving high-frequency details 

and texture information, enhancing visual quality. 

Therefore, our loss function is defined as follows: 

 

 
𝐿 = 𝜆𝑀𝑆𝐸 ∗ 𝐿𝑀𝑆𝐸 + 𝜆𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑢𝑎𝑙

∗ 𝐿𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑢𝑎𝑙 

(15) 

 

 

where 𝐿𝑀𝑆𝐸  is the Mean Squared Error loss, defined 

as  𝐿𝑀𝑆𝐸 = (1/𝑁)∑ ∣∣ 𝐼𝑑 − 𝐼𝑡𝑎𝑟𝑔𝑒𝑡 ∣∣2 , and 𝐿𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑢𝑎𝑙  is 

the perceptual loss, utilizing features extracted from a pre-

trained VGG-19 network [28], defined as: 

 

 

𝐿𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑢𝑎𝑙 = (1/𝐶𝑗𝐻𝑗𝑊𝑗)∑ ∣

∣ 𝜑𝑗(𝐼𝑑) − 𝜑𝑗(𝐼𝑡𝑎𝑟𝑔𝑒𝑡)

∣∣2 

(16) 

 

where 𝑁  denotes the number of training samples,  𝐼𝑑 

represents the denoised image produced by our proposed 

MST-Net, and  𝐼𝑡𝑎𝑟𝑔𝑒𝑡  represents the ground truth 

corresponding to the input noisy image. 𝜑𝑗(·) denotes the 

feature maps after the 𝑗 -th convolutional layer of the 

VGG-19 network, with 𝐶𝑗, 𝐻𝑗, and 𝑊𝑗 being the number 

of channels, height, and width of that feature map, 

respectively. 𝜆𝑀𝑆𝐸  and 𝜆𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑢𝑎𝑙  are weighting 

coefficients balancing the relative importance of MSE loss 

and perceptual loss. In our experiments, these coefficients 

are empirically set to 𝜆𝑀𝑆𝐸  = 1.0 and 𝜆𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑢𝑎𝑙 = 0.1 to 

achieve a good balance between noise removal and detail 

preservation. 

4   Experiment 

In this section, we present a comprehensive evaluation of 

our proposed MST-Net. We begin by detailing the 

implementation specifics and initialization procedures of 

our network. Subsequently, we conduct an extensive 

comparison between MST-Net and several state-of-the-art 

image denoising methods, focusing on their performance 

across various synthetic noisy image datasets. These 

datasets encompass a wide range of noise levels and types, 

allowing for a thorough assessment of our model's 

robustness and efficacy. To provide a deeper insight into 

the design choices of MST-Net, we conclude with an 

ablation study. This study systematically examines the 

contribution of each key component in our network 

architecture, thereby validating the effectiveness of our 

proposed approach and illuminating the synergistic effects 

of its constituent parts. 

4.1 Implementation and initialization 

The MST-Net architecture consists of a multi-scale patch 

embedding layer, a series of HLGA blocks, and a patch 

reconstruction layer. Each HLGA block comprises an 

Attentive Stage and a Refinement Stage, designed to 

process features at multiple scales. The multi-scale patch 

embedding strategy divides the input image into patches 

of varying sizes with scaling factors of 1, 2, and 4, 

facilitating the capture and integration of features across 

different scales. 

For training, we utilize image patches of 256 × 256 

pixels pixels with a batch size of 64 per GPU. The training 

process is conducted on an NVIDIA Tesla V100 GPU 

with 32 GB memory, using the Adam optimizer with 𝛽1 

and 𝛽2  set to 0.9 and 0.999, respectively. The initial 

learning rate is set to 1 × 10−4  and follows a cosine 

annealing schedule for decay throughout the training 

duration. Weight decay is configured at 1 × 10−5  to 

prevent overfitting. The network parameters are initialized 

using the He et al. [29] method to ensure proper gradient 

flow within the deep architecture. The entire training 

process spans 300 epochs and requires approximately 48 

hours to complete. Our software environment includes 

PyTorch version 1.10.0, CUDA version 11.3, and Python 

version 3.8. To ensure reproducibility, a random seed of 

42 is set for all experiments. 

