
https://doi.org/10.31449/inf.v49i7.6895 Informatica 49 (2025) 77–88 77

Reinforcement Learning Algorithms for Adaptive Load Balancing in

Publish/Subscribe Systems: PPO, UCB, and Epsilon-Greedy

Approaches

Rana Zuhair Al Shaikh*, Muna M. Jawad Al-Nayar, Ahmed M. Hasan

University of Technology, Iraq

E-mail: cse.22.11@grad.uotechnology.edu.iq , Muna.m.jawad@uotechnology.edu.iq , 60163@uotechnology.edu.iq
*Corresponding author

Keywords: load balancing, reinforcement learning, pub/sup system

Received: August 12, 2024

This research addresses load balancing challenges in publish/subscribe (Pub/Sub) systems by

comprehensively exploring reinforcement learning (RL) techniques. Algorithms such as epsilon-

greedy, Upper Confidence Bound (UCB), round-robin, and least connections were evaluated to

establish baseline performance metrics. Building on this foundation, we develop enhanced versions

of epsilon-greedy and UCB algorithms tailored to the Pub/Sub context. Additionally, we introduce a

custom approach utilizing Proximal Policy Optimization (PPO) to learn adaptive load-balancing

policies. Our work provides a thorough comparative analysis of diverse RL methods, offering

insights into their strengths and weaknesses in optimizing Pub/Sub system performance. Experimental

results demonstrate the potential of RL, particularly our developed algorithms, to improve

performance significantly. These enhanced algorithms showed marked improvements in makespan,

achieving completion times up to 30% faster than traditional methods. Moreover, they exhibited

notable gains in throughput, particularly in the Burst Load scenario, where EUCB and PPO

showcased a 10-15% increase in throughput compared to baseline algorithms. This research also

highlighted the enhanced algorithms' superior ability to maintain high message success rates,

exceeding 90% in most scenarios, and their contribution to more stable and predictable latency,

leading to improved QoS. Notably, the PPO-based approach exhibits superior performance during

burst traffic and failure scenarios, highlighting its resilience and adaptability in dynamic

environments.

Povzetek: Razvit je nov pristop na osnovi globokega učenja za dinamično uravnavanje obremenitve v

sistemih Pub/Sub. Modeli PPO, UCB in epsilon-greedy izboljšujejo učinkovitost, skrajšujejo čas

obdelave in povečujejo prepustnost sporočil v dinamičnih okoljih.

1 Introduction
Load balancing enhances application performance and

resource utilization by distributing incoming traffic across

multiple servers [1] [2]. This is especially crucial in high-

traffic environments since it ensures system

responsiveness and reduces overload. [3]. In

publish/subscribe (Pub/Sub) systems, efficient load

balancing significantly affects messaging service

reliability [4].

Load balancing strategies can be classified into static and

dynamic [5] [6]. Static techniques employ established

rules, frequently based on hashing algorithms [7], while

dynamic approaches adjust to system variables such as

server response delays in real time. Recent developments

in dynamic algorithms provide greater efficiency and

determinism for balanced load distribution [8].

Even though static algorithms are wildly deployed

and robust for their swift response to direct the incoming

flow to its distention, they still have some harmful

features. The Round-Robin (RR) and Least Connection

(LC), as examples used in this work as static algorithms

for compression, are blind algorithms. In the case of RR,

cyclic distribution can be problematic when subscriber

loads or capabilities change dynamically; RR will

continue to send it an equal share of messages, potentially

leading to delays and performance degradation [9].

Moreover, RR doesn't consider each subscriber's capacity

or processing power. This can result in some subscribers

being underutilized while others are overwhelmed,

leading to inefficient resource allocation. While LC's

focus on the number of active connections can make it

sensitive to short-term fluctuations in traffic[10]. A

subscriber might temporarily have fewer connections due

to a recent burst of messages, but it might still be heavily

loaded regarding CPU or memory usage. LC might

mistakenly send more messages to this subscriber,

exacerbating its load imbalance. Also, LC assumes all

subscribers have equal capabilities. In reality, subscribers

might have different hardware configurations, software

versions, or network connectivity, leading to varying

processing speeds. LC's simplistic approach can lead to

mailto:cse.22.11@grad.uotechnology.edu.iq
mailto:Muna.m.jawad@uotechnology.edu.iq

78 Informatica 49 (2025) 77–88 R.Z.A. Shaikh

suboptimal performance in such heterogeneous

environments.

The shortcomings of static load balancing methods,

particularly in scenarios with fluctuating traffic patterns

and heterogeneous subscriber capabilities, motivate the

investigation of Reinforcement Learning (RL) as a

potential solution to overcome these limitations. The RL

has recently emerged as a practical approach for dynamic

load balancing across many domains. Its adaptability with

fluctuating network conditions makes it well-suited for

optimizing communication load balancing [11]. RL

approaches are actively investigated in distributed systems

to enhance parallel particle tracing [12] and enhance

cloud resource allocation, hence improving system

performance [13] [14].

While load balancing has been extensively studied in

various computing domains, its application within pub/sub

systems remains relatively unexplored, as exemplified by

the limited research in this area. Existing works primarily

focus on enhancing scalability and performance through

techniques like vertical clustering [15] [16] [17], flooding-

based message dissemination [18], and SDN-controlled

multicast groups [19] [20]. These approaches, however,

often lack the adaptability and efficiency required for

large-scale, dynamic IoT environments. Additional

research has investigated dynamic load-balancing

techniques within networks, offering valuable insights

into modern approaches in this field. Some studies, such

as [21] [22], leverage reinforcement learning to improve

load balancing and network performance. Others propose

hybrid algorithms and optimization techniques, as

exemplified by [23] [24]. Table 1 concisely summarizes

these studies, highlighting their main contributions, the

metrics employed, their key achievements, and any

identified limitations.

