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With technological advancements, smart health monitoring systems have become increasingly vital and 

popular. The rise of smart homes, appliances, and medical systems, along with the pivotal role of the 

Internet of Things (IoT), is significantly enhancing healthcare services by improving data processing 

and predictive capabilities. IoT not only aids in predicting heart disease but also supports emergency 

responses. However, traditional data transfer methods are inefficient in terms of time and energy, 

resulting in high latency and consumption. Edge computing, alongside deep learning methods, provides 

effective solutions with superior performance. This paper introduces a Real-Time Smart Healthcare 

System utilizing Edge-Internet of Things and Deep Learning. The primary objective of this system is to 

monitor patient health changes, predict heart disease, and automate medication administration in real 

time. The study presents a DNN-based prediction model that leverages edge computing and IoT. This 

model processes health data from IoT devices, while edge devices deliver timely health predictions to 

doctors and patients via edge and cloud servers. The proposed system is evaluated on performance 

parameters, demonstrating superior results compared to other methods. By integrating edge computing, 

IoT, and deep learning, this system enables efficient real-time health monitoring and prediction, 

benefiting both healthcare professionals and patients. It demonstrates exceptional performance with an 

accuracy of 96.15%, precision of 92.86%, recall (sensitivity) of 97.50%, and an F1-score of 94.87%. 

Povzetek:  Razvili smo sistem za pametno zdravstveno oskrbo, ki temelji na tehnologijah Edge-IoT in 

globokem učenju in napoveduje srčne bolezni v realnem času. Sistem uporablja globoko nevronsko 

mrežo za obdelavo podatkov iz IoT naprav, kar omogoča pravočasne zdravstvene napovedi.

1 Introduction 
As the prevalence of heart disease patients continues to 

grow, the strain on current healthcare systems is on the 

rise. Addressing this challenge requires the increased 

involvement of specialists. However, it is crucial to act 

swiftly when dealing with heart patients, especially in 

emergencies. An efficient Smart Healthcare Surveillance 

System (SHSS) can effectively tackle these issues by 

offering a range of services, including monitoring, 

remote treatments, autonomous actions, and real-time 

situation management[1], [2]. Such a system can provide 

timely and effective support to heart disease patients, 

ensuring rapid and efficient responses in critical 

situations. Therefore, the demand for modern and future 

healthcare services requires computational power and 

rapid response times. In recent years, advances in 

information technology and artificial intelligence (AI) 

have played a transformative role across society, 

highlighting exponential progress in computational 

power, data storage, and electronic transmission 

capabilities [3], which are now critical to modern 

healthcare systems. The proliferation of AI-driven 

systems has unlocked the potential for unprecedented  

 

 

levels of automation and real-time data processing, 

especially through edge computing. 

Nonetheless, mobile cloud computing (MCC), which 

preceded edge computing, encountered similar obstacles, 

such as high costs of data transmission, delayed response 

times and restricted network reach. Several investigations 

have contrasted cloud-centric and edge-centric 

computing, concluding that solely edge computing aligns 

with the demands for reduced latency, mobility, and 

energy conservation [4], [5]. In the healthcare sector, 

edge computing outperforms traditional cloud 

computing. Healthcare professionals can deliver remote 

medical assistance to individuals with chronic conditions 

through the utilization of wearable devices and ambient 

sensors to monitor vital signs. This is achievable thanks 

to the oversight and flexibility afforded by edge 

computing systems. Furthermore, doctors can detect 

patient risks based on sensor data, regardless of their 

location. For superior care delivery, it's essential that 

edge devices and nodes promptly perform data 

operations [6]. Real-time healthcare applications are also 

crucial for immediate risk detection and intervention. A 

Real-time Semantic Healthcare System is developed 

in[7] to identify Visual Risks for Elders and Children in 
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surveillance videos, enabling swift responses to prevent 

accidents. 

We propose a healthcare monitoring system that 

relies on Edge Internet of Things and deep learning 

technologies. The primary objectives of this system are 

as follows: 

• An envisioned design for a Heart Disease Smart 
Healthcare Surveillance System integrates IoT-
Edge-Cloud technology. This system harnesses 
the power of Edge devices to efficiently handle 
real-time situations and optimize performance by 
minimizing computation and transmission 
overhead. 

• Data gathered from IoT sensors for predicting the 
risk of heart disease undergoes a sequence of 
preprocessing procedures and analysis at the Edge 
layer, facilitated by FPGA programmable 
processors. This process ensures that the data is 
prepared and analyzed efficiently and effectively 
within the system edge layer. 

The subsequent segments of the paper are presented 

as follows: a comprehensive overview of existing 

research and studies related to the topic is presented in 

section 2. Section 3 offer detailed elaboration on our 

proposed architecture. The analysis of the results is 

presented in Section 4. Finally, Section 5 summarizes the 

findings and conclusions of the research. 

2 Related work 
In this section, we present a compilation of related 

works. One such research discusses an IoT-based 

healthcare system  capable of monitoring and tracking 

patients, staff, and biomedical devices, while also 

handling emergency situations effectively[8]. 