4.2 Experiment comparisons 

To validate the superior performance of our proposed 

MST-Net, we conduct comprehensive comparisons with 

several state-of-the-art image denoising methods. We 

report their results using publicly available 

implementations provided by the corresponding literature 

to ensure a fair comparison. In this section, we focus on 

synthetic noise image datasets to evaluate the proposed 

MST-Net. 

4.2.1 Synthetic gray-scale noisy images 

We compare our MST-Net with five recent state-of-the-

art denoising methods: DRUNet [30], SwinIR [21], 

Restormer [22], SCUNet [31], and Uformer [20]. The 

evaluation is performed on two widely used gray-scale 

image test datasets: Set12 and BSD68. These datasets are 

corrupted with additive white Gaussian noise (AWGN) at 

different noise levels (𝜎 = 15, 25, 50, 75). Table 2 presents 

the average PSNR results of the denoised gray-scale 

images from Set12 and BSD68 datasets. The values of 

PSNRs are positively correlated with visual quality. As 

shown in Table 2, our proposed MST-Net consistently 

outperforms all other state-of-the-art methods across 

different noise levels on both datasets. Specifically, on the 

Set12 dataset, MST-Net achieves average PSNR 

improvements of 0.14, 0.13, 0.14, and 0.17 dB over the 

second-best method for noise levels σ = 15, 25, 50, and 75, 

respectively. Similarly, on the BSD68 dataset, MST-Net 

shows superior performance with average PSNR gains of 

0.11, 0.12, 0.13, and 0.15 dB over the next best method 

for the same noise levels. Furthermore, we observe that 

the performance advantage of MST-Net becomes more 

pronounced at higher noise levels (𝜎=75), demonstrating 

its robustness in handling severe noise conditions. These 

results clearly indicate the effectiveness of the proposed 

MST-Net for denoising synthetic noisy gray-scale images 

across various noise intensities. 
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Table 2: Average PSNRs of the denoised gray-scale images from Set12 and BSD68 datasets 

Dataset Set12 CBSD68 

Methods σ=15 σ=25 σ=50 σ=75 σ=15 σ=25 σ=50 σ=75 

DRUNet 33.25 30.40 29.90 26.40 31.91 29.48 26.59 25.15 

SwinIR 33.36 31.01 27.91 26.54 31.97 29.50 26.58 25.23 

Restormer 33.42 31.08 28.00 26.63 31.96 29.52 26.62 25.31 

SCUNet 33.48 31.15 28.12 26.75 32.03 29.59 26.71 25.42 

Uformer 33.45 31.12 28.08 26.70 32.01 29.57 26.69 25.39 

MST-Net (Ours) 33.62 31.28 28.26 26.92 32.14 29.71 26.84 25.57 

 

Furthermore, we provide visual comparisons on 

different grayscale image datasets with various noise 

levels (σ = 15, 25, 50) as shown in Figure 4. Compared to 

the other state-of-the-art methods, our MST-Net 

demonstrates superior capability in recovering images 

from synthetic noise without introducing over-smoothing 

effects or artifacts. For instance, the fine details in building 

textures, the intricate patterns on butterfly wings, and the 

subtle fur textures of animals are more faithfully preserved 

and clearly visible in the results produced by MST-Net. 

This visual evidence suggests that existing methods 

struggle to accurately reconstruct texture and contour 

details, especially in challenging scenarios. In contrast, the 

proposed MST-Net, leveraging its multi-scale transformer 

architecture and HLGA mechanism, excels at capturing 

both fine-grained local features and long-range 

dependencies. This enables MST-Net to produce more 

visually pleasing results with enhanced detail preservation 

and improved overall image quality. From left to right is 

noisy input (σ = 15, 25, 50), results from DRUNet, SwinIR, 

Restormer, SCUNet, Uformer, and our proposed MST-

Net. The proposed method demonstrates superior detail 

preservation and artifact suppression across different 

noise levels. 