Many researchers aim to enhance the performance of

networks and task scheduling by mixing static and

dynamic load balance, as in [25][26]. Others use

optimization algorithms such as Particle Swarm

Optimization or the Cuckoo algorithm in [27] [28] [29]

[30].

While previous research has primarily focused on

load balancing across distributed brokers in Pub/Sub

systems, our work addresses the equally important

challenge of optimizing load balancing within a single

broker, particularly in scenarios where a distributed

architecture might be impractical or introduce

unnecessary complexity.

The present work aims to develop and evaluate an RL-

based algorithm for load balancing in pub/sub systems.

We seek to enhance existing algorithms like epsilon-

greedy and UCB and introduce a custom PPO-based

approach. Our objective is to demonstrate the

effectiveness of these algorithms in improving system

performance metrics such as makespan, throughput,

Quality of service (QoS), performance, and system

latency, particularly under dynamic conditions.

The remainder of this paper is organized as follows.

Section 2 provides an overview of publish/subscribe

systems, traditional load balancing methods, and the

potential of RL in this domain. Section 3 details our

methodology, including the system model, RL framework,

algorithm descriptions, and experimental design. In

Section 4, we present and analyze the results of our

experiments, comparing the performance of different RL

algorithms and highlighting the benefits of our PPO-based

approach. Finally, Section 5 concludes the paper with a

summary of our findings, their implications, and

directions for future research.

Table 1: The summary table of related work

No. Main Contribute Metrics used Main achievements Limitation

[15]

Proposed a distributed MQTT

broker system for large-scale

location-based IoT

applications. The system

introduces a topic structure

suitable for handling location-

dependent data and distributed

brokers and gateways to

reduce broker load and support

heterogeneous brokers.

Number of

requests and

received messages

by brokers.

The proposed method

outperforms existing

broker implementations,

especially when the

number of subscribers is

significant or frequent

subscription changes

occur.

The system's reliance

on pre-configured

gateway knowledge

about brokers and their

assigned areas might

limit its adaptability to

changes in the network

topology or broker

availability.

[16]

Investigated the sub-linear

scalability of MQTT clusters,

where adding more brokers

doesn't lead to a linear

increase in performance.

Proposed a multi-session best-

matching strategy to reduce

inter-broker traffic and

improve scalability.

Routing and

forwarding

overheads,

latency, CPU

usage, memory

consumption, and

network traffic.

Reduced scaling penalty

from 40% to 10%,

demonstrating improved

performance and resource

utilization in MQTT

clusters.

the increased

complexity on both the

client and broker side,

along with the potential

overhead of multiple

TCP/IP connections

[17]

Proposes a fog-based pub/sub

system using dynamic

broadcast groups to manage

Latency,

Redundant

Messages

Achieves low latency

comparable to global

flooding while

The group formation

process may not lead to

a globally optimal

Reinforcement Learning Algorithms for Adaptive Load Balancing… Informatica 49 (2025) 77–88 79

the trade-off between latency

and excess data dissemination.

significantly reducing

excess data compared to

flooding, approaching the

efficiency of cloud relay

topology. Additionally,

the choice of flooding

for intra-group

communication might

lead to excess data if

broadcast groups

become too large.

[20]

Presents a complete solution

for creating a flexible and

efficient distributed system of

MQTT brokers, focusing on

broker discovery, overlay

creation, message routing, and

topic-based optimization

Average end-to-

end delay, Traffic

overhead, CPU

and RAM usage,

Convergence and

repair time

Achieves lower end-to-end

delay compared to

flooding, especially with

topic-based overlay.

Reduces traffic overhead

significantly in most

scenarios. Maintains

similar resource usage to

the benchmark under

normal conditions, with

increased CPU usage

under stress.

The topic-based overlay

approach can lead to

increased signaling

overhead due to the

maintenance of

multiple overlay

networks. The system's

performance under

extreme stress

conditions requires

further optimization to

manage CPU usage

effectively.

[23]

Introduced SWARM, an

adaptive load-balancing

protocol for distributed

streaming systems processing

big spatial data. SWARM

continuously monitors

workloads, reacting to changes

in data and query distributions.

Throughput,

response time,

resource

utilization

Achieved higher

throughput and lower

response time than static

partitioning, improving

cluster utilization and

handling larger volumes of

spatial data and queries.

Tuple-at-a-time

systems may not be

suitable for micro-

batched systems with

higher latency

requirements.

[21]

Explored deep reinforcement

learning for intelligent load

balancing, focusing on QoS

parameters correlated with

QoE. Proposed centralized and

distributed solutions using

actor-critic and multi-agent

architectures.

QoS parameters

(flow delivery

delay, packet

dropping,

throughput) and

QoE (for video).

Showed improved QoE

compared to traditional

methods (ECMP) and

matched performance of

QoE-based reward

methods using only

network-level QoS

metrics.

Primarily based on

simulations, the

algorithm's complexity

could pose challenges

for real-world

deployment.

[18]

Proposed a multi-objective

optimization scheduling model

using the Artificial Bee

Colony algorithm (ABC) with

a Q-learning algorithm called

the MOABCQ method.

Makespan, cost,

and resource

utilization.

It outperforms other

algorithms in terms of

reducing makepan, cost,

and degree of imbalance

and increasing throughput,

average, and resource

utilization.

The algorithm's

performance can vary

depending on the

dataset, and its

complexity might be a

limitation for large-

scale environments.