Additionally, a framework is introduced that includes a 

real-time alert generation system to guarantee swift 

responses. Furthermore, there is the introduction of an 

IoT-cloud-based framework for healthcare applications, 

with a specific focus on real-time prediction of health 

vulnerabilities during workout sessions[9].  A healthcare 

system based on IoT is created to meet the demand for 

intelligent health monitoring. The framework introduces 

a combination of Fully Homomorphic Encryption (FHE) 

and machine learning [10]. This framework enables 

encrypted analysis of biosignal data, including 

aggregation, real-time monitoring, and abnormality 

detection.  

In the healthcare industry, predictive analytics covers 

a wide range of techniques, ranging from conventional 

linear models to sophisticated machine learning 

techniques [11]. Among these techniques, deep learning 

(DL), a subset of ML, has proven to be highly reliable 

and robust. DL excels in automatically handling and 

learning from vast and complex healthcare datasets, 

providing valuable perspectives and efficient solutions to 

complex issues. Its application in diverse medical 

domains has consistently shown superior performance 

compared to classic designs. More precisely, the 

recurrent neural network (RNN) has demonstrated its 

effectiveness in managing prolonged dependencies in 

input data. RNN has become prominent in analyzing 

temporal events, particularly in applications that involve 

time-sequential data [12].  

Several studies have focused on the diagnosis and 

predictive modeling of heart disease. Botros et al.[13] 

introduced two models for detecting heart failure from 

electrocardiogram signals: a Convolutional Neural 

Network and an enhanced version that includes an SVM 

layer, achieving over 99% accuracy, sensitivity, and 

specificity. This framework aids professionals and allows 

real-time processing with mobile equipments. The 

authors in [14] examined heart disease prediction using 

six ML models, as logistic regression and random forest. 

Logistic regression reached 90.16% accuracy on the 

Cleveland data, and AdaBoost achieved 90% on the 

IEEE Dataport data. The accuracy of the soft voting 

group classifiers was improved to 93.44% and 95%, 

respectively. Nancy et al.[2]  utilized bidirectional LSTM 

for heart disease prediction, achieving an accuracy of 

0.98 and outperforming existing methods. This highlights 

the importance of timely disease prediction for early 

intervention. Authors in [15] created a Smart 

Cardiovascular Disease Diagnostic Framework using 

Internet of Things  devices. Their ConvNet and 

ConvNet-LSTM design successfully obtained a 98% 

accuracy rate in identifying atrial fibrillation using cloud 

architecture and DL. The combination of IoT devices and 

cloud computing with deep learning models offers 

transformative possibilities for healthcare, particularly in 

remote health monitoring and precise disease diagnosis. 

Table 1 present a summary of some recent approaches 

along with their respective performance and advantages.  

Although the existing literature demonstrates 

promising approaches in heart disease prediction and 

healthcare monitoring, several limitations remain. Many 

of the techniques rely on powerful computational 

resources, such as deep learning models (CNN, LSTM), 

which can be costly and require large datasets for 

training. Additionally, real-time prediction remains a 

challenge, particularly in resource-constrained 

environments such as wearable IoT devices and edge 

computing systems. While IoT-based healthcare systems 

are increasingly utilized, their effectiveness often relies 

on centralized cloud processing, which introduces 

latency and scalability issues. 

The proposed system addresses these challenges by 

leveraging edge computing and IoT integration, enabling 

real-time prediction and monitoring at the point of care, 

with significantly reduced latency. Our approach also 

integrates deep learning models such as DNN for 

improved accuracy, while operating efficiently on edge 

devices with limited resources, making it a valuable 

advancement over existing state-of-the-art (SOTA) 

methods in healthcare prediction systems. 
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Table 1: Summary of various approaches along with their respective performance and advantages. 

Approach                                                 Description                                                                                                     Advantages                                                          Disadvantages                                                    Reference 

 Meta classification 
technique                        

 Uses multiple classifiers to 
improve prediction by 
combining their outputs                                     

 Combines strengths of 
different models for 
improved accuracy       

 Can be computationally 
expensive due to 
ensemble complexity     

Latha et Jeeva 

(2019) [16] 

 Hybrid random 
forest with linear 
model               

 Combines random forest 
and linear models to predict 
heart disease                                             

 Balances complexity 
and interpretability                           

 May not fully capture 
nonlinear relationships in 
data            

Mohan et al. 

(2019) [17] 

 Statistical model and 
deep neural network            

 Combines traditional 
statistical methods with 
deep neural networks for 
heart disease prediction                

 Leverages both classic 
and modern techniques 
for robust results    

 Requires large datasets 
for deep learning to be 
effective         

Moreno-Ibarra 

et al. (2019) 

[18] 

 Bi-directional LSTM 
(C-BiLSTM)                       

 Uses BiLSTM to handle 
sequential data for heart 
disease prediction                                           

 Captures temporal 
dependencies in patient 
data, improving 
prediction accuracy  

 Computationally 
intensive, requires 
significant training data  

Dileep et al. 

(2023) [19] 

 Hyperparameter 
tuning and cross-
validation with ML   

 Employs hyperparameter 
optimization to enhance 
performance of machine 
learning models                          

 Improves generalization 
ability of models                          

 Can lead to overfitting if 
not carefully tuned                    

Ahmed et al. 

