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This study presents a reduced Convolutional Recurrent Neural Network (CRNN) model for music genre 

classification, leveraging the GTZAN dataset and Mel-Frequency Cepstral Coefficient (MFCC) feature 

extraction. Unlike more complex architectures, this model simplifies the CRNN structure to three 

convolutional layers and two BiLSTM layers, maintaining competitive performance while reducing 

computational complexity. Key experimental parameters included learning rate tuning (0.1, 0.01, 0.001, 

and 0.0001) and dropout usage (30% before the BiLSTM layers) to mitigate overfitting. The best 

configuration, utilizing a learning rate of 0.001 and dropout, achieved an accuracy of 88.64%, 

outperforming more complex CRNN models by approximately 15%. These results underscore the potential 

of streamlined architectures in music information retrieval tasks, particularly for applications where 

computational resources are constrained. Future work will address overfitting issues and refine the 

dataset for enhanced model performance. 

Povzetek: Študija predstavlja poenostavljen model konvolucijsko-rekurentne nevronske mreže (CRNN) za 

klasifikacijo glasbenih zvrsti z uporabo GTZAN podatkovne zbirke in MFCC značilk, ki kljub zmanjšani 

kompleksnosti dosega visoko natančnost (88,64 %) ter presega zmogljivejše modele za približno 15 %. 

 

1 Introduction 
Music genre classification is crucial for information 

retrieval (Music Information Retrieval) and analysis, and 

as digital music libraries grow, automated methods are 

needed to categorize and organize music. Music 

Information Retrieval (MIR) is a research field that 

focuses on analyzing and extracting music transcription, 

beat detection, on-set detection, and genre classification 

[1]. Traditional methods often rely on handcrafted features 

and machine learning algorithms, which need help to 

capture complex temporal and spectral patterns. 

Convolutional Recurrent Neural Networks (CRNNs), a 

combination of CNNs for feature extraction and RNNs for 

temporal dependencies, have shown promising results in 

extracting hierarchical features from raw audio data [2].  

This work investigates further the CRNN application 

for MIR, specifically to classify music genres with the 

GTZAN dataset. The CRNN extracts local features and 

aggregates temporal patterns [3]. MFCC is extracted from 

the dataset to become an input for the model [4]. The 

combination of CRNN in this work is CNN with BiLSTM 

(Bidirectional Long Short-Term Memory). This work 

proposes a simpler version of the algorithms compared to 

Ashraf et al. [5], with only three layers of CNN and two 

layers of RNN (BiLSTM-BiLSTM). The accuracy of 

Ashraf et al. is 73.69% with five layers of CNN and three 

layers of RNN. The main contribution of this work is a less 

complex CRNN model architecture with higher accuracy. 

 

The rest of this paper is structured as follows: The 

Introduction section sets the background and motivation 

for this paper. Related Works section layouts other works 

in MIR that utilize machine learning and deep learning 

methods. The Methods section explains the data  

collection, requirement specification, design and 

implementation, and testing and evaluation. The Results 

and Analysis section presents empirical evidence based on 

four scenarios and discusses the findings. Finally, the 

Conclusion section summarizes the findings and outlines 

future works. 

2 Related works 
Ghosh et al. [2] compared machine learning models 

(SVC or Support Vector Classifier, logistic regression, 

and ensemble learning using AdaBoost) and deep learning 

models (ANN or Artificial Neural Network, CNN, CRNN 

with CNN-LSTM combination, and PCRNN or Parallel 

CRNN). Inputs used in this work are feature matrix (for 

machine learning models) and Mel-spectrogram (for deep 

learning models), extracted from the FMA dataset. The 

CRNN has the highest accuracy at 90%, with only 480 out 

of 8000 data used from the dataset.  

Ashraf et al. [5] use a couple of CRNN combinations, 

i.e., CNN-LSTM, CNN-BiLSTM, CNN-GRU, and CNN-

BiGRU. Inputs used in this work are the Mel-spectrogram 

and Mel-Frequency Cepstral Coefficient (MFCC) 

extracted from the GTZAN dataset. This work's highest 
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accuracy is obtained by CNN-BiGRU using Mel-

spectrogram (89.3%) and CNN-LSTM using MFCC 

(76.4%). Mendes et al. [6] compared two CRNN 

combinations (CNN-LSTM and CNN-BiLSTM), and the 

results were used to get music recommendations. The 

input that is used in this work is the Mel-spectrogram that 

is extracted from the FMA dataset. CNN-BiLSTM 

achieved the highest accuracy, with an accuracy of 72%. 