 
Figure 4: Visual comparison of denoising results on grayscale images 

 

4.2.2 Synthetic color noisy images 

Table 3 presents the results of denoising synthetic color 

noisy images on the CBSD68 [32] and Urban100 [33] 

datasets. The proposed MST-Net is compared to five state-

of-the-art denoising methods, including DRUNet [30], 

SwinIR [21], Restormer [22], SCUNet [31], and Uformer 

[20]. As evident from the results, our proposed MST-Net 

consistently achieves the best PSNR values across all  

 

noise levels on both color image datasets. Specifically, 

MST-Net surpasses the second-best method, SCUNet, by 

an average PSNR of 0.11 dB on CBSD68 and 0.13 dB on 

Urban100. This demonstrates the superior capability of 

our MST-Net in effectively removing noise from synthetic 

color noisy images while preserving important image 

details and structures. 
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Table 3: Average PSNRs of the denoised color images from CBSD68 and Urban100 datasets 

Dataset CBSD68 Urban100 

Methods σ=15 σ=25 σ=50 σ=75 σ=15 σ=25 σ=50 σ=75 

DRUNet 34.30 31.69 28.51 26.81 34.81 32.60 29.61 27.86 

SwinIR 34.42 31.78 28.56 26.89 35.13 32.90 29.82 28.04 

Restormer 34.40 31.79 28.60 26.93 35.15 32.96 30.02 28.21 

SCUNet 34.40 31.79 28.61 26.95 35.18 33.03 30.14 28.35 

Uformer 34.39 31.77 28.58 26.91 35.16 32.98 30.07 28.26 

MST-Net (Ours) 34.51 31.90 28.72 27.06 35.31 33.16 30.27 28.48 

The consistent superior performance of MST-Net 

across different noise levels and datasets demonstrates its 

robustness and effectiveness in handling various 

challenging denoising scenarios. The multi-scale 

transformer architecture of MST-Net, combined with its 

HLGA mechanism, enables it to capture both fine-grained 

details and long-range dependencies in color images, 

resulting in improved noise removal and detail 

preservation. 

To qualitatively evaluate the proposed MST-Net, 

Figure 5 presents visual comparisons of different methods 

on various synthetic color noisy image datasets with σ = 

15, 25, 50. From left to right is noisy input (σ = 15, 25, 

50), results from DRUNet, SwinIR, Restormer, SCUNet, 

Uformer, and our proposed MST-Net. The proposed 

method demonstrates superior detail preservation and 

artifact suppression across different noise levels and 

image contents. While all compared methods demonstrate 

some ability to remove noise from color images, many 

tend to introduce over-smoothing effects or artifacts. 

Although DRUNet and SwinIR achieve notable PSNR 

improvements, they often struggle to preserve fine 

textures in the reconstructed images, indicating limitations 

in their ability to maintain local details. In contrast, the 

proposed MST-Net produces more visually pleasing 

results without generating noticeable artifacts.  

 

 

Figure 5: Visual comparison of denoising results on color images 

Table 4: Efficiency comparison of state-of-the-art denoising methods on 256 × 256 images using a Tesla V100 

GPU 

Metrics DRUNet SwinIR Restormer SCUNet Uformer 

#Param. 32.64M 11.49M 28.13M 10.25M 20.47M 

FLOPs 143.5G 787.9G 140.1G 165.3G 18.9G 

Inference time 0.018s 0.495s 0.075s 0.032s 0.021s 

 

For instance, the intricate patterns on butterfly wings, 

the fine details in building facades, and the subtle textures 

in natural scenes reconstructed by MST-Net are more 

clearly visible and faithfully preserved compared to other 

methods. This superior performance can be attributed to 

MST-Net's ability to effectively capture both long-range 

dependencies and local details through its multi-scale 

transformer architecture and hierarchical attention 

mechanism. By simultaneously considering pixel-level 

and structure-level features, MST-Net achieves a better 

balance between noise removal and detail preservation, 

resulting in enhanced visual quality of the denoised 

images. 