(2020) [20] 

 Random Forest                                         Utilizes Random Forest for 
heart disease classification                                                       

 Easy to interpret, 
performs well with 
unstructured data            

 Can be less effective 
with highly imbalanced 
datasets             

Dhanamjayulu 

et al. (2022) 

[21]  

 Optimized ensemble 
fuzzy ranking 
(OEFR)              

 Uses an ensemble of fuzzy 
ranking algorithms for 
heart disease prediction                                     

 Optimizes predictions, 
reduces error                              

 May not handle very 
large datasets well                          

Managala et 

al. (2023) [22] 

 RNN (Recurrent 
Neural Network)                       

 Uses RNNs for heart 
disease prediction from 
temporal data like ECG 
signals                                   

 Suitable for sequential 
data, handles time-series 
data well        

 Struggles with long-term 
dependencies in data                     

Almujally et 

al. (2023) [23] 

 IoT-Cloud-Based 
Healthcare System                    

 Implements an IoT-based 
framework for real-time 
monitoring of heart disease 
during workouts     

 Integrates multiple data 
sources (physiological, 
behavioral) for holistic 
health tracking  

 Security concerns 
related to data 
transmission and privacy  

Nancy et 

al.(2022) [2] 

 Deep Forest Cascade 
Technique                        

 Uses a cascade of deep 
forest models to predict 
heart disease                                                 

 High accuracy in 
prediction, interpretable 
output                 

 Requires fine-tuning of 
cascade layers                            

Askar (2023) 

[24] 

 XGBoost                                               Uses an optimized gradient 
boosting model for 
classification tasks                                            

 Very high prediction 
accuracy, great for 
structured data          

 Sensitive to noisy data, 
requires proper feature 
engineering      

Gracious et al. 

(2024) [25] 

 Optimized Random 
Forest with SMOTE                   

 Combines Random Forest 
with SMOTE to balance 
class distributions for heart 
disease prediction                

 Improves model 
robustness and 
generalization                       

 Computationally 
expensive and may 
require a lot of time to 
optimize  

ishaq et al. 

(2023) [26] 

3 Materials and methods 

3.1 Architecture of the proposed smart 

healthcare system 

IoT technology plays a pivotal role in various real-time 

applications, enabling seamless interaction between 

objects and individuals. However, the considerable 

volume of medical information produced by such 

equipment is a significant obstacle for the system, 

particularly in data storage, processing, and management. 

To address this challenge, we support the adoption of an 

intelligent system for heart disease diagnostic, employing 

edge IoT technology. The system, illustrated in Figure 1,  

 

 

aims to overcome the challenges posed by the massive 

data generated in healthcare settings. The architecture 

comprises 3 layers: the Cloud Layer, the Edge Layer, and 

the Data Generation Layer. The global architecture of the 

system is built upon the framework described in  [27], 

but we have implemented several modifications. These 

include the integration of an intelligent sensor capable of 

automatically generating various physiological 

parameters continuously. The synergy between the 

National Instruments myRIO processor and a Wi-Fi 

module facilitates wireless data transmission to the cloud 

server [28]. Additionally, the system integrates real-time 

online monitoring of health status [6]. Moreover, the 
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cloud component is employed for dispatching alert messages to patients, as documented in[21]. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1:  Proposed architecture of edge based system. 

The proposed architecture enhances existing designs by 

incorporating specific adaptations tailored for real-time, 

resource-efficient processing on edge devices. Unlike 

traditional systems that rely solely on cloud computing 

for high-level data processing, our design emphasizes 

advanced local processing through edge computing, 

significantly reducing latency. The integration of 

intelligent sensors at the data generation layer provides 

continuous physiological parameter tracking, which is 

processed by a custom DNN model at the edge. This 

DNN model has been optimized for the constrained 

computational environment of edge devices, enabling it 

to operate effectively with lower energy consumption 

and processing power without compromising diagnostic 

accuracy. 

3.2 Data generation layer  

The function of this layer is to acquire physiological 

health parameters using a variety of Internet-connected 

or wearable devices. Typically, these devices have 

limited storage and computing capabilities. Local 

processing techniques can be implemented to address 

issues such as data redundancy, power consumption, and 

network transmission load. For connectivity, the data 

collection layer devices can establish a connection with 

smart phones or other mobile smart terminals via 

Bluetooth technology. To facilitate high-speed 

transmission of measured signals, all smart sensors are 

linked to an NI myRIO platform through a Wi-Fi module 

capable in swift data transfer. The NI myRIO platform 

utilizes a low-power Xilinx FPGA programmable 

processor, making it highly suitable for efficient signal 

transmission and reception tasks. To interact with the 

collected data, the NI-myRIO module communicates 

with an application that provides the capability to use a 

web-based interface for data visualization and analysis. 