Luo [7] compared two deep learning algorithms, 

Convolutional Neural Network (CNN) and Long Short-

Term Memory (LSTM), using GTZAN and FMA (Free 

Music Archive) datasets. The accuracies obtained for the 

GTZAN dataset are 56% (CNN) and 42% (LSTM). 

Meanwhile, accuracies for the FMA dataset are 50.5% 

(CNN) and 33.5% (LSTM). Kumar et al. [8] used CNN 

and GTZAN datasets to classify music genres. The 

accuracy obtained in this work is 83%. Ghosh et al. [2] 

compared several machine learning and deep learning 

algorithms using the FMA dataset. The highest accuracy 

obtained in this work was achieved using a convolutional-

recurrent neural network (CRNN) with an accuracy of 

90%. Table 1 provides a summary and comparison of 

these related works.

Table 1: Test results from the model 

Work Model  Dataset Feature 

Extraction 

Accuracy 

Luo [7] – “Automatic 

Music Genre 

Classification based on 

CNN and LSTM” 

- CNN  

- LSTM 

- GTZAN  

- FMA 

- Mel-

spectrogram 

(for CNN)  

- MFCC (for 

LSTM) 

- Highest accuracy 

obtained by CNN 

using both GTZAN 

dataset (56%)  

- FMA dataset (50.5%) 
Kumar et al. [8] – 

“Automated Music 

Genre Classification 

through Deep Learning 

Techniques” 

CNN GTZAN  MFCC Accuracy obtained by the 

model is 83% 

Ghosh et al. [2] – “A 

Study on Music Genre 

Classification using 

Machine Learning” 

- Machine learning 

models (SVC, logistic 

regression, and 

ensemble learning 

using AdaBoost)  

- Deep learning models 

(ANN, CNN, CRNN 

with CNN-LSTM 

combination, PCRNN) 

FMA, using 

only 480 out 

of 8000 data 

- Feature matrix 

(for machine 

learning 

models) 

- Mel-

spectrogram 

(for deep 

learning 

models) 

Highest accuracy 

obtained by CRNN 

(90%) 

Ashraf et al. [5] – “A 

Hybrid CNN and RNN 

Variant Model for 

Music Classification” 

- CNN-LSTM 

- CNN-BiLSTM 

- CNN-GRU 

- CNN-BiGRU 

GTZAN  - Mel-

spectrogram 

- MFCC 

- Highest accuracy 

obtained by CNN-

BiGRU using Mel-

spectrogram (89.3%)  

- CNN-LSTM using 

MFCC (76.4%) 
Mendes et al. [6] – 

“Deep Learning 

Techniques for Music 

Genre Classication and 

Building a Music 

Recommendation 

System” 

- CNN-LSTM 

- CNN-BiLSTM 
FMA  Mel-

spectrogram 

CNN-BiLSTM obtained 

the highest accuracy 

(90%) 

3 Methods 
The dataset that is used in this work is the GTZAN 

dataset. GTZAN dataset was first created by George 

Tzanetakis and Perry Cook in 2002 [9]. This dataset 

consists of 10 genres of music, and each genre has a total 

of 100 WAV audio. Each audio file lasts 30 seconds with 

a 22,050 Hz sample rate. The genres inside this dataset are 

blues, classic, country, hip-hop, jazz, metal, pop, reggae, 

and rock. There is a single corrupted audio file within the 

jazz category. `The corrupted audio within the jazz 

category is removed before it got into data processing. 

Hence, the dataset contains only 999 audio files. The 

dataset was initially available on a MARSYAS website 

created by Tzanetakis and Cook [10]. Currently, the  

 

dataset is available to download at 

https://www.kaggle.com/datasets/andradaolteanu/gtzan-

dataset-music-genre-classification (Kaggle). 

MFCC is extracted from each audio file inside the 

dataset. Sound extraction carried out by MFCC is based 
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on estimated frequencies that humans can hear. The signal 

used in MFCC is the Mel scale, which uses a linear filter 

at frequencies below 1000 Hz and a logarithmic distance 

above 1000 Hz [11]. The output of this process is a 

spectrum wave graph or spectrogram that uses this 

frequency scale. This spectrogram contains feature 

coefficients, and these coefficient values represent the 

audio signal [12]. MFCC can capture important voice 

characteristics in recognition and critical information in 

voice, produce minimal data without losing much 

information, and replicate human hearing sound [13]. 