[19]

Proposed an automatic load-

balancing architecture based

on reinforcement learning

(ALBRL) in SDN. It adapts

the improved Deep

Deterministic Policy Gradient

(DDPG) algorithm to find a

near-optimal path between

network hosts and generates

an inter-link-weight matrix.

Network

throughput, link-

load-balancing

factor, link

utilization.

Faster training speed than

existing reinforcement-

learning algorithms and

significantly improves

network throughput.

Therefore, its reliance

on a single network

topology for evaluation

indicates a poor ability

to handle dynamic

networks.

[24]

Proposed a Differential Grey

Wolf (DGW) load balancing

with stochastic Bellman deep

reinforced resource

optimization (DGW-SBDR) in

fog environments. It uses a

DGW Optimization algorithm

Load balancing

efficiency,

makespan,

latency, and

energy

consumption.

Compared to benchmark

methods, improved load

balancing efficiency,

makespan, latency, and

energy consumption in fog

environments.

Primarily based on

simulations, the

algorithm's complexity

could pose challenges

for real-world

deployment.

80 Informatica 49 (2025) 77–88 R.Z.A. Shaikh

for optimal resource

management and an SBDR

Learning-based Resource

Allocation Model for optimal

resource allocation.

[22]

Proposed an RL-based load

balancer (MERL-LB) for

financial cloud services to

reduce idle servers without

disconnecting users. It uses a

scalable neural network policy

and evolutionary multi-

objective training to balance

load imbalance and server idle

time.

Load imbalance

and server idle

time.

Reduced idleness by over

130% compared to

traditional methods while

slightly improving load

balancing. Offers diverse

Pareto-optimal policies for

user flexibility.

It can be

computationally

expensive. The

algorithm's complexity,

primarily based on

simulations, could pose

challenges for real-

world deployment.

2 Background
The publish/subscribe system is a messaging pattern

system that facilitates flexible and scalable

communication in distributed applications [24]. Unlike

traditional request-response models, pub/sub introduces a

layer of indirection, where publishers send messages to

designated topics or channels without knowing who might

receive them. Subscribers express interest in specific

topics and receive only the messages relevant to those

topics. Decoupling publishers and subscribers enable

flexibility and scalability, while topic-based filtering only

ensures efficient communication [24].

However, pub/sub systems present challenges in

designing and implementing effective load-balancing

mechanisms. While simple, traditional methods such as

round-robin (RR) and least connections (LC) have

limitations. RR distributes messages cyclically without

considering subscriber capacities or loads, potentially

leading to suboptimal resource utilization. LC directs

messages to the subscriber with the fewest active

connections but may not be ideal when subscriber

capabilities or message processing times vary

significantly [25]. These methods generally lack

adaptability to changing traffic patterns and system

conditions, may not efficiently utilize resources, and may

not consider the varying nature of message content.[10]

These limitations underscore the need for more intelligent

and adaptive load-balancing techniques. With its ability to

learn from interactions and dynamically adjust decisions

based on real-time feedback, RL offers a promising

avenue for overcoming these challenges [10]. In the

following section, we discuss how RL can be leveraged to

improve load balancing in pub/sub systems.

The Publisher is responsible for generating and sending

messages (requests) and categorizing them into relevant

topics. Subscribers express interest in specific topics and

receive messages only for those topics. The Broker (or

Messaging Server) acts as an intermediary, receiving

messages from publishers, filtering them according to

their topic, and delivering them to the appropriate

subscribers [24].

Reinforcement Learning (RL) is a machine learning

paradigm where an agent learns optimal decision-making

by interacting with an environment and receiving

feedback as rewards or penalties [26]. Unlike supervised

or unsupervised learning, RL does not rely on pre-labeled

data or inherent data patterns. In load balancing in a

pub/sub system, the RL agent would act as the message

broker, the environment would be the dynamic state of the

pub/sub system, and actions would involve selecting the

appropriate subscriber for each incoming message.

Rewards for the agent could be based on minimizing

message response time and ensuring balanced utilization

across subscribers.

The present work focuses on three RL algorithms for load

balancing:

• Epsilon-greedy: This algorithm balances exploration

(trying random actions to gather information) and

exploitation (choosing the action with the highest

estimated reward). A parameter ε controls the balance

between these two modes [27].

• Upper Confidence Bound (UCB) favors actions that

have been less explored or have previously shown

potential for high rewards. It uses an optimistic

estimate of the potential reward for each action to

guide its decision [11].

• Proximal Policy Optimization (PPO): this policy

gradient method aims to improve the current policy by

taking small steps in the direction that maximizes the

expected reward. It is known for its stability and

sample efficiency [28].

By leveraging the learning capabilities of these RL

algorithms, the broker can dynamically adapt its load-

balancing decisions based on the current system state and

the feedback received, potentially leading to more

efficient and resilient load balancing than the traditional

methods.

Having established the foundation of the Pub/Sub

systems, traditional load balancing limitations, and the

principles of RL, we now delve into the specific

methodology employed in this research. The following

section describes our system model, RL framework,

algorithm enhancements, evaluation metrics, and

experimental design.

Reinforcement Learning Algorithms for Adaptive Load Balancing… Informatica 49 (2025) 77–88 81

3 The methodology

The Pub/Sub system is deployed on the Amazon Web

Services (AWS) cloud, leveraging Elastic Compute Cloud

(EC2) instances for its core components. A single t3.

medium EC2 instance (2 vCPUs, 4GB RAM) hosts the

custom Python message broker, which incorporates a load

balancer capable of implementing the tested algorithms

and manages internal queues for message distribution.