3.3 Edge layer 

Primary role of this layer is to execute computations for 

early detection and take necessary actions based on the 

acquired physiological data. The Edge layer primarily 

consists of smart phones and other intelligent mobile 

terminals. It serves as network layer devices, enabling 

data communication functions of the medical IoT 

gateway. We use here NI myRIO. Moreover, they host 

application layer software, including preprocessing 

algorithms for filtering and consolidating data, thereby 

enhancing real-time analysis speed. The process of 

analysis is streamlined by deep learning models, offering 

reliability and precision in the detection of potential 

health concerns. Once the analysis is complete, the 

decision-making module, with the assistance of 

healthcare specialists, determines whether immediate 

action is required. If necessary, an alarm is raised to alert 

the healthcare community and an autonomous system 

capable of addressing emergencies in real-time. In 

instances where no alarm is triggered, both the data and 

analysis results are archived in the Edge layer before 

being transmitted to the Cloud layer. The access 

procedure incorporates appropriate access control 

measures for the healthcare community, granting 

authorized individuals the ability to retrieve and interact 

with the data as required. 
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3.4 Cloud layer  

This layer focuses on data storage, latency-tolerant 

analysis, and access control for the healthcare 

community. It acts as a repository for collected data and 

allows for further analysis that can tolerate certain 

delays. The access mechanism ensures proper control 

over data access by authorized individuals. The analysis 

results are shared with the healthcare community, 

enabling timely actions based on the derived insights. 

The healthcare community can utilize cloud-based 

solutions for monitoring patients as well. 

3.5 Security and confidentiality 

Our smart healthcare system, which is built on the 

Internet of Things (IoT), incorporates a security solution 

provided by [23]. Our system complies with security 

standards like HIPAA and GDPR by using encryption 

and secure authentication methods, ensuring that only 

authorized users and devices can access sensitive health 

data while protecting user privacy. This solution utilizes 

Zigbee and Firebase IoT authentication. During the 

transmission of health information, a 128-bit encryption 

is utilized to secure the JSON file as a token. Firebase 

cloud functions authenticate the officer's device token by 

generating a custom token with precise credentials and 

claims. Both the 128-bit device token and the Firebase 

custom token serve as authentication mechanisms for 

real-time data exchanges. After the user's identity is 

verified, the authorization process makes use of 

Firebase's universal security standards. The security 

system consists of three steps: 

• The equipment identifier authenticates the request as 

being from permitted equipment, but it does not 

provide any important details for identifying the 

owner. 

• A customized certificate includes user identification 

but does not have profile details and cannot be 

automatically recognized by Firebase servers due to 

potential revocation or key rotation. 

• The signInWithCustomToken API verifies the 

claims of the custom token, and then the backend 

produces a Firebase Identity token. This token, 

which includes the user's characteristics, serves as 

indisputable evidence of authorization and remains 

valid for duration of one hour. 

3.6 Proposed deep learning model 

In the past few years, there has been significant research 

and extensive implementation of deep learning 

algorithms, aimed at extracting valuable information 

from different varieties of data. Various deep learning 

architectures have been implemented to accommodate 

the diverse characteristics of input data, encompassing 

conventional neural networks, deep neural networks, and 

recurrent neural networks.  

 

 

 

In this particular case, a deep neural network model has 

been adopted and modified to predict heart disease. The 

specific architecture of the DNN is illustrated in Figure 

2. The described sequential model architecture is a dense 

neural network (DNN) comprising multiple fully 

connected layers with regularization mechanisms to 

enhance generalization and prevent over fitting. The 

model begins with a dense layer of 128 neurons, using 

the ReLU (Rectified Linear Unit) activation function. 

The weights in this layer are initialized with a normal 

distribution, and L2 regularization with a coefficient of 

0.001 is applied to mitigate over fitting by penalizing 

large weights. This layer is followed by a Dropout layer 

that randomly drops 20% of the neurons during training, 

providing further regularization. This structure of dense 

and dropout layers is repeated with 64, 32, and 16 

neurons in subsequent dense layers, each maintaining the 

same initialization and regularization techniques. The 

model continues with another Dropout layer after each 

dense layer to ensure regularization is consistently 

applied throughout the network. Following these, a dense 

layer with 8 neurons using the softmax activation 

function is included. The softmax activation function is 

typically used for multi-class classification and outputs a 

probability distribution classes. Another Dropout layer 

follows this, and finally, the model includes a dense layer 

with 2 neurons and a sigmoid activation function. The 

sigmoid activation function is often used for binary 

classification tasks, outputting probabilities for two 

classes.  

The model is trained with the Adam optimizer, 

employing a learning rate of 0.001. The chosen loss 

function is categorical crossentropy, so it is well-suited 

for issues involving multi-class categorization. The 

categorical crossentropy loss function measures the 

dissimilarity between the true labels and the predicted 

probabilities, penalizing incorrect classifications more 

severely. The formula for categorical crossentropy loss 

is: 

𝐿𝑜𝑠𝑠 =  − ∑ 𝑦𝑖 log(�̂�𝑖)
𝑁
𝑖=1         (1) 

where  N  is the number of classes, 𝑦𝑖  is the true label for 

class  i , and �̂�𝑖 is the predicted probability for class  i. 

L2 regularization, often referred to as Ridge 

regularization, is a method employed in machine learning 

models to mitigate over fitting. It achieves this by 

incorporating a penalty term into the loss function. The 

"L2" refers to the L2 norm, which is the sum of the 

squared values of the weights. This penalty term 

discourages the model from fitting the noise in the 

training data by shrinking the weight values, thus 

promoting simpler models with smaller weights.  
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Figure 2:  DNN model 

Mathematically, L2 regularization adds the following 

term to the loss function: 

𝑃 =  𝜆 ∑ 𝜔𝑖
2

𝑖                               (2) 

Where λ is a regularization parameter that controls 

the strength of the penalty, and 𝜔𝑖 are the weights of the 

model. 

