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This research addresses load balancing challenges in publish/subscribe (Pub/Sub) systems by 

comprehensively exploring reinforcement learning (RL) techniques. Algorithms such as epsilon-

greedy, Upper Confidence Bound (UCB), round-robin, and least connections were evaluated to 

establish baseline performance metrics.   Building on this foundation, we develop enhanced versions 

of epsilon-greedy and UCB algorithms tailored to the Pub/Sub context.   Additionally, we introduce a 

custom approach utilizing Proximal Policy Optimization (PPO) to learn adaptive load-balancing 

policies.   Our work provides a thorough comparative analysis of diverse RL methods, offering 

insights into their strengths and weaknesses in optimizing Pub/Sub system performance. Experimental 

results demonstrate the potential of RL, particularly our developed algorithms, to improve 

performance significantly. These enhanced algorithms showed marked improvements in makespan, 

achieving completion times up to 30% faster than traditional methods. Moreover, they exhibited 

notable gains in throughput, particularly in the Burst Load scenario, where EUCB and PPO 

showcased a 10-15% increase in throughput compared to baseline algorithms. This research also 

highlighted the enhanced algorithms' superior ability to maintain high message success rates, 

exceeding 90% in most scenarios, and their contribution to more stable and predictable latency, 

leading to improved QoS. Notably, the PPO-based approach exhibits superior performance during 

burst traffic and failure scenarios, highlighting its resilience and adaptability in dynamic 

environments.    

Povzetek: Razvit je nov pristop na osnovi globokega učenja za dinamično uravnavanje obremenitve v 

sistemih Pub/Sub. Modeli PPO, UCB in epsilon-greedy izboljšujejo učinkovitost, skrajšujejo čas 

obdelave in povečujejo prepustnost sporočil v dinamičnih okoljih. 

 

1 Introduction 
Load balancing enhances application performance and 

resource utilization by distributing incoming traffic across 

multiple servers [1] [2]. This is especially crucial in high-

traffic environments since it ensures system 

responsiveness and reduces overload. [3]. In 

publish/subscribe (Pub/Sub) systems, efficient load 

balancing significantly affects messaging service 

reliability [4]. 

Load balancing strategies can be classified into static and 

dynamic [5] [6]. Static techniques employ established 

rules, frequently based on hashing algorithms [7], while 

dynamic approaches adjust to system variables such as 

server response delays in real time. Recent developments 

in dynamic algorithms provide greater efficiency and 

determinism for balanced load distribution [8]. 

Even though static algorithms are wildly deployed 

and robust for their swift response to direct the incoming 

flow to its distention, they still have some harmful 

features. The Round-Robin (RR) and Least Connection 

(LC), as examples used in this work as static algorithms  

 

 

for compression, are blind algorithms. In the case of RR, 

cyclic distribution can be problematic when subscriber 

loads or capabilities change dynamically; RR will 

continue to send it an equal share of messages, potentially 

leading to delays and performance degradation [9].  

Moreover, RR doesn't consider each subscriber's capacity 

or processing power. This can result in some subscribers 

being underutilized while others are overwhelmed, 

leading to inefficient resource allocation. While LC's 

focus on the number of active connections can make it 

sensitive to short-term fluctuations in traffic[10]. A 

subscriber might temporarily have fewer connections due 

to a recent burst of messages, but it might still be heavily 

loaded regarding CPU or memory usage. LC might 

mistakenly send more messages to this subscriber, 

exacerbating its load imbalance. Also, LC assumes all 

subscribers have equal capabilities. In reality, subscribers 

might have different hardware configurations, software 

versions, or network connectivity, leading to varying 

processing speeds. LC's simplistic approach can lead to 

mailto:cse.22.11@grad.uotechnology.edu.iq
mailto:Muna.m.jawad@uotechnology.edu.iq


78 Informatica 49 (2025) 77–88 R.Z.A. Shaikh 

suboptimal performance in such heterogeneous 

environments.  