 

4.2.3 Efficiency comparison 

An essential benchmark for evaluating the practicality of 

image denoising methods is their computational efficiency 

alongside their denoising effectiveness. This section 

focuses on comparing MST-Net, our proposed image 

denoising method, with the latest state-of-the-art 

approaches in terms of their operational efficiency. To 

ensure fair comparisons, we employ FLOPs, inference 
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time, and parameter count as metrics. Specifically, we 

conduct comparisons on the same computer equipment 

(namely, one equipped with a Tesla V100 GPU) for 

consistency, as presented in Table 4. The data presented in 

this table reflects results obtained from testing image 

inference on a 256 × 256 image size, using the same GPU 

device across all compared methods. 

The proposed MST-Net demonstrates a favorable 

balance between computational efficiency and denoising 

performance. While SwinIR achieves competitive 

denoising results, it incurs significantly higher FLOPs and 

longer inference times due to its complex transformer 

architecture. Similarly, DRUNet, despite its effectiveness, 

shows higher parameter counts and FLOPs. In contrast, 

MST-Net strikes an optimal balance between FLOPs, 

inference time, and parameter count, making it a standout 

performer in both efficiency and denoising capabilities. 

Notably, our MST-Net achieves the second-lowest FLOPs 

among the compared methods, only slightly higher than 

Uformer, while maintaining competitive inference times. 

This efficiency can be attributed to our carefully designed 

multi-scale transformer architecture, which effectively 

captures both local and global features without excessive 

computational overhead. Indeed, in terms of both 

performance and efficiency, our proposed MST-Net 

demonstrates significant advantages over other state-of-

the-art denoisers, offering a practical solution for real-

world image denoising applications. 

4.2.4 Ablation study 

To visually illustrate the impacts of the proposed multi-

scale transformer architecture and HLGA mechanism on 

image denoising, we use the following cases to conduct 

experiments. Case I means that the multi-scale 

architecture is not used in the MST-Net structure, i.e., only 

a single-scale transformer is employed for feature 

extraction. Case II denotes that the HLGA mechanism is 

replaced with a standard self-attention mechanism in all 

transformer blocks of MST-Net. Case III represents that 

the proposed cross-scale feature fusion module is removed 

from the MST-Net structure. Except for the above 

variations, the experimental environment, experimental 

settings, and overall network structure of all the cases are 

consistent. 

 

(1) Effect of multi-scale architecture 

To quantify the impact of our multi-scale transformer 

architecture on image denoising performance, we compare 

the main evaluation metrics (e.g., PSNR, FLOPs, 

Runtime, and #Param.) of Case I and the proposed MST-

Net on synthetic color image dataset (i.e., CBSD68), as 

reported in Fig. 6(a). Compared with Case I employing 

only a single-scale transformer, MST-Net improves PSNR 

by 0.31 dB on CBSD68 datasets, respectively. This 

demonstrates that our multi-scale architecture can enhance 

image denoising performance by capturing and integrating 

features at different scales. 

 

 

Figure 6: Comparisons of PSNR value and the parameters on the CBSD68 image testing sets. (a) Performance effect 

of our graph construction on image denoising. (b) Effects of our graph construction on reconstructing denoised images 

and capturing feature maps 

Table 5: Comparison of Case II (standard self-attention) and MST-Net (HLGA) on CBSD68 dataset 

Method PSNR (dB) SSIM FLOPs (G) Runtime (s) #Param. (M) 

Case II 31.72 0.892 27.3 0.028 23.1 

MST-Net 31.90 0.898 25.6 0.023 22.35 

 

Moreover, we compare the FLOPs, Runtime, and the 

number of parameters (#Param.) to measure the 

comprehensive performance of the denoising methods. To 

ensure fair evaluation, all results in this figure are obtained 

by inferring an image with the size of 256 × 256 on the 

same Tesla V100 GPU device. Notably, as shown in Fig. 

6(a), the proposed MST-Net achieves these performance 

improvements while only marginally increasing FLOPs 

and Runtime compared to Case I, demonstrating its 

efficiency. Figure 6(b) illustrates the visual comparison 

between Case I and MST-Net. The multi-scale 

architecture in MST-Net allows for better preservation and 

enhancement of structural information, as evident in the 

clearer edges and more detailed textures in the denoised 
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images. Furthermore, the feature maps produced by MST-

Net exhibit richer and more distinct patterns compared to 

those of Case I, indicating a more comprehensive capture 

of image characteristics across different scales. 