When the loss function with L2 regularization is 

minimized, the model not only tries to minimize the 

original loss but also tries to keep the weights small. This 

helps in preventing over fitting, as models with smaller 

weights are less likely to fit the noise in the training data 

and more likely to generalize better to new, unseen data. 

The training phase entails the adjustment of the 

model to the test data with a validation split using the 

same test data over 60 epochs and a batch size of 15.  

The model's training was optimized by employing an 

early stopping criterion, where training is terminated if 

accuracy stabilizes without improvement over a set 

number of epochs, ensuring optimal model performance 

while avoiding unnecessary computation. Other 

hyperparameters were determined experimentally to 

achieve the most effective configuration. For instance, 

the batch size was set to 15 to maintain a balance 

between memory efficiency and gradient updates, which 

aids in faster convergence. The learning rate for the 

Adam optimizer was chosen as 0.001 after testing 

different rates and selecting the one that yielded the best 

training and validation accuracy. Moreover, each layer's 

dropout rate and the L2 regularization coefficient were 

tuned to prevent overfitting effectively. These 

hyperparameter values were fine-tuned by monitoring 

model performance across multiple experimental runs, 

adjusting values iteratively to achieve a reliable, accurate 

prediction model for heart disease diagnosis. Upon 

training completion, the model's performance is 

evaluated on the test data. The evaluation provides a loss 

and accuracy metric. Construction and training of the 

deep learning model took place on Edge layer or cloud 

server. The output layer of this model generates health 

assessment results, which are categorized into binary 

classes: 0 for health and 1 for illness.  

3.7 Dataset 

The Erbil Heart Disease Dataset [29], sourced from the 

Medical Help Centre, a specialized heart hospital in 

Erbil, Iraq, contains data on 333 patients, each with 21 

attributes as detailed in Table 2. This publicly available 

dataset aims to facilitate the prediction of heart disease 

using information specific to the local population. The 

dataset’s attributes are organized into five categories: 

demographic information, medical history, physical 

examinations and symptoms, medical laboratory tests, 

and diagnostic features. These attributes were carefully 

chosen based on expert medical advice to ensure their 

relevance and significance for heart disease prediction. 

By leveraging this dataset, researchers can develop and 

refine predictive models that are tailored to the unique 

characteristics of the patients from this region, ultimately 

enhancing the accuracy and effectiveness of heart disease 

diagnosis and treatment strategies. Figure 3 illustrates the 

distribution of the target variable for heart disease. It 

visually represents the proportion of patients with and 

without heart disease, aiding in understanding the 

dataset's balance and the prevalence of the condition. 

Table 2: Data description 

Attribute Description 

Age Patients' ages, measured in years. 

Sex The patient's gender is indicated by a value of 1 for 

female and 0 for male. 

Smoking Indicate whether the patient is a smoker or not (0=No, 

1=Yes) 

Years Duration of smoking for smokers 

LDL The patient's LDL-Cholesterol ratio 

Chp Types of chest pain are categorized as follows: 1= 

Typical angina, 2= Atypical angina, 3= Non-anginal 

pain, and 4= Asymptomatic. 

Height The patient's height, measured in centimeters. 

Weight The patients' weight, measured in kilograms. 

FH  History of heart disease among family members 

Active Indicate the patient's level of activity (0=Inactive, 

1=Active) 

Lifestyle Residence location: 1 = City, 2 = Town, 3 = Village 

CI Has the patient undergone any cardiac catheterization 

or any invasive procedures involving the heart? (0 

indicates No, while 1 indicates Yes) 

HR Cardiac pulse ratio 

DM Presence of diabetes: 0 = No, 1 = Yes 

Bpsys Ratio of systolic blood pressure 

Bpdias Ratio of diastolic blood pressure 

HTN The patient's hypertension status: 0 for "No," 1 for 

"Yes." 

IVSD Echo parameter: Interventricular Septal Thickness 

during Diastole (IVSD), a measurement utilized in 

determining Left Ventricular Hypertrophy (LVH). 

ECGpatt The ECG test includes four categories: ST-Elevation 

(1), ST-Depression (2), T-Inversion (3), and Normal 

(4). 

Qwave Presence of the Q wave: 0 for "No," 1 for "Yes." 

Target The patient's heart disease status: 0 for "without heart 

disease," 1 for "with heart disease." 
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Figure 3:  Distribution of target attribute 

3.8 Data preprocessing 

Data preprocessing plays a pivotal role in building a 

more precise machine learning model. This phase 

encompasses several tasks geared towards enhancing 

data quality, including the identification and management 

of missing values, the detection and elimination of 

outliers, and the selection of pertinent features. In 

addition to the preprocessing operations already 

performed on the Erbil data, we have implemented the 

following supplementary preprocessing steps to enhance 

their usability further. 

3.8.1 Normalization  

Normalization, particularly standardization, is a crucial 

preprocessing step in data analysis and machine learning. 