The shortcomings of static load balancing methods, 

particularly in scenarios with fluctuating traffic patterns 

and heterogeneous subscriber capabilities, motivate the 

investigation of Reinforcement Learning (RL) as a 

potential solution to overcome these limitations. The RL 

has recently emerged as a practical approach for dynamic 

load balancing across many domains. Its adaptability with 

fluctuating network conditions makes it well-suited for 

optimizing communication load balancing [11]. RL 

approaches are actively investigated in distributed systems 

to enhance parallel particle tracing [12]  and enhance 

cloud resource allocation, hence improving system 

performance [13] [14]. 

While load balancing has been extensively studied in 

various computing domains, its application within pub/sub 

systems remains relatively unexplored, as exemplified by 

the limited research in this area. Existing works primarily 

focus on enhancing scalability and performance through 

techniques like vertical clustering [15] [16] [17], flooding-

based message dissemination [18], and SDN-controlled 

multicast groups [19] [20]. These approaches, however, 

often lack the adaptability and efficiency required for 

large-scale, dynamic IoT environments. Additional 

research has investigated dynamic load-balancing 

techniques within networks, offering valuable insights 

into modern approaches in this field. Some studies, such 

as [21] [22], leverage reinforcement learning to improve 

load balancing and network performance. Others propose 

hybrid algorithms and optimization techniques, as 

exemplified by [23] [24]. Table 1 concisely summarizes 

these studies, highlighting their main contributions, the 

metrics employed, their key achievements, and any 

identified limitations. 

Many researchers aim to enhance the performance of 

networks and task scheduling by mixing static and 

dynamic load balance, as in [25][26]. Others use 

optimization algorithms such as Particle Swarm 

Optimization or the Cuckoo algorithm in [27] [28] [29] 

[30].  

While previous research has primarily focused on 

load balancing across distributed brokers in Pub/Sub 

systems, our work addresses the equally important 

challenge of optimizing load balancing within a single 

broker, particularly in scenarios where a distributed 

architecture might be impractical or introduce 

unnecessary complexity. 

The present work aims to develop and evaluate an RL-

based algorithm for load balancing in pub/sub systems. 

We seek to enhance existing algorithms like epsilon-

greedy and UCB and introduce a custom PPO-based 

approach. Our objective is to demonstrate the 

effectiveness of these algorithms in improving system 

performance metrics such as makespan, throughput, 

Quality of service (QoS), performance, and system 

latency, particularly under dynamic conditions. 

The remainder of this paper is organized as follows. 

Section 2 provides an overview of publish/subscribe 

systems, traditional load balancing methods, and the 

potential of RL in this domain. Section 3 details our 

methodology, including the system model, RL framework, 

algorithm descriptions, and experimental design. In 

Section 4, we present and analyze the results of our 

experiments, comparing the performance of different RL 

algorithms and highlighting the benefits of our PPO-based 

approach. Finally, Section 5 concludes the paper with a 

summary of our findings, their implications, and 

directions for future research. 

 

 

Table 1: The summary table of related work 

No. Main Contribute Metrics used Main achievements Limitation 

[15] 

Proposed a distributed MQTT 

broker system for large-scale 

location-based IoT 

applications. The system 

introduces a topic structure 

suitable for handling location-

dependent data and distributed 

brokers and gateways to 

reduce broker load and support 

heterogeneous brokers. 

Number of 

requests and 

received messages 

by brokers. 

The proposed method 

outperforms existing 

broker implementations, 

especially when the 

number of subscribers is 

significant or frequent 

subscription changes 

occur. 

The system's reliance 

on pre-configured 

gateway knowledge 

about brokers and their 

assigned areas might 

limit its adaptability to 

changes in the network 

topology or broker 

availability. 

[16] 

Investigated the sub-linear 

scalability of MQTT clusters, 

where adding more brokers 

doesn't lead to a linear 

increase in performance. 

Proposed a multi-session best-

matching strategy to reduce 

inter-broker traffic and 

improve scalability. 

Routing and 

forwarding 

overheads, 

latency, CPU 

usage, memory 

consumption, and 

network traffic. 