MFCC extraction is handled using Librosa, a Python 

package that provides audio and music signal processing 

[14]. Several parameters are needed to extract MFCC, 

such as the number of coefficients needed, window length, 

and hop length. This work extracts 13 cepstral coefficients 

from every audio. Window length and hop length used are 

2,048 and 512, respectively. Each audio file is split into 

ten segments to augment the training data. The results of 

this process are saved on a JSON file containing an array 

with the 13 MFCC coefficient inside. 

The proposed CRNN model consists of three layers: a 

convolutional layer, a max pooling layer, and batch 

normalization on the CNN layer, with two BiLSTM layers 

for the RNN. After going into the CNN and RNN layers, 

the inputs are flattened, and the fully connected layer 

connects all the neurons with the output layer. This work 

investigates two models: the models that used dropout 

before the BiLSTM layer and those that did not use 

dropout. The CNN layer consists of a convolutional layer, 

a max pooling layer, and batch normalization. The 

convolutional layer uses 32 filters with 3x3 kernel size on 

the first and second layers and 2x2 kernel size on the third 

layer, including ReLU for the activation function. ReLU 

is preferred in this work due to its ability to remove 

negative values.  

The Max pooling layer has a 3x3 pool size for the first 

and second layers, 2x2 for the third layer, and 2x2 stride. 

Pooling is done to progressively lower the model's 

computational complexity, parameter count, and control 

overfitting [15]. Pooling reduces the size of the matrix in 

the feature map. Max pooling is one of the most popular 

forms of pooling. Max pooling extracts the highest value 

inside patches from the feature map and discards the rest 

of the values [16]. 

Batch normalization is employed to mitigate sudden 

changes in each layer [6]. The input is reshaped before 

being passed to the RNN layer, as the CNN and RNN 

layers require different input shapes. In this work, a 

dropout layer is added before the RNN layer as part of the 

investigation. Dropout is widely recognized for its ability 

to prevent overfitting by randomly deactivating neurons 

during training [17]. A dropout rate of 0.3 (30%) is used 

before the RNN layer. This value is selected based on its 

superior validation accuracy compared to dropout rates of 

0.2 and 0.4. 

In this work, two layers of BiLSTM are used, with 

return sequences set to true for the first layer. Return 

sequences are used to send forward all of the LSTM 

hidden layer sequences to the next layer [18]. The input 

went to the dense or fully connected layer. The input is 

flattened before going to the dense layer. The number of 

filters used for the dense layer is 64 units with the ReLU 

activation function, which is then followed by another 

dropout of 30%. Figure 1 shows the overview of the model 

proposed in this work. 

 

Figure 1: Architecture overview of the proposed CRNN model. 

The dataset is divided into training, validation, and 

test sets with a 60-20-20 ratio using a simple train-

validation-test split. Initially, the dataset is split into 

training and test sets with an 80-20 ratio. The 80% training 

set is then further divided into training and validation sets 

with a 75-25 ratio. The validation set is used to evaluate 

the model during training, while the test set is reserved 

exclusively for testing the trained model and is not used 

during the training process. 

Several parameters, such as the optimizer, loss 

function, and evaluation metrics, are configured for the 

model. The optimizer employed in this work is Adam, 

tested with multiple learning rates: 0.1, 0.01, 0.001, and 

0.0001. These learning rates were selected to observe the 

accuracy trend, specifically whether smaller learning rates 

lead to higher accuracy. The loss function is sparse 

categorical cross-entropy, and the primary performance 

metric is accuracy. 

The model is trained for 100 epochs with a batch size 

of 32. After training, the model is evaluated using the test 

set. The evaluation metrics include accuracy, loss, 

precision, recall, and the F1 score. 

4 Results and analysis 
This work tests several parameters, namely dropout 

before the RNN layer and several learning rates values. 