It adjusts the scale of data to ensure that each feature 

contributes equally, preventing those with larger scales 

from dominating results. This process involves centering 

the data around zero by subtracting the mean of each 

feature, effectively neutralizing biases introduced by 

different scales. Subsequently, the data is scaled by 

dividing it by the standard deviation of each feature, 

normalizing variance across features. This 

transformation, which results in each feature having a 

mean of zero and a standard deviation of one, is 

beneficial for algorithms sensitive to feature scales, such 

as linear regression and neural networks. Standardization 

accelerates gradient descent convergence and enhances 

model performance, ensuring equitable feature treatment 

and improving analysis or model training accuracy. 

3.8.2 One-hot encoding  

The operation of converting class labels into a 

categorical format, known as one-hot encoding, 

transforms numerical class labels into binary vectors. 

This process is essential in deep learning as it ensures 

that each class label is represented equally and without 

any implicit ordinal relationship. One-hot encoding helps 

neural networks to interpret the labels correctly, 

facilitating accurate computation of loss functions like 

categorical cross-entropy. This encoding method boosts 

the model's capacity to discern patterns from the data 

efficiently, thereby enhancing its performance in 

classification tasks. 

3.8.3 Identification of missing values  

This operation is performed to verify the absence of 

missing values in a dataset. By calculating the total 

percentage of missing data, we can confirm whether the 

dataset is complete. The process involves counting all 

missing entries across the dataset, ensuring that the 

dataset is fully intact and reliable for subsequent analysis 

or model training without requiring further imputation or 

cleaning steps. 

4 Results and Discussion 

4.1 Training and testing performance 

The model was trained using 80% of the available data, 

with the remaining 20% set aside for testing. The 

assessment of the models includes the utilization of 

different performance measures, encompassing accuracy, 

specificity, F1 score, precision, and the recall. Accuracy 

is a measure used to assess the predictive ability of a DL 

model through the comparison of the expected outcome 

with the actual outcome.  In the context of predicting 

heart disease, the classifier's ability to precisely 

determine the existence or non-existence of the disease is 

assessed through the true positive (TP) and true negative 

(TN) values. Conversely, false positive (FP) and false 

negative (FN) values highlight the inaccuracies in the 

models' predictions. Precision gauges the ratio of 

observed positive instances among all the predicted 

positive instances. Recall, alternatively known as 

sensitivity or the true positive rate, computes the ratio of 

actual positive instances correctly identified by the 

model. Specificity, conversely, evaluates the ratio of all 

negative instances that the model accurately predicts. 

Meanwhile, the F1 score is a metric that amalgamates 

precision and recall, delivering a harmonized measure of 

the model's performance. It computes the harmonic mean 

of precision and recall, assigning equal significance to 

both metrics.  

Figure 4 illustrates the results obtained during the 

training and testing phase of the proposed model. This 

figure highlights a crucial role in evaluating and 

analyzing the performance of the proposed model, 

providing insights into its training and testing 

performance, respectively. It provides the value of 

accuracy and loss that evaluate the efficacy of the model 

and its performance on the unobserved test data.  

By examining Figure 4, one can gain insights into 

how well the model performs on the test data, allowing 

for a comprehensive understanding of its performance 

and the potential impact on real-world scenarios. The 

proposed system demonstrates exceptional performance 

with an accuracy of 96.15%, precision of 92.86%, recall 

(sensitivity) of 97.50%, and an F1-score of 94.87%.The 

accuracy achieved for the proposed model was 96.15%. 

This indicates that the model's predictions aligned with 

the desired output in approximately 96.15% of cases. A 

65%
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high accuracy value like this suggests that the model 

performed exceptionally well in accurately classifying 

instances and making correct predictions.  

4.2 Comparative analysis 

The evaluation of the suggested work centers on 

assessing prediction accuracy through the application of 

state-of-the-art approaches to heart disease datasets. A 

comparative analysis has been conducted out to analyze 

the accuracy results of the proposed model in comparison 

to existing models documented in the literature (Table 1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4:  Training and testing performance: accuracy and loss across epochs 

The outcomes of this comparison are illustrated in Table 

3. In our research, we propose a deep learning model that 

achieves an accuracy of 96.15%, demonstrating its 

superior performance compared to several established 

methods. Specifically, our model outperforms the Meta 

classification technique, which achieves an accuracy of 

85.48%, and the Hybrid random forest with a linear 

model, which reaches 88.70%. It also surpasses the 

Statistical model and deep neural network with 91.57% 

accuracy and the bi-directional LSTM (C-BiLSTM) 

algorithm, which attains 94.78%. Although 

hyperparameter tuning and cross-validation with machine 

learning yield 94.90% accuracy, and the traditional 

Random Forest achieves 95.25%, our model still exhibits 

better performance. Other techniques, such as CNN 

(93.98%), MLP (91.20%), RNN (91.00%), and the Extra 

Tree Classifier with SMOTE (92.62%), also fall short in 

comparison. The Deep Forest Cascade Technique 

(92.56%) and Random Forest without SMOTE (88.89%) 

further underscore the effectiveness of our proposed 

approach.  