Reduced scaling penalty 

from 40% to 10%, 

demonstrating improved 

performance and resource 

utilization in MQTT 

clusters. 

the increased 

complexity on both the 

client and broker side, 

along with the potential 

overhead of multiple 

TCP/IP connections 

[17] 

Proposes a fog-based pub/sub 

system using dynamic 

broadcast groups to manage 

Latency, 

Redundant 

Messages 

Achieves low latency 

comparable to global 

flooding while 

The group formation 

process may not lead to 

a globally optimal 
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the trade-off between latency 

and excess data dissemination. 

significantly reducing 

excess data compared to 

flooding, approaching the 

efficiency of cloud relay 

topology. Additionally, 

the choice of flooding 

for intra-group 

communication might 

lead to excess data if 

broadcast groups 

become too large. 

[20] 

Presents a complete solution 

for creating a flexible and 

efficient distributed system of 

MQTT brokers, focusing on 

broker discovery, overlay 

creation, message routing, and 

topic-based optimization 

Average end-to-

end delay, Traffic 

overhead, CPU 

and RAM usage, 

Convergence and 

repair time 

Achieves lower end-to-end 

delay compared to 

flooding, especially with 

topic-based overlay. 

Reduces traffic overhead 

significantly in most 

scenarios. Maintains 

similar resource usage to 

the benchmark under 

normal conditions, with 

increased CPU usage 

under stress. 

The topic-based overlay 

approach can lead to 

increased signaling 

overhead due to the 

maintenance of 

multiple overlay 

networks. The system's 

performance under 

extreme stress 

conditions requires 

further optimization to 

manage CPU usage 

effectively. 

[23] 

Introduced SWARM, an 

adaptive load-balancing 

protocol for distributed 

streaming systems processing 

big spatial data. SWARM 

continuously monitors 

workloads, reacting to changes 

in data and query distributions. 

Throughput, 

response time, 

resource 

utilization 

Achieved higher 

throughput and lower 

response time than static 

partitioning, improving 

cluster utilization and 

handling larger volumes of 

spatial data and queries. 

Tuple-at-a-time 

systems may not be 

suitable for micro-

batched systems with 

higher latency 

requirements. 

[21] 

Explored deep reinforcement 

learning for intelligent load 

balancing, focusing on QoS 

parameters correlated with 

QoE. Proposed centralized and 

distributed solutions using 

actor-critic and multi-agent 

architectures. 

QoS parameters 

(flow delivery 

delay, packet 

dropping, 

throughput) and 

QoE (for video). 

Showed improved QoE 

compared to traditional 

methods (ECMP) and 

matched performance of 

QoE-based reward 

methods using only 

network-level QoS 

metrics. 

Primarily based on 

simulations, the 

algorithm's complexity 

could pose challenges 

for real-world 

deployment. 

[18] 

Proposed a multi-objective 

optimization scheduling model 

using the Artificial Bee 

Colony algorithm (ABC) with 

a Q-learning algorithm called 

the MOABCQ method. 

Makespan, cost, 

and resource 

utilization. 

It outperforms other 

algorithms in terms of 

reducing makepan, cost, 

and degree of imbalance 

and increasing throughput, 

average, and resource 

utilization. 

The algorithm's 

performance can vary 

depending on the 

dataset, and its 

complexity might be a 

limitation for large-

scale environments. 

[19] 

Proposed an automatic load-

balancing architecture based 

on reinforcement learning 

(ALBRL) in SDN. It adapts 

the improved Deep 

Deterministic Policy Gradient 

(DDPG) algorithm to find a 

near-optimal path between 

network hosts and generates 

an inter-link-weight matrix. 

Network 

throughput, link-

load-balancing 

factor, link 

utilization. 

Faster training speed than 

existing reinforcement-

learning algorithms and 

significantly improves 

network throughput. 

Therefore, its reliance 

on a single network 

topology for evaluation 

indicates a poor ability 

to handle dynamic 

networks. 

[24] 

Proposed a Differential Grey 

Wolf (DGW) load balancing 

with stochastic Bellman deep 

reinforced resource 

optimization (DGW-SBDR) in 

fog environments. It uses a 

DGW Optimization algorithm 

Load balancing 

efficiency, 

makespan, 

latency, and 

energy 

consumption. 

Compared to benchmark 

methods, improved load 

balancing efficiency, 

makespan, latency, and 

energy consumption in fog 

environments. 

Primarily based on 

simulations, the 

algorithm's complexity 

could pose challenges 

for real-world 

deployment. 
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for optimal resource 

management and an SBDR 

Learning-based Resource 

Allocation Model for optimal 

resource allocation. 