Model testing uses the test set, which has not been used in 

any process. Table 2 shows the model's testing result using 

the test set. 
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Table 2: Test results from the model 

Dropout Learning 

rate 

Accuracy Loss Precision Recall F1 score 

- 0.1 10.06% 230.86% 1.01% 10.06% 1.84% 

- 0.01 74.07% 91.52% 74.82% 74.07% 73.81% 

- 0.001 86.74% 64.69% 86.84% 86.74% 86.67% 

- 0.0001 84.68% 60.25% 84.7% 84.68% 84.56% 

✓ 0.1 10.91% 230.88% 1.19% 10.91% 2.15% 

✓ 0.01 74.72% 75.5% 74.94% 74.72% 74.43% 

✓ 0.001 88.64% 51.95% 88.85% 88.64% 88.62% 

✓ 0.0001 86.24% 46.91% 86.28% 86.24% 86.19% 

Both models, with or without dropout that used a 0.1 

learning rate had very low accuracy because the learning 

rate was too big. A significant learning rate would speed 

up the training process, but the model could need more 

time to analyze the data thoroughly. Based on the 

accuracy, models with a learning rate of 0.1 could not 

study the data. Models with a 0.01 learning rate had 

similar accuracy, around 74%. Models using a 0.001 

learning rate had the highest result out of all learning rates, 

but when compared to the use of dropouts, the model using 

dropouts had higher accuracy.  

The model that used dropout and a 0.001 learning rate 

got the highest accuracy out of all other tested models, 

with an accuracy of 88.64%. Models with a 0.0001 

learning rate achieved high results, but not higher than 

models with a 0.001 learning rate. Loss results from 

models that used dropout are significantly lower than 

those that did not. Meanwhile, each model's precision, 

recall, and F1 scores have similar results in terms of 

accuracy. 

The following figures are accuracy and loss graphs 

from the training process. The models suffer from 

overfitting, but models that used dropout suffered less than 

those that did not. Figure 2 shows training results from 

models without dropouts, and Figure 3 shows training 

results from models with dropouts. The blue line 

represents results from the train set, and the orange line 

represents results from the validation set. 

(a) 
(b) 
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(c) 
(d) 

Figure 2: Accuracy and loss graph for models without dropout with (a) Learning rate 0.1, (b) Learning rate 0.01, (c) 

Learning rate 0.001, and (d) Learning rate 0.0001 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 3: Accuracy and loss graph for models with dropout with (a) Learning rate 0.1, (b) Learning rate 0.01, (c) 

Learning rate 0.001, and (d) Learning rate 0.0001 

 

Based on Figures 2 and 3, graphs from learning rate 

0.1 show underfitting due to the high loss and low 

accuracy achieved on all epochs. The results indicate that 

the model is unable to learn from the data. A learning rate 

of 0.01 shows overfitting only for the model without 

dropout. The other model had a good fit because the 

difference between the train and validation set is minimal. 

Learning rates of 0.001 and 0.0001 also show overfitting, 

but the model with dropout is better than without dropout. 

Thus, the use of dropout effectively reduces overfitting on 

models. Weight regularization such as L2 are not 

implemented in this model. Only dropout is used in this 
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model to maintain the simplicity of the model and also due 

to device limitation. 

Further evaluation on Figures 4 and 5 depict the 

confusion matrix of the results. Figure 4 shows the 

confusion matrix from models without dropouts, and 

Figure 5 shows the confusion matrix from models with 

dropouts. The confusion matrix for models with a learning 

rate of 0.1 showed that the model could not classify any 

data. Meanwhile, models with a learning rate of 0.01 made 

many mistakes when classifying data. The accuracy 

achieved using this learning rate is relatively low, around 

70%. Learning rates 0.01 and 0.001 show overfitting but 

are still able to classify the data sufficiently. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 4: Confusion matrix of models without dropout with (a) Learning rate 0.1, (b) Learning rate 0.01, (c) 

Learning rate 0.001, and (d) Learning rate 0.0001 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 5: Confusion matrix of models with dropout with (a) Learning rate 0.1, (b) Learning rate 0.01, (c) Learning rate 

0.001, and (d) Learning rate 0.0001 

 

The ROC curves in Figures 6 and 7 provide detailed 

insights into the classification performance of the models 

under different configurations. Key metrics such as the 

true positive rate (TPR) and false positive rate (FPR) are 

visually represented, where a steeper curve rising toward 

the top-left corner indicates higher sensitivity (recall) and 

better classification of positive instances. Additionally, a 

lower FPR, reflected in curves closer to the y-axis, 

suggests improved discrimination between classes. 