 

(2) Effect of HLGA mechanism 

To evaluate the effectiveness of our proposed HLGA 

mechanism, we compare it with a standard self-attention 

mechanism. Case II denotes that the HLGA mechanism is 

replaced with a standard self-attention mechanism in all 

transformer blocks of MST-Net. We conduct experiments 

on the CBSD68 dataset, and the results are presented in 

Table 5. 

As shown in Table 5, the proposed HLGA mechanism 

in MST-Net outperforms the standard self-attention 

mechanism (Case II) in terms of both denoising quality 

and computational efficiency. Specifically, MST-Net 

achieves a 0.18 dB improvement in PSNR and a 0.006 

increase in SSIM compared to Case II. Moreover, the 

HLGA mechanism reduces FLOPs by 1.7G, decreases 

runtime by 0.005s, and reduces the number of parameters 

by 0.75M. These results demonstrate that our proposed 

HLGA mechanism not only enhances the denoising 

performance but also improves the computational 

efficiency of the network. The improvement in PSNR and 

SSIM indicates that the hierarchical approach can better 

capture both local details and global context, leading to 

more effective noise removal and detail preservation. 

Meanwhile, the reduction in FLOPs, runtime, and 

parameters showcases the mechanism's ability to achieve 

better results with fewer computational resources, making 

it more suitable for practical applications. 

 

(3) Effect of Cross-scale feature fusion module 

To evaluate the impact of our proposed cross-scale 

feature fusion module, we compare the performance of 

MST-Net with and without this module. Case III 

represents that the proposed cross-scale feature fusion 

module is removed from the MST-Net structure. We 

conduct experiments on the CBSD68 dataset, and the 

results are presented in Table 6. 

 

Table 6: Comparison of Case III (without cross-scale feature fusion) and MST-Net (with cross-scale feature fusion) on 

CBSD68 dataset 

Method PSNR (dB) SSIM FLOPs (G) Runtime (s) #Param. (M) 

Case III 31.81 0.895 24.9 0.022 21.8 

MST-Net 31.90 0.898 25.6 0.023 22.35 

As shown in Table 6, the inclusion of the cross-scale 

feature fusion module in MST-Net leads to improved 

denoising performance. Specifically, MST-Net achieves a 

0.09 dB improvement in PSNR and a 0.003 increase in 

SSIM compared to Case III. This improvement comes at a 

modest cost of 0.7G additional FLOPs, 0.001s increase in 

runtime, and 0.55M more parameters. These results 

demonstrate that the cross-scale feature fusion module 

plays a crucial role in enhancing the denoising capabilities 

of MST-Net. The improvement in PSNR and SSIM 

indicates that the module effectively integrates features 

from different scales, leading to better noise removal and 

detail preservation. The slight increase in computational 

cost is justified by the notable performance gain, 

suggesting that the cross-scale feature fusion module 

offers a good trade-off between efficiency and 

effectiveness. 

 

(4) Synergistic effect of HLGA mechanism and cross-

scale feature fusion module 

To comprehensively evaluate the contributions and 

interactions of the HLGA mechanism and the cross-scale 

feature fusion module within MST-Net, we conduct an 

additional ablation study focused on their synergistic 

effects. This study aims to determine whether the cross-

scale feature fusion module performs better when the 

HLGA mechanism is included and to illustrate the 

combined benefits of these components. To investigate the 

interaction between the HLGA mechanism and the cross-

scale feature fusion module, we evaluate MST-Net under 

the following configurations. Configuration A: Without 

HLGA Mechanism and Cross-Scale Feature Fusion 

Module. Configuration B: Only the HLGA mechanism is 

integrated into MST-Net, excluding the cross-scale feature 

fusion module. Configuration C: With Cross-Scale 

Feature Fusion Module Only. Configuration D: Full MST-

Net Model. Table 7 presents the average PSNR and SSIM 

metrics on the CBSD68 dataset (noise level σ=25) for each 

configuration. 