Despite the high accuracy achieved by the Optimised 

Ensemble Fuzzy Ranking (OEFR) strategy (96.72%), the 

LSTM model (96.91%), and the Fuzzy Information 

System with Bi-LSTM (98.86%), our approach presents 

several notable advantages. While these models 

demonstrate impressive results, they are often trained on 

datasets containing only 14 attributes, which limits the 

scope of patient information considered. In contrast, our 

model is trained on a dataset with 21 attributes, providing 

a more comprehensive analysis by integrating additional 

health parameters that are critical for precise heart 

disease prediction. Furthermore, the aforementioned 

methods do not account for real-time constraints, nor do 

they consider training time, which is essential for 

practical deployment in dynamic healthcare 

environments. Our approach emphasizes real-time 

prediction, leveraging edge computing to process data 

swiftly and effectively, making it better suited for real-

world applications where timely responses are crucial. 

Thus, while some models may have higher reported 

accuracy, our model's comprehensive feature set and 

real-time capability underscore its suitability and 

effectiveness in practical healthcare settings.  

The outcomes of the comparison with previously 

conducted related studies demonstrate that the proposed 

system outperforms these systems. With the increasing 

importance of real-time smart systems in healthcare, 

which heavily rely on IoT technology, tasks such as rapid 

processing become critical as they require minimal 

delays and are context-sensitive. 

4.3 Training time comparison 

To provide a more comprehensive time comparison, it's 

important to include the hardware specifications of the 

environment in which the experiments were conducted. 

In this study, the computations were performed using 

Google Colab, which utilizes a cloud-based GPU 

environment. Specifically, the model was run on a Tesla 

T4 GPU with a standard CPU configuration, offering a 

balance of performance and accessibility. The 

comparison of training times for various models, 

including transfer learning models, the CNN model 

proposed in [23], and the newly proposed DNN model, is 

shown in Table 4. This comparison highlights their 

computational complexity. Despite the variations in 

training conditions, such as the data used and the 

hardware, the newly proposed DNN model demonstrates 

a significantly shorter training time compared to the 
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other models. This efficiency is particularly crucial for 

real-time processing, as it allows for faster model updates 

and deployment, which is essential in dynamic 

environments. The reduced training time, combined with 

the model's high accuracy, makes it especially suitable 

for edge computing applications. Implementing this 

model on edge devices enables real-time analysis and 

decision-making, thereby enhancing its practicality and 

effectiveness in real-world scenarios. The efficient 

processing and deployment capabilities of the proposed 

model highlight its advantages in applications requiring 

immediate results and timely responses. 

. 

Table 3: A comparative examination of the proposed model against existing models. 

Approach Acc Author-Year-Reference 

Meta classification technique 85.48 Latha et Jeeva (2019) [16] 

Hybrid random forest with a linear model 88.70 Mohan et al. (2019) [17] 

Statistical model and deep neural network 91.57 Moreno-Ibarra et al. (2019) [18] 

bi-directional LSTM (C-BiLSTM) algorithm 94.78 Dileep et al. (2023) [19] 

Hyperparameter tuning and cross-validation with machine learning 94.90 Ahmed et al. (2020) [20] 

Random Forest 95.25 Dhanamjayulu et al. (2022) [21]  

Optimised ensemble fuzzy ranking (OEFR) strategy 96.72 Managala et al. (2023) [22] 

CNN 93.98 Almujally et al. (2023) [23] 

MLP 91.20 Almujally et al. (2023) [23] 

RNN 91.00 Almujally et al. (2023) [23] 

LSTM 96.91 Almujally et al. (2023) [23] 

Random Forest  without SMOTE 88.89 ishaq et al. (2023) [26] 

Extra Tree Classifier  with SMOTE 92.62 ishaq et al. (2023) [26] 

XGBoost 93.26 Gracious et al. (2024) [25] 

Deep Forest Cascade Technique 92.56 Askar (2023) [24] 

Fuzzy information system and Bi-LSTM 98.86 Nancy et al.(2022) [2] 

Proposed approch 96.15  

Table 4: The comparison of training times  

Model  Training time  

AlexNet (transfer learning) 32 min 

VGG-16 (transfer learning) 29 min 

CNN 24 min 

Proposed  12 sec 

4.4 Advantages of edge architecture 

We have proposed an edge architecture model combined 

with a deep learning framework for heart disease 

prediction, achieving remarkable performance. The 

exponential proliferation of devices and the resulting 

surge in data traffic have significantly increased 

bandwidth consumption and service disruptions. The 

traditional cloud model struggles with issues like latency, 

bandwidth utilization, and connectivity, making it 

insufficient to handle these challenges alone. Our 

decentralized edge computing model addresses these 

limitations by processing and storing data close to the 

source. This proximity allows for efficient handling of 

vast IoT data using AI tools at the edge layer, 

significantly reducing latency and managing the 

substantial data volume from IoT devices. By integrating 

a hierarchical edge-fog-cloud architecture, our model 

enhances performance and reliability in heart disease 

prediction, leveraging the advantages of edge and fog 

computing to deliver superior predictive capabilities in 

healthcare applications. 

4.5 K-Fold Cross-validation 

To validate our proposed model, we applied 10-fold 

cross-validation using a heart failure dataset. The results 

presented in Table 5 demonstrate the model's robust 

performance, with an average accuracy of 96.99%. The 

precision, recall (sensitivity), and F1-score achieved are 

96.30%, 97.33%, and 96.63%, respectively.  