Three EC2 instances are dedicated to the subscribers, each

paired with a Nginx web server to handle incoming

requests. The publisher component, however, runs locally

on a separate machine, generating diverse traffic patterns

analogous to using the JMeter tool to thoroughly evaluate

the load balancer's performance.

Figure 1 illustrates the architecture of the Pub/Sub

system, designed to emulate a real-world web application.

Publishers send messages to the custom Python message

broker, which employs a load balancer to intelligently

route each message to the most suitable queue based on

the chosen load-balancing algorithm. Each

subscriber is hosted on a dedicated EC2 instance. It

utilizes the Pika library and threading to efficiently

consume messages from its assigned queue, similar to how

Nginx workers handle concurrent requests. Upon

receiving a message, the subscriber unpacks it into a web

request format and forwards it to the co-located Nginx

web server, which simulates the application logic and

generates the appropriate response.

3.1 Reinforcement learning framework

 Our load-balancing strategy is based on a

reinforcement learning framework, where the broker acts

as the agent, learning to make optimal load-balancing

decisions. The following components characterize the RL

framework:

• States: A vector representing the current state of

each subscriber. The current load on each subscriber (e.g.,

active connections, CPU utilization, response time), queue

length, and system-wide averages.

• Actions: The broker's decisions, such as which

subscriber to assign a new message to.

• Rewards: Feedback signals that indicate the

effectiveness of the broker's actions. The reward function

is designed to incentivize both fast response times, queue

length, and efficient resource utilization, calculated as

shown in Equation (1):

Reward = 1.0 + (1.0 / response_time) - (cpu_percent

* 0.02)- (queue_length * 0.01) …………Eq. (1)

This ensures the algorithm prioritizes both fast

responses and efficient resource utilization. It starts with a

base value of 1.0. This provides a positive reward even for

somewhat slower response times. The term (1.0 /

response_time) is added. It means shorter response times

result in a more significant fraction, increasing the overall

reward, and the longer response times lead to a smaller

fraction, decreasing the reward. The (cpu_percent * 0.02)

portion is subtracted from the reward, which means at

100% CPU usage, the reward is reduced by 2. Finally,

(Queue_length * 0.01) penalizes the agent for

selecting subscribers with longer queues, encouraging it to

distribute the load more evenly.

Additionally, the adaptive exploration strategy is

introduced. The adjusting of the exploration rate (ε)

through the implementing Equation (2):

exploration rate = 0.01+ sqrt (2 *log(total_counts) /

(n_a + 1)) ------- Eq. (2)

The initial value of the exploration rate is 0.01 to

prevent it to be zero at the start of the system. Where

(total_counts) represents the total number of iterations,

and (n_a) represents the number of times the specific

action (a) has been taken. The natural logarithm aligns

perfectly with the desired behavior of the exploration

bonus. It emphasizes exploration early in learning and

gradually reduces exploration over time.

Policy: The broker's strategy is to select actions based on

the current state. RL aims to learn an optimal policy that

maximizes the cumulative reward over time.

Reinforcement Learning Algorithms

Three RL algorithms were evaluated in the present

work for load balancing in Pub/Sub systems. These

algorithms are as follows:
• Epsilon-Greedy (EG)

 Our enhanced epsilon-greedy algorithm

Incorporates several modifications to improve its

adaptability to dynamic Pub/Sub environments. The

reward function dynamically considers both server

Figure 1: Proposed system design

82 Informatica 49 (2025) 77–88 R.Z.A. Shaikh

responsiveness and CPU load, as shown in Eq. (1).

This ensures the algorithm prioritizes fast responses

and efficient resource utilization. Additionally, we

introduce an adaptive exploration strategy, adjusting

the exploration rate (ε) using Equation (2).

• Upper Confidence Bound (UCB) Algorithm

The UCB algorithm shares a similar structure

with epsilon-greedy but differs in its action selection

strategy. Instead of relying on random exploration,

UCB selects actions based on an upper confidence

bound that considers the estimated Q-value and the

uncertainty associated with that estimate [26]. This

approach encourages the exploration of less-visited

actions while exploiting actions with high expected

rewards, leading to more informed and potentially

superior decision-making. Figure 2 presents the

general learning process for the epsilon-greedy and

UCB algorithms within the proposed load-balancing

framework. Both algorithms initialize parameters,

compute the system state, and determine whether to

explore or exploit. However, they differ in their

action selection strategies. Epsilon-greedy explores

with probability ε and exploits with probability 1-ε,

while UCB uses a confidence interval-based formula

to balance exploration and exploitation. Regardless

of the algorithm, the chosen action is executed, a

reward signal is received, and the Q-table is updated,

enabling the agent to learn over time.

• Proximal policy optimization (PPO)

 Proximal Policy Optimization (PPO) is a policy

gradient reinforcement learning algorithm renowned

for its stability and efficiency. Unlike value-based

methods like epsilon-greedy and UCB, PPO directly

learns a policy that maps states to actions,

represented by a neural network trained to maximize

the expected cumulative reward [28].

The PPO implementation employs a four layered

perceptron (MLP) as the policy network. This MLP

consists of an input layer that receives the state

representation, which includes load metrics (active

connections, CPU utilization, response time, and

queue length) for each subscriber and system-wide

averages. To balance simplicity with adequate

capacity for learning, the network utilizes two hidden

layers with ReLU activation functions with 128

neurons each. Finally, an output layer produces a

probability distribution over the available actions,

effectively guiding the selection of a specific

subscriber for each incoming message.

The reward function is crucial in guiding the PPO

agent's learning process. The same dynamic reward

function in Eq (1) is used.