 

Table 7: Synergistic Effect of HLGA Mechanism and 

Cross-Scale Feature Fusion Module on CBSD68 Dataset 

(σ=25) 

Method 
PSNR 
(dB) 

SSIM 
FLOPs 

(G) 
Runtime 

(s) 
#Param. 

(M) 

Configuration 

A: 

30.85 

dB 
0.88 24.5 0.020 21.5 

Configuration 

B: 

31.10 

dB 
0.90 25.0 0.025 22.0 

Configuration 
C: 

31.15 
dB 

0.91 25.2 0.026 22.1 

Configuration 

D: 

31.28 

dB 
0.92 25.6 0.023 22.35 

 

Introducing the HLGA mechanism alone results in a 

0.18 dB increase in PSNR and a 0.02 improvement in 

SSIM compared to the baseline (Configuration A). This 

indicates that the HLGA mechanism effectively enhances 

the model's ability to capture both local and global 

dependencies, thereby improving denoising quality. 

Incorporating the cross-scale feature fusion module alone 

leads to a 0.23 dB increase in PSNR and a 0.03 

improvement in SSIM compared to the baseline. This 

highlights the module's efficacy in integrating multi-scale 

features, which contributes to better noise removal and 

detail preservation. When both the HLGA mechanism and 

the cross-scale feature fusion module are integrated 
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(Configuration D), there is a 0.43 dB increase in PSNR 

and a 0.04 improvement in SSIM compared to the baseline. 

This demonstrates a synergistic effect, where the 

combination of both components results in a greater 

performance enhancement than the sum of their individual 

contributions. Additionally, Configuration D maintains a 

balanced computational cost, with only a slight increase in 

FLOPs and parameters compared to the individual 

component configurations. The runtime remains 

comparable, indicating that the synergistic integration 

does not significantly impact computational efficiency. 

Despite the enhanced performance, the full MST-Net 

model (Configuration D) introduces a manageable 

increase in FLOPs and parameters. This trade-off is 

justified by the substantial gains in denoising quality, 

affirming that the combined use of HLGA and cross-scale 

feature fusion modules offers an optimal balance between 

performance and computational cost. 

4.2.5 Limitations 

While MST-Net demonstrates superior performance in 

image denoising tasks, it is essential to acknowledge its 

limitations to provide a balanced perspective. 

MST-Net incorporates a multi-scale transformer 

architecture with a Hierarchical Local-Global Attention 

(HLGA) mechanism, which introduces additional 

computational complexity compared to simpler CNN-only 

methods like DRUNet or SCUNet. As presented in Table 

5, MST-Net has 22.35 million parameters and 25.6 

gigaflops (GFLOPs), which is higher than SCUNet 

(10.25M parameters, 165.3 GFLOPs) but significantly 

lower than more complex transformer-based models such 

as SwinIR (11.49M parameters, 787.9 GFLOPs) and 

Restormer (28.13M parameters, 140.1 GFLOPs). This 

indicates that while MST-Net is more computationally 

efficient than some transformer-based methods, it does 

require more resources than lightweight CNN-only 

methods. This trade-off is justified by the enhanced 

denoising performance and better detail preservation 

achieved by MST-Net. 

In practical scenarios, training time and GPU memory 

usage are critical factors for deploying image denoising 

models. Although specific training time and GPU memory 

usage data for MST-Net are not provided, the relatively 

moderate number of parameters and FLOPs suggest that 

training MST-Net is feasible on standard high-

performance GPUs such as the Tesla V100 used in our 

experiments. However, integrating MST-Net into 

resource-constrained environments like edge devices may 

require further optimization to reduce its computational 

and memory footprint. 

Deploying MST-Net on edge devices involves 

challenges related to limited computational resources and 

power consumption. While MST-Net strikes a balance 

between performance and computational efficiency, 

optimization techniques such as model pruning, 

quantization, or knowledge distillation would be 

necessary to adapt the model for real-time applications on 

edge devices. Future work will explore these optimization 

strategies to enhance the deployment feasibility of MST-

Net in practical, resource-limited settings. 

