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Reducing energy consumption and carbon emissions while effectively utilizing automotive resources is a 

crucial task for both the country and the automotive industry. To achieve this goal, this study employs 

the Dynamic Programming algorithm to optimize the control of pure electric commercial vehicles' 

driving process, thereby reducing their energy consumption. With the objective function of minimizing 

energy consumption and the constraints of vehicle power performance and economy, a simulation 

platform is built to analyze the driving energy consumption of pure electric commercial vehicles under 

typical working conditions. The experiment verified the effectiveness and feasibility of the driving energy 

consumption control strategy based on the Dynamic Programming algorithm. The results showed that 

compared with the traditional PID control method, the improved Dynamic Programming algorithm 

saved 1.63%, 4.56%, 7.19%, and 4.63% of the power under the conditions of uphill, downhill, first 

uphill then downhill, and first downhill then uphill, respectively. Compared with traditional Dynamic 

Programming algorithms, the improved algorithm saved power by 0.49%, 3.23%, 6.68%, and 2.36%, 

respectively. Compared to normal driving, the optimized-speed tracking reduced total energy 

consumption by 23.56%, while energy consumption during constant-speed driving decreased by 6.62%. 

This indicates that the proposed energy consumption control strategy for pure electric commercial 

vehicles can achieve the goal of reducing driving energy consumption. The proposed driving energy 

consumption control strategy for pure electric commercial vehicles aims to plan the vehicle's driving 

speed, enabling it to travel on a reasonable speed track, and ultimately reducing driving energy 

consumption while improving driving economy. 

Povzetek: Opisana je strategija za zmanjšanje porabe energije pri električnih tovornih vozilih z uporabo 

algoritma dinamičnega programiranja in prediktivnega tempomata. Model optimizira porabo energije v 

različnih pogojih vožnje, izboljšuje gospodarnost ter zmanjšuje emisije, kar prinaša trajnostne rešitve v 

transportni industriji.

1 Introduction 

Pure Electric Commercial Vehicles (PECVs), as the 

emerging green vehicles, have advantages such as zero 

emissions, low noise, and low cost compared to 

traditional fuel vehicles [1, 2]. With the rapid 

development of PECVs, their economy and power have 

gradually attracted the attention of the industry and 

consumers. At present, research on vehicle energy 

conservation mainly focuses on the following four 

aspects. (1) Improve engine performance, enhance 

transmission performance, and reduce body weight and 

air resistance. (2) Improve driving economy. (3) Improve 

and develop intelligent transportation management 

systems such as electronic toll collection and electronic 

navigation. (4) Promote the development of new energy 

technologies, mainly focusing on the development of 

pure electric and hybrid vehicles [3, 4]. Regarding the 

control of energy consumption in PECVs, industry  

 

 

scholars focus on reducing Driving Energy Consumption 

(DEC) by optimizing the vehicle power system structure,  

improving motor efficiency, and enhancing vehicle 

control strategies [5]. This study proposes a DEC control 

strategy based on a Dynamic Programming (DP) 

algorithm to address the issues of PECVs in DEC control. 

A mathematical model for automobile energy 

consumption is established, and the DEC of automobiles 

under different operating conditions is analyzed. The 

optimization of the engine operating points is achieved by 

considering the energy consumption requirements of 

vehicles under different working conditions and the 

overall power performance requirements of the vehicle, 

resulting in DEC optimization. Finally, the verification of 

this strategy through simulation experiments provides a 

theoretical basis for the development of DEC control 

strategies for PECVs. 

This study combines DP and model predictive 

control to implement a hierarchical control strategy for 



130   Informatica 48 (2024) 129–146                                                               X. Xie et al. 

commercial vehicle predictive cruise control. The 

contribution of this study lies in this combination of 

addressing the computational complexity and real-time 

issues of DP. By establishing the corresponding objective 

function and constraint and adopting a limited time 

domain optimization control strategy, the road slope 

information can be used to enable the vehicle to drive 

economically within the permissible speed range. It 

achieves energy savings and reduces consumption while 

meeting the longitudinal speed-tracking performance of 

commercial vehicles. Additionally, it ensures a certain 

level of riding comfort. 

The paper conducts research through four parts. Part 

1 is a review of the current research status of the 

application of DP algorithm in vehicle DEC control. Part 

2 is the DEC study of PECVs based on DP algorithm. 

Part 3 is performance validation of the proposed system. 

Part 4 is the conclusion. 

2 Related works 

DP algorithms typically have low time complexity 

and are suitable for large-scale problems. Compared to 

some complex algorithms, the implementation of the DP 

algorithm is relatively simple, so many scholars have 

researched it. Chen et al. developed an adaptive DP 

optimization method to improve the safety performance 

and endurance of battery systems. It simplified the 

theoretical analysis of reminder error by using a quadratic 

local expansion method to replace existing nonlinear 

numerical functions and replaced traditional static 

networks with long short-term memory neural networks. 

Through verification, this method could not only avoid 

overcharging and over-discharging but also limit the 

charging and discharging capacity of the battery within 

the set range [6]. To achieve effective regulation of train 

air conditioning, Xie et al. proposed a two-level control 

strategy of "decision layer control layer", which means 

that at the decision layer, DP is applied to the temperature 

inside the carriage to reduce the energy consumption of 

the air conditioning system. At the control layer, the 

fuzzy PID algorithm was used to adjust the designed 

temperature, so that the temperature inside the carriage 

tended to be consistent with the design value. Compared 

to switch controllers, this strategy saved 30.2% of energy 

[7]. Fiori et al. presented a model for electric vehicle 

energy consumption that accounts for input uncertainty. 