 

The area under the curve (AUC) serves as a summary 

metric, quantifying the model's overall performance. 

Higher AUC values, closer to 1.0, denote stronger 

classification capabilities. By comparing models with and 

without dropout across varying learning rates, it becomes 

evident that the inclusion of dropout generally enhances 

the stability and sharpness of the curves, indicating better 

generalization and resistance to overfitting. Notably, 

models with lower learning rates (e.g., 0.001 and 0.0001) 

demonstrate more consistent and pronounced ROC 

curves, suggesting that these configurations strike a 

balance between convergence and classification accuracy. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 6: ROC curves of models without dropout with (a) Learning rate 0.1, (b) Learning rate 0.01, (c) Learning rate 

0.001, and (d) Learning rate 0.0001 

 

 

(a) 

 

(b) 
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(c) 

 

(d) 

Figure 7: ROC curves of models with dropout with (a) Learning rate 0.1, (b) Learning rate 0.01, (c) Learning rate 

0.001, and (d) Learning rate 0.0001 

 

A confusion matrix of a test set with 1,998 data points 

shows that the model with dropout and learning rates 0.01, 

0.001, and 0.0001 can classify 1,493, 1,771, and 1,723 

data, respectively. In contrast, the model without dropout 

can classify 1,480, 1,733, and 1,692 data out of 1,998. The 

model with a learning rate of 0.1 will not be discussed 

further because the model cannot classify the data. The 

model using dropout and learning rate 0.001 has the 

highest number of correct classification results compared 

to the other models, indicating that it is the best model. 

Further analysis of the results indicates that the 

classical genre is the most accurately classified genre. The 

rock genre is the most misclassified due to the proximity 

between rock, country, and disco. The dataset also poses 

discrepancies with other references regarding the genre of 

certain audio files. In addition, the lack of artist variation 

in the dataset also affects the model classification ability 

due to the lack of variation of music genres, as an artist 

tends to produce music within one music genre. 

Audio from the rock genre was frequently 

misclassified as country, disco, or blues. Additionally, the 

model often misclassified non-rock audio as rock. Upon 

closer examination of the dataset, this issue appears to 

stem from the presence of numerous repetitive patterns 

and mislabeled samples under the rock category. 

The findings of this study have significant 

implications for the field of music information retrieval 

(MIR), particularly in advancing genre classification 

systems. The results demonstrate that a simpler CRNN 

architecture, when paired with effective regularization 

techniques like dropout and optimized learning rates, can 

achieve competitive accuracy, outperforming more 

complex models while maintaining computational 

efficiency. The highest classification accuracy of 88.64% 

highlights the potential of lightweight models in resource-

constrained environments.   

Moreover, the analysis underscores critical challenges 

in MIR, such as dataset quality and diversity. Issues like 

mislabeled samples, genre overlaps, and limited artist 

variation directly impact classification performance, as 

evidenced by the frequent misclassification of rock as 

similar genres like country, disco, and blues. These 

challenges emphasize the importance of curated datasets 

and robust preprocessing techniques in developing 

reliable MIR systems. Addressing these limitations, along 

with strategies like artist-level cross-validation and 

stratified sampling, could not only enhance genre 

classification accuracy but also extend the applicability of 

MIR systems to more nuanced tasks, such as personalized 

music recommendations and musicological analysis. 

5 Conclusion 
This work proposes a simpler architecture of a CRNN 

algorithm to classify music. The aim is to see whether a 

greater accuracy is achieved compared to more complex 

models. The proposed model comprises three CNN layers 

and two RNN (specifically BiLSTM) layers. The feature 

extraction used in this model is MFCC, which splits the 

dataset into ten segments to increase the total data. A 

dropout level of 0.001 learning rate achieved the highest 

accuracy of 88.64%. The accuracy is higher than the 

previous work accuracy of 73.69% using the same CRNN 

model with more CNN and RNN layers. 

The primary limitation of this work is that the model 

tends to overfit, necessitating further efforts to mitigate 

this issue. Future work could focus on cleansing the 

dataset by removing redundant and incorrectly labeled 

songs, which may enable the model to learn more 

effectively from the data. Additionally, incorporating 

early stopping techniques could help prevent overfitting. 

Other potential strategies include applying weight 

regularization, implementing artist-level cross-validation, 

and utilizing stratified sampling to improve the model's 

robustness. 
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