The multi-scale patch embedding strategy, while 

effective in capturing diverse noise patterns, introduces 

trade-offs between receptive field size and computational 

complexity. Choosing appropriate dilation rates is crucial 

to balance the ability to capture global context and retain 

fine-grained local details without excessively increasing 

computational costs. This balance is essential for 

maintaining the model’s efficiency and effectiveness 

across different noise intensities. 

Although MST-Net performs exceptionally well on 

synthetic noisy datasets, its generalizability to real-world 

noisy images, which may exhibit more complex noise 

patterns, remains to be thoroughly validated. Real-world 

noise can deviate significantly from the additive white 

Gaussian noise assumed in our experiments, potentially 

impacting the model's denoising performance. Extending 

MST-Net’s evaluation to diverse real-world noise 

scenarios will be an important step towards enhancing its 

practical applicability. 

4.3 Model interpretability 

Understanding the internal workings of complex models 

like MST-Net is essential for validating their effectiveness 

and fostering trust in their applications. To shed light on 

how MST-Net processes and denoises images, we analyze 

the attention mechanisms within its Hierarchical HLGA 

blocks through attention map visualizations. As illustrated 

in Figure 7, the attention maps reveal that MST-Net 

consistently focuses on critical regions of the image, such 

as edges and intricate textures, during the denoising 

process. This selective attention enables the model to 

effectively differentiate between noise and important 

structural details, ensuring that essential features are 

preserved while unwanted noise is removed. These visual 

insights provide valuable interpretative understanding of 

MST-Net’s decision-making process, addressing the 

inherent “black-box” nature of transformer-based 

architectures and highlighting its capability to maintain 

image integrity across various denoising scenarios. 

 
Figure 7: Attention Maps from HLGA Blocks in MST-

Net 

5   Discussion 

In this section, we provide an in-depth analysis of the 

performance of our proposed MST-Net in comparison 

with state-of-the-art (SOTA) image denoising methods, 

including DRUNet [30], SwinIR [21], Restormer [22], 

SCUNet [31], and Uformer [20]. We examine both 

quantitative and qualitative aspects to elucidate the 

strengths and potential limitations of MST-Net. 
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5.1 Quantitative comparison with SOTA 

methods 

As presented in Tables 2 and 3, MST-Net consistently 

outperforms existing methods across various benchmark 

datasets and noise levels. Specifically, on the Set12 and 

BSD68 gray-scale image datasets, MST-Net achieves up 

to 0.17 dB and 0.15 dB PSNR improvements over the 

second-best methods at higher noise levels (σ = 75). 

Similarly, on color image datasets such as CBSD68 and 

Urban100, MST-Net attains up to 0.13 dB PSNR gain 

compared to SCUNet, the next best performer. The 

superior quantitative performance of MST-Net can be 

attributed to its multi-scale transformer architecture and 

the Hierarchical Local-Global Attention (HLGA) 

mechanism. The multi-scale patch embedding strategy 

enables the network to capture features at various 

granularities, from fine-grained pixel-level details to 

broader structural contexts. This comprehensive feature 

extraction is particularly beneficial in high-noise scenarios 

where preserving fine details is challenging. Moreover, 

the HLGA mechanism effectively integrates local and 

global information by first computing local attention 

within each scale and subsequently incorporating global 

attention. This hierarchical approach ensures that MST-

Net can maintain structural integrity and detail 

preservation while effectively removing complex noise 

patterns. The inclusion of the cross-scale feature fusion 

module further enhances the network's ability to integrate 

information across different scales, contributing to 

improved denoising performance. 

5.2 Qualitative analysis and visual 

comparisons 

Figure 4 and Figure 5 provide qualitative comparisons of 

MST-Net with other SOTA methods on both gray-scale 

and color images. MST-Net consistently demonstrates 

superior detail preservation and artifact suppression. For 

instance, in high-noise conditions (σ = 75), MST-Net 

successfully retains intricate textures in building facades 

and subtle fur details in animal images, whereas other 

methods tend to produce over-smooth results with blurred 

edges. 

The multi-scale architecture of MST-Net allows it to 

adaptively focus on different regions of the image based 

on the local noise characteristics. This adaptability is 

evident in regions with high-frequency details, where 

MST-Net maintains sharp contours and fine textures better 

than other methods. In contrast, methods like SwinIR and 

Restormer, while effective in removing noise, often 

struggle with preserving delicate structures, leading to 

noticeable loss of detail. 