[22] 

Proposed an RL-based load 

balancer (MERL-LB) for 

financial cloud services to 

reduce idle servers without 

disconnecting users. It uses a 

scalable neural network policy 

and evolutionary multi-

objective training to balance 

load imbalance and server idle 

time. 

Load imbalance 

and server idle 

time. 

Reduced idleness by over 

130% compared to 

traditional methods while 

slightly improving load 

balancing. Offers diverse 

Pareto-optimal policies for 

user flexibility. 

It can be 

computationally 

expensive. The 

algorithm's complexity, 

primarily based on 

simulations, could pose 

challenges for real-

world deployment. 

2 Background 
The publish/subscribe system is a messaging pattern 

system that facilitates flexible and scalable 

communication in distributed applications [24]. Unlike 

traditional request-response models, pub/sub introduces a 

layer of indirection, where publishers send messages to 

designated topics or channels without knowing who might 

receive them. Subscribers express interest in specific 

topics and receive only the messages relevant to those 

topics. Decoupling publishers and subscribers enable 

flexibility and scalability, while topic-based filtering only 

ensures efficient communication [24]. 

However, pub/sub systems present challenges in 

designing and implementing effective load-balancing 

mechanisms. While simple, traditional methods such as 

round-robin (RR) and least connections (LC) have 

limitations. RR distributes messages cyclically without 

considering subscriber capacities or loads, potentially 

leading to suboptimal resource utilization. LC directs 

messages to the subscriber with the fewest active 

connections but may not be ideal when subscriber 

capabilities or message processing times vary 

significantly [25]. These methods generally lack 

adaptability to changing traffic patterns and system 

conditions, may not efficiently utilize resources, and may 

not consider the varying nature of message content.[10] 

These limitations underscore the need for more intelligent 

and adaptive load-balancing techniques. With its ability to 

learn from interactions and dynamically adjust decisions 

based on real-time feedback, RL offers a promising 

avenue for overcoming these challenges [10]. In the 

following section, we discuss how RL can be leveraged to 

improve load balancing in pub/sub systems. 

The Publisher is responsible for generating and sending 

messages (requests) and categorizing them into relevant 

topics. Subscribers express interest in specific topics and 

receive messages only for those topics. The Broker (or 

Messaging Server) acts as an intermediary, receiving 

messages from publishers, filtering them according to 

their topic, and delivering them to the appropriate 

subscribers [24]. 

 

Reinforcement Learning (RL) is a machine learning 

paradigm where an agent learns optimal decision-making 

by interacting with an environment and receiving 

feedback as rewards or penalties [26]. Unlike supervised 

or unsupervised learning, RL does not rely on pre-labeled 

data or inherent data patterns. In load balancing in a 

pub/sub system, the RL agent would act as the message 

broker, the environment would be the dynamic state of the 

pub/sub system, and actions would involve selecting the 

appropriate subscriber for each incoming message. 

Rewards for the agent could be based on minimizing 

message response time and ensuring balanced utilization 

across subscribers. 

The present work focuses on three RL algorithms for load 

balancing: 

• Epsilon-greedy: This algorithm balances exploration 

(trying random actions to gather information) and 

exploitation (choosing the action with the highest 

estimated reward). A parameter ε controls the balance 

between these two modes [27]. 

• Upper Confidence Bound (UCB) favors actions that 

have been less explored or have previously shown 

potential for high rewards. It uses an optimistic 

estimate of the potential reward for each action to 

guide its decision [11]. 

• Proximal Policy Optimization (PPO): this policy 

gradient method aims to improve the current policy by 

taking small steps in the direction that maximizes the 

expected reward. It is known for its stability and 

sample efficiency [28]. 

 

By leveraging the learning capabilities of these RL 

algorithms, the broker can dynamically adapt its load-

balancing decisions based on the current system state and 

the feedback received, potentially leading to more 

efficient and resilient load balancing than the traditional 

methods. 