Table 5: 10 cross-validation results 

Number 

of Fold 

Accuracy Precision Sensitivity 

(Recall) 

F1-

Score 

Fold 1 96.30 95.45 97.06 96.10 

Fold 2 100 100 100 100 

Fold 3 92.59 90 94.74 91.67 

Fold 4 96.30 95.45 97.06 96.10 

Fold 5 100 100 100 100 

Fold 6 96.30 97.37 94.44 95.71 

Fold 7 96.15 95.00 97.06 95.85 

Fold 8 100 100 100 100 

Fold 9 96.15 96.88 95.45 96.01 

Fold 10 96.15 92.86 97.50 94.87 

Average  96.99 96.30 97.33 96.63 

 

These metrics indicate that the model consistently 

performs well across different folds. Specifically, several 

folds, such as Fold 2, Fold 5, and Fold 8, achieved 

perfect scores (1.00) across all metrics, highlighting the 

model's capability to accurately classify patient data.  

https://www.sciencedirect.com/topics/computer-science/classification-technique
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Other folds, such as Fold 1, Fold 4, and Fold 6, also 

showed high performance with accuracy and F1-scores 

above 96%. 

In our k-fold cross-validation study, we enhance the 

statistical interpretation presented in Table 6  by 

calculating the standard deviation and 95% confidence 

intervals for each metric. The standard deviation 

provides insight into the variability or spread of the 

model’s performance across the folds, while the 95% 

confidence intervals give a range within which the true 

metric value is likely to fall, offering a measure of 

reliability and stability. 

 

Table 6: Statistical interpretation of k-fold cross-

validation study 

Metric Mean 
Stand. 

Deviat. 

95% 

Confidence 

Interval 

Lower 

Bound 

95% 

Confidence 

Interval 

Upper 

Bound 

Accur. 96.99 2.24 95.61 98.38 

Precis. 96.30 3.12 94.37 98.23 

Sensit. 97.33 2.01 96.09 98.57 

F1-scor. 96.63 2.53 95.06 98.20 

 

The standard deviation values reflect the consistency 

of the model’s performance. Smaller standard deviations, 

such as for accuracy (2.24%), indicate more stable results 

across folds, while larger values, like for precision 

(3.12%), suggest slightly higher variability in the model's 

precision across different data splits. The calculated 95% 

confidence intervals for each metric indicate the 

consistency and stability of the model’s performance 

across different folds. For accuracy, the interval is 

between 95.61% and 98.38%, showing minimal 

variation. Precision’s confidence interval spans from 

94.37% to 98.23%, suggesting slightly more variability. 

Sensitivity has an interval from 96.09% to 98.57%, 

demonstrating reliable detection of true positives with 

little fluctuation. The F1-score ranges from 95.06% to 

98.20%, confirming a robust balance between precision 

and recall. These intervals reflect stable and consistent 

model performance. 

These results affirm the effectiveness of the 

proposed edge architecture combined with a deep 

learning model in predicting heart disease, significantly 

outperforming traditional methods by leveraging the 

advantages of edge computing to process data efficiently 

and accurately. 

5 Conclusion 
This work introduces a model for a Real-Time Smart 

Healthcare System, tailored for predicting the risk of 

heart disease, leveraging Edge-IoT and DL technologies. 

The architecture consists of three layers, each with its 

required components, and employs a deep learning 

model for the task of prediction. The suggested system 

demonstrates outstanding performance, boasting average 

accuracy, precision, sensitivity, and F1-score values of 

96.99%, 96.30%, 97.33%, and 96.63, respectively, 

surpassing other current models for predicting heart 

disease. However, this constitutes just one facet of the 

continual healthcare research using predictive analytics, 

with deep learning models holding tremendous untapped 

potential. 

The model can be improved to autonomously 

generate tailored diet and exercise suggestions, taking 

into account an individual's health condition and 

guidance from a heart specialist. In this envisioned 

intelligent system for predicting heart disease, IoT 

devices are utilized for data acquisition, while edge 

computing manages data analysis, with the cloud 

reserved for other essential tasks. Nevertheless, our study 

acknowledges certain limitations, including the necessity 

for real-world validation, addressing privacy concerns, 

and ensuring scalability and compatibility within diverse 

healthcare infrastructures. Continued exploration and 

refinement of real-time smart healthcare systems are 

imperative for realizing their full potential in 

transforming healthcare delivery and improving patient 

outcomes.  

To support real-world deployment, future work will 

focus on several concrete steps. These include rigorous 

testing in clinical environments to ensure model 

robustness and compliance with healthcare standards 

such as HIPAA or GDPR for data privacy. 

Enhancements to the system could allow for personalized 

diet and exercise recommendations tailored to individual 

health profiles, under medical guidance. Additionally, we 

plan to incorporate real-time patient feedback and 

specialist input, enabling the model to learn from real-

world cases and improve over time. 

The healthcare sector's effectiveness can undergo a 

transformation through accurate and timely disease 

forecasts, facilitating real time responses and smart 

decision-making by healthcare professionals, especially 

when leveraging fog/edge computing technologies. This 

integration has the potential to enhance the overall 

quality-of-service and revolutionize the healthcare 

industry. 
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