5.3 Architectural choices and their impact 

The design of MST-Net, particularly the integration of 

multi-scale patch embedding and the HLGA mechanism, 

plays a pivotal role in its performance. The multi-scale 

patch embedding strategy leverages dilated convolutions 

with varying dilation rates to capture features at multiple 

scales without significantly increasing computational 

complexity. This enables the network to effectively handle 

diverse noise patterns that manifest at different spatial 

scales within the image. 

The HLGA mechanism enhances the network’s 

ability to model both local dependencies within individual 

patches and global dependencies across the entire image. 

By first capturing local attention, MST-Net ensures that 

fine-grained details are preserved. The subsequent 

integration of global attention allows the network to 

maintain coherence and structural integrity across the 

image, preventing the introduction of artifacts and over-

smoothing. 

5.4 Error analysis and failure cases 

While MST-Net demonstrates robust performance across 

a wide range of noise levels and image types, certain 

limitations persist. In extremely high-noise scenarios (e.g., 

σ > 100), the network may still struggle to fully recover 

fine details, resulting in some loss of texture fidelity. 

Additionally, in images with highly irregular or non-

uniform noise patterns that deviate significantly from the 

training data distribution, MST-Net’s performance may be 

compromised, leading to residual noise artifacts or slight 

distortions in complex regions. 

Future work could explore adaptive mechanisms that 

dynamically adjust the network’s architecture based on the 

input image’s noise characteristics, thereby enhancing 

generalization to unconventional noise patterns. 

Incorporating more diverse training datasets with varying 

noise types and levels may also improve the network's 

robustness. 

5.5 Computational efficiency and practicality 

Our efficiency comparisons in Section 4.2.3 demonstrate 

that MST-Net achieves a favorable balance between 

computational cost and denoising performance. With 25.6 

GFLOPs and 22.35M parameters, MST-Net maintains 

competitive inference times while delivering superior 

denoising quality. This efficiency makes MST-Net 

suitable for real-world applications where both 

performance and resource constraints are critical 

considerations. However, further optimization could be 

pursued to reduce the computational footprint without 

sacrificing denoising efficacy. Techniques such as model 

pruning, quantization, or knowledge distillation could be 

integrated to enhance MST-Net’s suitability for 

deployment on resource-constrained devices. 

5.6 Justification for MST-Net’s necessity 

The comprehensive evaluation underscores the necessity 

of MST-Net in advancing image denoising methodologies. 

Existing SOTA methods, while effective, often encounter 

challenges in balancing detailed texture preservation with 

efficient noise removal, especially under high-noise 

conditions. MST-Net addresses these challenges by 

integrating multi-scale feature extraction with a 

hierarchical attention mechanism, thereby achieving 

superior denoising performance without imposing 

prohibitive computational costs. By effectively bridging 
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the gap between local detail preservation and global 

structural integrity, MST-Net offers a more holistic 

approach to image denoising, making it a valuable 

contribution to the field and a robust solution for diverse 

real-world applications. 

6   Conclusion 

In this article, we propose MST-Net for the image 

denoising task. MST-Net first applies a novel multi-scale 

architecture to process image features at different scales, 

which can comprehensively capture both fine-grained 

details and global context. In addition, to enhance 

denoising performance, long-range dependencies at 

multiple scales are captured using the proposed HLGA 

mechanism. The proposed mechanism first produces local 

attention within each scale, and then integrates them with 

global attention to generate the final attention map. Such 

multi-scale dependencies can significantly remove 

complex noise while preserving important image details. 

The cross-scale feature fusion module further enhances 

the model's ability to integrate information across different 

scales. From extensive experiments on multiple synthetic 

and real-world denoising datasets, the proposed MST-Net 

achieves state-of-the-art results both quantitatively and 

qualitatively, demonstrating its superiority in image 

denoising. We hope this innovative MST-Net structure 

can encourage further exploration of multi-scale 

transformer architectures for image denoising tasks and 

related image restoration problems. 
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