Having established the foundation of the Pub/Sub 

systems, traditional load balancing limitations, and the 

principles of RL, we now delve into the specific 

methodology employed in this research. The following 

section describes our system model, RL framework, 

algorithm enhancements, evaluation metrics, and 

experimental design.  
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3 The methodology 
 

The Pub/Sub system is deployed on the Amazon Web 

Services (AWS) cloud, leveraging Elastic Compute Cloud 

(EC2) instances for its core components. A single t3. 

medium EC2 instance (2 vCPUs, 4GB RAM) hosts the 

custom Python message broker, which incorporates a load 

balancer capable of implementing the tested algorithms 

and manages internal queues for message distribution. 

Three EC2 instances are dedicated to the subscribers, each 

paired with a Nginx web server to handle incoming 

requests. The publisher component, however, runs locally 

on a separate machine, generating diverse traffic patterns 

analogous to using the JMeter tool to thoroughly evaluate 

the load balancer's performance. 

Figure 1 illustrates the architecture of the Pub/Sub 

system, designed to emulate a real-world web application. 

Publishers send messages to the custom Python message 

broker, which employs a load balancer to intelligently 

route each message to the most suitable queue based on 

the chosen load-balancing algorithm. Each 

subscriber is hosted on a dedicated EC2 instance. It 

utilizes the Pika library and threading to efficiently 

consume messages from its assigned queue, similar to how 

Nginx workers handle concurrent requests. Upon 

receiving a message, the subscriber unpacks it into a web 

request format and forwards it to the co-located Nginx 

web server, which simulates the application logic and 

generates the appropriate response.  

3.1 Reinforcement learning framework 

 Our load-balancing strategy is based on a 

reinforcement learning framework, where the broker acts 

as the agent, learning to make optimal load-balancing 

decisions. The following components characterize the RL 

framework: 

• States: A vector representing the current state of 

each subscriber. The current load on each subscriber (e.g., 

active connections, CPU utilization, response time), queue 

length, and system-wide averages. 

• Actions: The broker's decisions, such as which 

subscriber to assign a new message to. 

• Rewards: Feedback signals that indicate the 

effectiveness of the broker's actions. The reward function 

is designed to incentivize both fast response times, queue 

length, and efficient resource utilization, calculated as 

shown in Equation (1): 

Reward = 1.0 + (1.0 / response_time) - (cpu_percent 

* 0.02)- (queue_length * 0.01)                   …………Eq. (1) 

This ensures the algorithm prioritizes both fast 

responses and efficient resource utilization. It starts with a 

base value of 1.0. This provides a positive reward even for 

somewhat slower response times. The term (1.0 / 

response_time) is added. It means shorter response times 

result in a more significant fraction, increasing the overall 

reward, and the longer response times lead to a smaller 

fraction, decreasing the reward. The (cpu_percent * 0.02) 

portion is subtracted from the reward, which means at 

100% CPU usage, the reward is reduced by 2. Finally,  

 

(Queue_length * 0.01) penalizes the agent for 

selecting subscribers with longer queues, encouraging it to 

distribute the load more evenly.  

Additionally, the adaptive exploration strategy is 

introduced. The adjusting of the exploration rate (ε) 

through the implementing Equation (2): 

 

exploration rate = 0.01+ sqrt (2 *log(total_counts) / 

(n_a + 1)) ------- Eq. (2) 

The initial value of the exploration rate is 0.01 to 

prevent it to be zero at the start of the system. Where 

(total_counts) represents the total number of iterations, 

and (n_a) represents the number of times the specific 

action (a) has been taken. The natural logarithm aligns 

perfectly with the desired behavior of the exploration 

bonus. It emphasizes exploration early in learning and 

gradually reduces exploration over time. 

Policy: The broker's strategy is to select actions based on 

the current state. RL aims to learn an optimal policy that  

maximizes the cumulative reward over time. 

Reinforcement Learning Algorithms 

Three RL algorithms were evaluated in the present 

work for load balancing in Pub/Sub systems. These 

algorithms are as follows: 
• Epsilon-Greedy (EG) 

          Our enhanced epsilon-greedy algorithm  

Incorporates several modifications to improve its 

adaptability to dynamic Pub/Sub environments. The 

reward function dynamically considers both server 

Figure 1: Proposed system design 
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responsiveness and CPU load, as shown in Eq. (1). 