Figure 3 illustrates the architecture of the Proximal

Policy Optimization (PPO) agent employed for load

balancing in the Pub/Sub system. The agent's neural

network receives a state representation

encompassing load metrics (active connections, CPU

utilization, response time) for each subscriber, queue

length, and system-wide averages as input. This state

information is processed through two hidden layers

with ReLU activation functions, culminating in an

output layer that produces two key components: a

policy, which is a probability distribution over

possible actions (subscriber selections), and a value

function, which estimates the expected cumulative

reward from the current state.

The selected action, according to the policy's

probabilities, is then executed within the Pub/Sub

environment, specifically targeting one of the

subscriber instances. The environment responds by

Figure 2: Flowchart of enhanced epsilon greedy and UCB algorithms for pub/sub system

Reinforcement Learning Algorithms for Adaptive Load Balancing… Informatica 49 (2025) 77–88 83

providing a reward signal, calculated using Equation

(1), and a new state reflecting the updated system

conditions. This reward and state information is fed

back to the PPO agent. The clipped surrogate

objective function utilizes them to update the policy

and value function networks. This iterative process

of interaction, reward collection, and network

updates allows the PPO agent to learn and refine its

load-balancing strategy over time, adapting to the

dynamic nature of the Pub/Sub system. The value function

helps the agent estimate the long-term consequences of its

actions, guiding it towards better decisions.

JMeter was employed to simulate different load scenarios

and evaluate the system's performance under various

conditions. The following four scenarios were designed:

• Scenario 1: Normal load. This scenario simulated

a moderate traffic pattern using a Thread Group

with 50 threads (representing 50 concurrent

users) and a loop count of 20. A total of 1000

messages were sent to the message broker.

• Scenario 2: Burst load. This scenario aimed to

stress the system with a sudden surge in traffic. It

was implemented using a Thread Group with 100

threads and a loop count of 20, with target

throughput 6000 message per minute.

• Scenario 3: Server failure. This scenario tested

the system's resilience to subscriber failures. A

normal load of 50 threads and 20 loops (1000

messages) was used, with one subscriber

intentionally failing during the test.

• Scenario 4: Heterogeneous instances. This

scenario evaluated the system's performance with

subscribers having varying resource capabilities.

A normal load was simulated, but one of the three

subscriber EC2 instances was configured with
reduced resources (1 vCPU and 2GB RAM). At

the same time, the remaining two instances

retained their original configuration (2 vCPU and

4GB RAM).

4 Result and discussion
This section presents the results of our experimental

evaluation of various load balancing algorithms in a

simulated Pub/Sub system deployed on AWS.

The performance of baseline algorithms (RR, LC, EG and

UCB) are alkalized and compared with the enhanced

algorithms (Enhanced Epsilon Greedy (EEG), Enhanced

UCB (EUCB), and PPO) across four scenarios: normal

load, burst load, server failure, and heterogeneous

instances. Each experimental scenario was run 10 times,

and the results are presented as mean values with 95%

confidence intervals. The evaluation metrics include

makespan, message throughput, latency, successful

massage rate, Quality of Service, and efficiency.

4.1 Makespan comparison

The makespan, representing the total time to process all

messages, is a critical indicator of system behavior. As

depicted in Figure 4, the enhanced algorithms consistently

outperform the baseline algorithms across all scenarios.

This advantage stems from their ability to dynamically

adapt to changing conditions. Unlike RR and LC, which

rely on fixed rules, the enhanced algorithms leverage real-

time feedback to make informed decisions. For instance,

in the 'Failed Scenario,' the improved algorithms,

especially PPO, demonstrate significantly lower

makespans, indicating their superior ability to adapt and

recover from disruptions.

4.2 Message throughput

Figure 5 presents a comparative analysis of

throughput achieved by various load-balancing algorithms

across the four distinct scenarios. Across all scenarios, the

enhanced algorithms (EUCB and PPO) consistently

outperform the other algorithms specially (RR, LC, and

EG), demonstrating their superior ability to maintain high

throughput even under challenging conditions. This is

particularly evident in the Burst Load scenario, where

EUCB and PPO exhibit significantly higher throughput

than the other algorithms. The results highlight the

effectiveness of the enhanced algorithms in maximizing

Figure 3: PPO Architecture for Load Balancing in Pub/Sub Systems

84 Informatica 49 (2025) 77–88 R.Z.A. Shaikh

the system's capacity to process messages and maintain a

high rate of successful message delivery.

4.3 The latency

Figure 6 illustrates a comparative analysis of latency

across the four scenarios. A key observation is the

variability in latency for the baseline algorithms (RR, LC,

EG, and UCB), particularly in the Normal Load and Burst

Load scenarios. This indicates an inconsistency in

response times and potential delays for specific messages.

In contrast, the enhanced algorithms (EUCB and PPO)

exhibit more stable and predictable latency across all

scenarios, with tighter interquartile ranges and fewer

outliers. This suggests these algorithms can deliver more

consistent and reliable performance, even under

challenging conditions. However, it's important to note

that the enhanced algorithms generally show slightly

higher median latency than the baseline algorithms,

indicating a potential trade-off between performance

consistency and raw speed.

4.4 Successful message rate

Table 2 clearly shows the percentage of successful

messages achieved by each load-balancing algorithm

across different scenarios. Notably, the enhanced UCB

and PPO algorithms consistently demonstrate higher

success rates than the other algorithms in all scenarios.

This highlights their effectiveness in ensuring reliable

message delivery and minimizing request failures,

especially in challenging conditions like burst loads or

Figure 4: Makespan comparison across all algorithms

Figure 5: System message throughput across all algorithms

Reinforcement Learning Algorithms for Adaptive Load Balancing… Informatica 49 (2025) 77–88 85

server failures. The PPO algorithm, in particular, exhibits

the highest success rates across most scenarios, further

emphasizing its potential for robust load balancing in

Pub/Sub systems.

4.5 Quality of service (QoS):

Figure 7 illustrates the relationship between latency and

throughput, two critical QoS metrics, for various load-

balancing algorithms under different scenarios. The

baseline algorithms exhibit more significant variability in

balancing latency and throughput. In contrast, the

enhanced algorithms, especially PPO, consistently

achieve higher throughput with more stable latency.

Distinct clusters for each scenario underscore the impact

of varying load conditions on algorithm behavior. For

instance, the Burst Load scenario generally results in

higher latency and throughput than the Normal Load

scenario, reflecting the increased system stress.

Table 2: The Percentage of successful requests across all scenarios.

Scenarios / Algorithms
(%)

RR LC EG UCB EEG EUCB PPO

Normal Load 89.5 92.0 91.1 92.2 91.6 91.9 97.1

Burst Load 86.9 86.2 93.0 87.6 90.3 92.5 94.7

Failed Server 84.4 88.5 92.1 91.3 83.9 91.8 93.6

Heterogeneous
Instances

90.4 90.9 91.0 91.0 91.8 92.0 93.1

Figure 6: System Latency across all algorithms.

86 Informatica 49 (2025) 77–88 R.Z.A. Shaikh

4.6 The efficiency of the Pub/Sub system

Figure 8 presents the efficiency of various load-balancing

algorithms across four distinct scenarios. Enhanced

algorithms (EUCB and PPO) consistently outperform the

other algorithms, demonstrating their superior ability to

maintain high throughput, especially during Burst Load.

These results highlight the effectiveness of the enhanced

algorithms in maximizing the system's capacity to process

messages and ensure high delivery rates.

 The enhanced algorithms, particularly PPO, utilize

reinforcement learning to make dynamic load-balancing

decisions based on real-time system feedback. This

adaptability enables them to effectively handle

fluctuations in traffic patterns and subscriber loads,

outperforming static algorithms. Moreover, these

algorithms actively route messages to available and

healthy subscribers, resulting in lower failure rates and a

more resilient system. Including CPU usage in the reward

function of the enhanced algorithms further contributes to

balanced resource allocation and improved system

performance by detecting and mitigating potential

subscriber bottlenecks.

While recent research is focused on distributed brokers,

our single-broker optimization approach using RL

demonstrates the potential for enhancing Pub/Sub system

performance, complementing existing work, and opening

avenues for broader system improvements.

Figure 8: The Effeciency analysis of the proposed Pub/Sub System.

Figure 7: The Quality of Services across all scenarios.

Reinforcement Learning Algorithms for Adaptive Load Balancing… Informatica 49 (2025) 77–88 87

5 Conclusions
 This research explored the application of

reinforcement learning (RL) for load balancing in

publish/subscribe systems. We evaluated traditional

algorithms (Round Robin, Least Connections) and

developed enhanced versions of epsilon-greedy and UCB

alongside a custom PPO-based approach. Our

experimental results demonstrate that RL significantly

outperforms traditional methods, particularly the PPO and

EUCB algorithms. These enhanced algorithms showed

marked improvements in makespan, achieving completion

times up to 30% faster than conventional methods.

Moreover, they exhibited notable gains in throughput,

particularly in the Burst Load scenario, where EUCB and

PPO showcased a 10-15% increase in throughput

compared to baseline algorithms. This research also

highlighted the enhanced algorithms' superior ability to

maintain high message success rates, exceeding 90% in

most scenarios, and their contribution to more stable and

predictable latency, leading to improved QoS. Overall,

this research underscores the potential of RL for adaptive

and efficient load balancing in Pub/Sub systems, paving

the way for more resilient and responsive distributed

applications.

6 Future work
This research can be expanded upon in several

promising ways. One area of focus is exploring alternative

reward function formulations and systematically varying

the weights assigned to different factors. Additionally, the

investigation of more comprehensive state representations

could enhance the algorithms' learning capabilities.

Another potential direction is developing hybrid

algorithms that combine the strengths of different RL

methods or integrate RL with traditional load-balancing

techniques. Furthermore, evaluating the proposed

algorithms in more diverse and realistic scenarios would

provide a more comprehensive understanding of their

performance characteristics. Finally, deploying and

evaluating the RL-based load-balancing system in a real-

world production environment would provide valuable

insights into its practical feasibility and effectiveness.

References
[1] A. Javahar, R. Ananth, K. K. Arun Ritthik, and R.

Dharun, “Efficient load balancing for Micro

Services based applications,” in 2023

International Conference on Computer

Communication and Informatics (ICCCI), IEEE,

Jan. 2023, pp. 1–5.

 https://doi.org/10.1109/iccci56745.2023.10128431

[2] G. Barlas, “Load balancing,” in Multicore and

GPU Programming, Elsevier, 2023, pp. 887–941.

doi: https://doi.org/10.1016/B978-0-12-814120-

5.00022-6.

[3] D. I. Sukhoplyuev and A. N. Nazarov, “Analysis

of Application-Level Load Balancing

Algorithms,” in 2023 Systems of Signals

Generating and Processing in the Field of on-

Board Communications, IEEE, Mar. 2023, pp. 1–

4. doi:

10.1109/IEEECONF56737.2023.10092019.

[4] M. G. Spina, G. M. Marotta, S. Gualtieri, and F.

De Rango, “Topic Load Balancing in a multi IoT

Gateways Scenario under Publish/Subscribe

Paradigm,” in 2022 IEEE 19th Annual Consumer

Communications & Networking Conference

(CCNC), IEEE, Jan. 2022, pp. 521–522. doi:

https://doi.org/10.1109/CCNC49033.2022.97006

06.