This ensures the algorithm prioritizes fast responses 

and efficient resource utilization. Additionally, we 

 

introduce an adaptive exploration strategy, adjusting 

the exploration rate (ε) using Equation (2).  

• Upper Confidence Bound (UCB) Algorithm 

The UCB algorithm shares a similar structure 

with epsilon-greedy but differs in its action selection 

strategy. Instead of relying on random exploration, 

UCB selects actions based on an upper confidence 

bound that considers the estimated Q-value and the 

uncertainty associated with that estimate [26]. This 

approach encourages the exploration of less-visited 

actions while exploiting actions with high expected 

rewards, leading to more informed and potentially 

superior decision-making. Figure 2 presents the 

general learning process for the epsilon-greedy and 

UCB algorithms within the proposed load-balancing 

framework. Both algorithms initialize parameters, 

compute the system state, and determine whether to 

explore or exploit. However, they differ in their 

action selection strategies. Epsilon-greedy explores 

with probability ε and exploits with probability 1-ε, 

while UCB uses a confidence interval-based formula 

to balance exploration and exploitation. Regardless 

of the algorithm, the chosen action is executed, a 

reward signal is received, and the Q-table is updated, 

enabling the agent to learn over time. 

 

•   Proximal policy optimization (PPO) 

   Proximal Policy Optimization (PPO) is a policy 

gradient reinforcement learning algorithm renowned 

for its stability and efficiency. Unlike value-based 

methods like epsilon-greedy and UCB, PPO directly 

learns a policy that maps states to actions, 

represented by a neural network trained to maximize 

the expected cumulative reward [28]. 

The PPO implementation employs a four layered 

perceptron (MLP) as the policy network. This MLP 

consists of an input layer that receives the state 

representation, which includes load metrics (active  

connections, CPU utilization, response time, and 

queue length) for each subscriber and system-wide 

averages. To balance simplicity with adequate 

capacity for learning, the network utilizes two hidden 

layers with ReLU activation functions with 128 

neurons each. Finally, an output layer produces a 

probability distribution over the available actions, 

effectively guiding the selection of a specific 

subscriber for each incoming message. 

The reward function is crucial in guiding the PPO 

agent's learning process. The same dynamic reward 

function in Eq (1) is used. 

Figure 3 illustrates the architecture of the Proximal 

Policy Optimization (PPO) agent employed for load 

balancing in the Pub/Sub system. The agent's neural 

network receives a state representation 

encompassing load metrics (active connections, CPU 

utilization, response time) for each subscriber, queue 

length, and system-wide averages as input. This state 

information is processed through two hidden layers 

with ReLU activation functions, culminating in an 

output layer that produces two key components: a 

policy, which is a probability distribution over 

possible actions (subscriber selections), and a value 

function, which estimates the expected cumulative 

reward from the current state. 

The selected action, according to the policy's 

probabilities, is then executed within the Pub/Sub 

environment, specifically targeting one of the 

subscriber instances. The environment responds by 

Figure 2: Flowchart of enhanced epsilon greedy and UCB  algorithms for pub/sub system 
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providing a reward signal, calculated using Equation 

(1), and a new state reflecting the updated system 

conditions. This reward and state information is fed 

back to the PPO agent. The clipped surrogate 

objective function utilizes them to update the policy 

and value function networks. This iterative process 

of interaction, reward collection, and network 

updates allows the PPO agent to learn and refine its  

 

load-balancing strategy over time, adapting to the 

dynamic nature of the Pub/Sub system. The value function 

helps the agent estimate the long-term consequences of its 

actions, guiding it towards better decisions. 

JMeter was employed to simulate different load scenarios 

and evaluate the system's performance under various 

conditions. The following four scenarios were designed: 

• Scenario 1: Normal load. This scenario simulated 

a moderate traffic pattern using a Thread Group 

with 50 threads (representing 50 concurrent 

users) and a loop count of 20. A total of 1000 

messages were sent to the message broker. 

• Scenario 2: Burst load. This scenario aimed to 

stress the system with a sudden surge in traffic. It 

was implemented using a Thread Group with 100 

threads and a loop count of 20, with target 

throughput 6000 message per minute. 

• Scenario 3: Server failure. This scenario tested 

the system's resilience to subscriber failures. A 

normal load of 50 threads and 20 loops (1000 

messages) was used, with one subscriber 

intentionally failing during the test. 