[5] D. Man, W. Yang, and G. Tian, “Polymorphic

Load Balancing Algorithm Based on Packet

Classification,” in Proceedings of the 2nd

International Conference on Telecommunications

and Communication Engineering, New York,

NY, USA: ACM, Nov. 2018, pp. 258–261. doi:

https://doi.org/10.1145/3291842.3291911.

[6] S. Gilbert, U. Meir, A. Paz, and G. Schwartzman,

“On the Complexity of Load Balancing in

Dynamic Networks,” in Proceedings of the 33rd

ACM Symposium on Parallelism in Algorithms

and Architectures, New York, NY, USA: ACM,

Jul. 2021, pp. 254–264. doi:

https://doi.org/10.1145/3409964.3461808.

[7] S. K. Mishra, B. Sahoo, and P. P. Parida, “Load

balancing in cloud computing: A big picture,”

Feb. 01, 2020, King Saud bin Abdulaziz

University. doi:

https://doi.org/10.1016/j.jksuci.2018.01.003.

[8] Panjwani, K., Pathan, S., Yadav, N., Lokhande,

S. and Thakare, B., “Load Balancing, Optimal

Routing and Scheduling in Hyper-Local.,”

International Journal of Computer Applications,

p. 975, Dec. 2015.

https://doi.org/10.5120/ijca2015907393

[9] Erl, Ricardo Puttini Thomas, and Z. Mahmood,

Cloud Computing: Concepts, Technology &

Architecture (The Pearson Service Technology

Series from Thomas Erl) 1st Edition, 1st ed.

Pearson, 2013.

[10] A. Jyoti, M. Shrimali, S. Tiwari, and H. P. Singh,

“Cloud computing using load balancing and

service broker policy for IT service: a taxonomy

and survey,” J Ambient Intell Humaniz Comput,

vol. 11, no. 11, pp. 4785–4814, Nov. 2020, doi:

https://doi.org/10.1007/s12652-020-01747-z.

[11] D. Wu, Li Jimmy, Ferini Amal, Xu Yi Tian,

Jenkin Michael, Jang Seowoo, Liu Xue, and

Dudek Gregory, “Reinforcement learning for

communication load balancing: approaches and

challenges,” Front Comput Sci, vol. 5, May 2023,

doi:

https://doi.org/10.3389/fcomp.2023.1156064.

[12] J. Xu, H. Guo, H.-W. Shen, M. Raj, S. W.

Wurster, and T. Peterka, “Reinforcement

Learning for Load-Balanced Parallel Particle

Tracing,” IEEE Trans Vis Comput Graph, vol. 29,

no. 6, pp. 3052–3066, Jun. 2023, doi:

https://doi.org/10.1109/TVCG.2022.3148745.

https://doi.org/10.1109/iccci56745.2023.10128431
https://doi.org/10.1016/B978-0-12-814120-5.00022-6
https://doi.org/10.1016/B978-0-12-814120-5.00022-6
https://doi.org/10.1109/CCNC49033.2022.9700606.
https://doi.org/10.1109/CCNC49033.2022.9700606.
https://doi.org/10.1145/3291842.3291911.
https://doi.org/10.1145/3409964.3461808
https://doi.org/10.1016/j.jksuci.2018.01.003
https://doi.org/10.5120/ijca2015907393
https://doi.org/10.1007/s12652-020-01747-z
https://doi.org/10.3389/fcomp.2023.1156064
https://doi.org/10.1109/TVCG.2022.3148745

88 Informatica 49 (2025) 77–88 R.Z.A. Shaikh

[13] J. Wang, “A reinforcement learning-based

network load balancing mechanism,” in Fifth

International Conference on Computer

Information Science and Artificial Intelligence

(CISAI 2022), Y. Zhong, Ed., SPIE, Mar. 2023, p.

162. doi: https://doi.org/10.1117/12.2667915.

[14] M. Shahakar, S. Mahajan, and L. Patil, “Load

Balancing in Distributed Cloud Computing: A

Reinforcement Learning Algorithms in

Heterogeneous Environment,” International

Journal on Recent and Innovation Trends in

Computing and Communication, vol. 11, no. 2,

pp. 65–74, Mar. 2023, doi:

https://doi.org/10.17762/ijritcc.v11i2.6130.

[15] R. Kawaguchi and M. Bandai, “A Distributed

MQTT Broker System for Location-based IoT

Applications,” in 2019 IEEE International

Conference on Consumer Electronics (ICCE),

IEEE, Jan. 2019, pp. 1–4. doi:

https://doi.org/10.1109/ICCE.2019.8662069.

[16] A. Detti, L. Funari, and N. Blefari-Melazzi, “Sub-

Linear Scalability of MQTT Clusters in Topic-

Based Publish-Subscribe Applications,” IEEE

Transactions on Network and Service

Management, vol. 17, no. 3, pp. 1954–1968, Sep.

2020, doi:

https://doi.org/10.1109/TNSM.2020.3003535.

[17] J. Hasenburg, F. Stanek, F. Tschorsch, and D.

Bermbach, “Managing Latency and Excess Data

Dissemination in Fog-Based Publish/Subscribe

Systems,” in 2020 IEEE International Conference

on Fog Computing (ICFC), IEEE, Apr. 2020, pp.

9–16. doi: 10.1109/ICFC49376.2020.00010.

[18] B. Kruekaew and W. Kimpan, “Multi-Objective

Task Scheduling Optimization for Load

Balancing in Cloud Computing Environment

Using Hybrid Artificial Bee Colony Algorithm

with Reinforcement Learning,” IEEE Access, vol.