• Scenario 4: Heterogeneous instances. This 

scenario evaluated the system's performance with 

subscribers having varying resource capabilities. 

A normal load was simulated, but one of the three 

subscriber EC2 instances was configured with 
reduced resources (1 vCPU and 2GB RAM). At 

the same time, the remaining two instances 

retained their original configuration (2 vCPU and 

4GB RAM). 

4 Result and discussion 
This section presents the results of our experimental 

evaluation of various load balancing algorithms in a 

simulated Pub/Sub system deployed on AWS. 

The performance of baseline algorithms (RR, LC, EG and 

UCB) are alkalized and compared with the enhanced 

algorithms (Enhanced Epsilon Greedy (EEG), Enhanced 

UCB (EUCB), and PPO) across four scenarios: normal 

load, burst load, server failure, and heterogeneous 

instances. Each experimental scenario was run 10 times, 

and the results are presented as mean values with 95% 

confidence intervals. The evaluation metrics include 

makespan, message throughput, latency, successful 

massage rate, Quality of Service, and efficiency. 

4.1 Makespan comparison 

The makespan, representing the total time to process all 

messages, is a critical indicator of system behavior. As 

depicted in Figure 4, the enhanced algorithms consistently 

outperform the baseline algorithms across all scenarios. 

This advantage stems from their ability to dynamically 

adapt to changing conditions. Unlike RR and LC, which 

rely on fixed rules, the enhanced algorithms leverage real-

time feedback to make informed decisions. For instance, 

in the 'Failed Scenario,' the improved algorithms, 

especially PPO, demonstrate significantly lower 

makespans, indicating their superior ability to adapt and 

recover from disruptions. 

4.2 Message throughput 

Figure 5 presents a comparative analysis of 

throughput achieved by various load-balancing algorithms 

across the four distinct scenarios. Across all scenarios, the 

enhanced algorithms (EUCB and PPO) consistently 

outperform the other algorithms specially (RR, LC, and 

EG), demonstrating their superior ability to maintain high 

throughput even under challenging conditions. This is 

particularly evident in the Burst Load scenario, where 

EUCB and PPO exhibit significantly higher throughput 

than the other algorithms. The results highlight the 

effectiveness of the enhanced algorithms in maximizing 

Figure 3: PPO Architecture for Load Balancing in Pub/Sub Systems 
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the system's capacity to process messages and maintain a 

high rate of successful message delivery. 
 

 

 
 

 

 

 

4.3 The latency 

Figure 6 illustrates a comparative analysis of latency 

across the four scenarios. A key observation is the 

variability in latency for the baseline algorithms (RR, LC, 

EG, and UCB), particularly in the Normal Load and Burst 

Load scenarios. This indicates an inconsistency in 

response times and potential delays for specific messages. 

In contrast, the enhanced algorithms (EUCB and PPO) 

exhibit more stable and predictable latency across all 

scenarios, with tighter interquartile ranges and fewer 

outliers. This suggests these algorithms can deliver more 

consistent and reliable performance, even under 

challenging conditions. However, it's important to note 

that the enhanced algorithms generally show slightly 

higher median latency than the baseline algorithms, 

indicating a potential trade-off between performance 

consistency and raw speed. 

 

4.4 Successful message rate 

Table 2 clearly shows the percentage of successful 

messages achieved by each load-balancing algorithm 

across different scenarios. Notably, the enhanced UCB 

and PPO algorithms consistently demonstrate higher 

success rates than the other algorithms in all scenarios. 

This highlights their effectiveness in ensuring reliable 

message delivery and minimizing request failures, 

especially in challenging conditions like burst loads or 

Figure 4: Makespan comparison across all algorithms 

 

Figure 5: System message throughput across all algorithms 
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server failures. The PPO algorithm, in particular, exhibits 

the highest success rates across most scenarios, further 

emphasizing its potential for robust load balancing in 

Pub/Sub systems. 

4.5 Quality of service (QoS): 

Figure 7 illustrates the relationship between latency and 

throughput, two critical QoS metrics, for various load-

balancing algorithms under different scenarios. The 

baseline algorithms exhibit more significant variability in 

balancing latency and throughput. In contrast, the 

enhanced algorithms, especially PPO, consistently 

achieve higher throughput with more stable latency. 

Distinct clusters for each scenario underscore the impact 

of varying load conditions on algorithm behavior. For 

instance, the Burst Load scenario generally results in 

higher latency and throughput than the Normal Load 

scenario, reflecting the increased system stress. 

 

 

 
 

 

 

Table 2: The Percentage of successful requests across all scenarios. 

Scenarios / Algorithms 
(%) 

RR LC EG UCB EEG EUCB PPO 

Normal Load 89.5 92.0 91.1 92.2 91.6 91.9 97.1 

Burst Load 86.9 86.2 93.0 87.6 90.3 92.5 94.7 

Failed Server 84.4 88.5 92.1 91.3 83.9 91.8 93.6 

Heterogeneous 
Instances 

90.4 90.9 91.0 91.0 91.8 92.0 93.1 

 

 

Figure 6: System Latency across all algorithms. 
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4.6 The efficiency of the Pub/Sub system 

Figure 8 presents the efficiency of various load-balancing 

algorithms across four distinct scenarios. Enhanced 

algorithms (EUCB and PPO) consistently outperform the 

other algorithms, demonstrating their superior ability to 

maintain high throughput, especially during Burst Load. 

These results highlight the effectiveness of the enhanced 

algorithms in maximizing the system's capacity to process 

messages and ensure high delivery rates.  

   The enhanced algorithms, particularly PPO, utilize 

reinforcement learning to make dynamic load-balancing 

decisions based on real-time system feedback. This 

adaptability enables them to effectively handle 

fluctuations in traffic patterns and subscriber loads, 

outperforming static algorithms. Moreover, these 

algorithms actively route messages to available and 

healthy subscribers, resulting in lower failure rates and a 

more resilient system. Including CPU usage in the reward 

function of the enhanced algorithms further contributes to 

balanced resource allocation and improved system 

performance by detecting and mitigating potential 

subscriber bottlenecks. 

While recent research is focused on distributed brokers, 

our single-broker optimization approach using RL 

demonstrates the potential for enhancing Pub/Sub system 

performance, complementing existing work, and opening 

avenues for broader system improvements. 

 

Figure 8: The Effeciency analysis of the proposed Pub/Sub System. 

Figure 7: The Quality of Services across all scenarios. 
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5 Conclusions 
  This research explored the application of 

reinforcement learning (RL) for load balancing in 

publish/subscribe systems. We evaluated traditional 

algorithms (Round Robin, Least Connections) and 

developed enhanced versions of epsilon-greedy and UCB 

alongside a custom PPO-based approach. Our 

experimental results demonstrate that RL significantly 

outperforms traditional methods, particularly the PPO and 

EUCB algorithms. These enhanced algorithms showed 

marked improvements in makespan, achieving completion 

times up to 30% faster than conventional methods. 

Moreover, they exhibited notable gains in throughput, 

particularly in the Burst Load scenario, where EUCB and 

PPO showcased a 10-15% increase in throughput 

compared to baseline algorithms. This research also 

highlighted the enhanced algorithms' superior ability to 

maintain high message success rates, exceeding 90% in 

most scenarios, and their contribution to more stable and 

predictable latency, leading to improved QoS. Overall, 

this research underscores the potential of RL for adaptive 

and efficient load balancing in Pub/Sub systems, paving 

the way for more resilient and responsive distributed 

applications. 

 

6   Future work 
This research can be expanded upon in several 

promising ways. One area of focus is exploring alternative 

reward function formulations and systematically varying 

the weights assigned to different factors. Additionally, the 

investigation of more comprehensive state representations 

could enhance the algorithms' learning capabilities. 

Another potential direction is developing hybrid 

algorithms that combine the strengths of different RL 

methods or integrate RL with traditional load-balancing 

techniques. Furthermore, evaluating the proposed 

algorithms in more diverse and realistic scenarios would 

provide a more comprehensive understanding of their 

performance characteristics. Finally, deploying and 

evaluating the RL-based load-balancing system in a real-

world production environment would provide valuable 

insights into its practical feasibility and effectiveness. 
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