10, pp. 17803–17818, 2022, doi:

https://doi.org/10.1109/ACCESS.2022.3149955.

[19] J. Chen, W. Yong, O. Jiangtao, F. Chengyuan, L.

Xiaoye, L. Cenhuishan, and H. Xuefeng

“ALBRL: Automatic Load-Balancing

Architecture Based on Reinforcement Learning in

Software-Defined Networking,” Wirel Commun

Mob Comput, vol. 2022, pp. 1–17, May 2022, doi:

https://doi.org/10.1155/2022/3866143.

[20] E. Longo and A. E. C. Redondi, “Design and

implementation of an advanced MQTT broker for

distributed pub/sub scenarios,” Computer

Networks, vol. 224, p. 109601, Apr. 2023, doi:

https://doi.org/10.1016/j.comnet.2023.109601.

[21] O. Houidi, Z. Djamal, P. Victor, A. Quang, P.

Tran, H. Nicolas, L. Jeremie, M. Paolo,

“Constrained Deep Reinforcement Learning for

Smart Load Balancing,” in 2022 IEEE 19th

Annual Consumer Communications &

Networking Conference (CCNC), IEEE, Jan.

2022, pp. 207–215. doi:

https://doi.org/10.1109/CCNC49033.2022.97006

57.

[22] P. Yang, L. Zhang, H. Liu, and G. Li, “Reducing

idleness in financial cloud services via multi-

objective evolutionary reinforcement learning

based load balancer,” Science China Information

Sciences, vol. 67, no. 2, p. 120102, Feb. 2024, doi:

https://doi.org/10.1007/s11432-023-3895-3.

[23] A. Daghistani, W. G. Aref, A. Ghafoor, and A. R.

Mahmood, “SWARM: Adaptive Load Balancing

in Distributed Streaming Systems for Big Spatial

Data,” ACM Transactions on Spatial Algorithms

and Systems, vol. 7, no. 3, pp. 1–43, Sep. 2021,

doi: https://doi.org/10.1145/3460013.

[24] S. V. Nethaji and M. Chidambaram, “Differential

Grey Wolf Load-Balanced Stochastic Bellman

Deep Reinforced Resource Allocation in Fog

Environment,” Applied Computational

Intelligence and Soft Computing, vol. 2022, pp. 1–

13, Aug. 2022, doi:

https://doi.org/10.1155/2022/3183701.

[25] N. M. M. Muna Mohammed Jawad, “RHLB:

Improved Routing Load Balancing Algorithm

Based on Hybrid Policy,” Journal of University of

Babylon for Engineering Sciences, , vol. 27, no. 1,

Feb. 2019. Doi:

https://doi.org/10.29196/jubes.v27i1.2005

[26] H. A. J. Saja Dheyaa Khudhur, “DLSTM-MSF:

Distributed LSTM Models for Multimedia

Streaming Workload Forecasting Based on

Kafka Environment,” Iraqi Journal of

Computers, Communications, Control, and

Systems Engineering, vol. 24, no. 1, pp. 103–118,

Mar. 2024. Doi:

https://doi.org/10.33103/uot.ijccce.24.1.7

[27] E. K. H. Eman K Ibraheem, “Load Balancing

Performance Optimization for LI-Fi/Wi-Fi HLR

Access Points Using Particle Swarm

Optimization and DL Algorithm,” International

Journal of Intelligent Engineering & Systems,

vol. 15, no. 6, Nov. 2022. Doi:

https://doi.org/10.22266/ijies2022.1231.34

[28] A. Mudheher, K. Ghalib, Safanah Mudheher,

“Enhanced Performance of Consensus Wireless

Sensor Controlled System via Particle Swarm

Optimization Algorithm,” Journal of

Engineering, vol. 23, no. 9, Sep. 2017. Doi:

https://doi.org/10.31026/j.eng.2017.09.05

[29] Yossra Ali, Nuha Ibrahim, sajjad jaber, “Task

Scheduling in Cloud Computing Based on The

Cuckoo Search Algorithm,” Iraqi Journal of

Computer, Communication, Control and System

Engineering, vol. 22, no. 1, pp. 86–96, Mar. 2022,

doihttps:/doi.org/10.33103/uot.ijccce.22.1.9.

[30] Hanan Al-asady. Ekhlas K. Hamza, “Indoor

Localization System Using Wireless Sensor

Network,” Iraqi Journal of Computers,

Communications, Control, and Systems

Engineering, vol. 18, no. 1, 2018. Doi:

https://doi.org/10.33103/uot.ijccce.18.1.3

https://doi.org/10.1117/12.2667915
https://doi.org/10.17762/ijritcc.v11i2.6130.
https://doi.org/10.1109/ICCE.2019.8662069
https://doi.org/10.1109/TNSM.2020.3003535
https://doi.org/10.1109/ACCESS.2022.3149955
https://doi.org/10.1155/2022/3866143
https://doi.org/10.1016/j.comnet.2023.109601
https://doi.org/10.1109/CCNC49033.2022.9700657
https://doi.org/10.1109/CCNC49033.2022.9700657
https://doi.org/10.1007/s11432-023-3895-3
https://doi.org/10.1145/3460013
https://doi.org/10.1155/2022/3183701
https://doi.org/10.29196/jubes.v27i1.2005
https://doi.org/10.33103/uot.ijccce.24.1.7
https://doi.org/10.22266/ijies2022.1231.34
https://doi.org/10.31026/j.eng.2017.09.05
https://doi.org/10.33103/uot.ijccce.22.1.9
https://doi.org/10.33103/uot.ijccce.18.1.3