They also developed a framework for global and regional 

sensitivity analysis of energy consumption models. The 

authors applied this framework to identify the inputs that 

contribute the most to the variance of simulated energy 

consumption and recovery, as well as the input values 

that result in average or extreme model outputs. The 

results showed that the model tended to overestimate the 

average power consumption and underestimate the 

average recovery [8]. Xu et al. proposed a power 

optimization method for waste heat recovery systems 

based on the DP algorithm. It obtained the optimal power 

generation law through machine learning algorithms and 

applied a reduced order model based on single-state eigen 

orthogonal decomposition and Galerkin projection to DP 

under transient conditions to improve its operational 

efficiency. For transient operating conditions, the DP 

algorithm was used to obtain the optimal operating 

conditions, significantly increasing the recovery rate from 

66.5% to 97.2% [9]. Hou et al. proposed an off-road DP 

method that can balance solution accuracy and speed to 

address the issues of hydrogen economy and system 

efficiency in hybrid electric vehicles. This method 

analyzed the impact of different discrete step sizes of 

state variables on the results and selected a discrete step 

size that can ensure algorithm accuracy and reduce 

calculation time, proving the accuracy of the optimization 

results [10]. 

Reducing the DEC of PECVs not only reduces 

energy consumption but also lowers pollutant emissions. 

Zhang et al. established a model for extended-range 

electric vehicles based on their energy consumption under 

different driving conditions, addressing the issue of 

driving range for electric vehicles. The model obtained 

energy consumption under different operating conditions, 

and the results of the micro gas turbine showed that the 

MGT model has high accuracy. The error between 

simulation values and experimental values was less than 

2%, and the error between speed and turbine inlet 

temperature was less than ±3% [11]. Ren et al. proposed 

an optimal path planning and speed control strategy for 

the motion planning of unmanned ground vehicles in 

different driving environments. The DP method was used 

to convexate the channel constraints in the obstacle 

avoidance path pre-selection and re-planning and 

optimize the longitudinal motion and steering Angle 

control at the prediction and control level. Finally, the 

feasibility and performance of the proposed strategy were 

verified by numerical experiments [12]. He et al. 

proposed a real-time energy-aware ecological driving 

control strategy to optimize energy consumption and 

meet the needs of ecological driving. They established a 

longitudinal driving dynamics model and an energy 

consumption model for the entire vehicle, and then 

constructed the optimal control problem with the 

maximum driving distance and the shortest driving time 

as objective functions, respectively. This method could 

perceive the remaining battery level of the battery pack in 

real-time, and achieve ecological driving with the 

maximum driving distance and the shortest driving time 

[13]. Pan et al. have developed a novel hybrid DC 

prediction model that utilizes algorithms such as principal 

component analysis and K-means clustering to establish 

driving cycles suitable for different cities. Then, using the 

hybrid DC prediction method, the problem of traditional 

rolling prediction not being able to accurately predict 

vehicle speed was solved. Finally, by establishing a DC 

state transition matrix, the vehicle speed prediction 

during starting, the range of the vehicle, and energy 
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conservation and consumption reduction were achieved [14]. 

 

Table 1: Summary of literature review 

Author Research method Results 

Chen et al. [6] 
Adaptive DP based on long- and 

short-term memory neural networks 

Vehicle energy consumption is reduced 

by 15% to 20% 

Xie et al. [7] 
"Decision level - control level" 

two-level control strategy 

Energy savings of 30.2% compared to 

switching controllers 

Fiori et al. [8] 

An electric vehicle energy 

consumption model considering input 

uncertainty 

Compressor energy consumption and 

thermal management system energy 

consumption were reduced by 5.71% and 

4.37%, respectively 

Xu et al. [9] 

Power optimization of waste heat 

recovery system based on DP 

algorithm 

The recovery rate increased from 66.5% 

to 97.2% 

Hou et al. [10] 

The DP of the distance walk takes into 

account both the solution precision and 

the solution speed 

Efficiency is 5%-10% higher than 

induction motor 

Zhang et al. [11] 

Energy saving analysis of extended 

range electric vehicle based on micro 

gas turbine 

Range increased from 73 km to 128 km 

Ren et al. [12] 

The channel constraints in obstacle 

avoidance path pre-selection and 

rerouting are optimized by using DP 

method 

Achieve a 3% fuel saving effect without 

sacrificing the average speed 

He et al. [13] 
A real-time energy sensing eco-driving 

control strategy 

Energy consumption is reduced by 1.9% 

to 4.0% 

Pan et al. [14] Hybrid DC prediction method The energy saving rate is about 5% 

Nie et al. [15] 

Energy saving speed planning for 

autonomous electric vehicles based on 

reinforcement learning 

It can save 2% to 5% under different 

working conditions 

Proposal Improved DP algorithm 

Compared with the traditional DP 

algorithm and the conventional PID 

algorithm, it saves 1%-2% and 1-7.5% 

more energy consumption, respectively 

 

Nie et al. proposed a collaborative optimization 

strategy to address the adverse effects of uncertainty and 

lateral stability of complex traffic conditions on vehicle 

online speed planning and energy management. The 

strategy utilized gradient-based model predictive control 

and fast projection gradient method to calculate the safe 

optimal speed sequence. The energy management 

strategy based on the adaptive equivalent energy 

consumption minimization strategy of power ratio was 

adopted for energy allocation. The results showed that 

this strategy could obtain a safe and optimal speed 

sequence on curves [15]. 

Table 1 shows that the DP algorithm can achieve 

better results in vehicle energy consumption optimization. 

The incline of the road exerts a gravitational force on the 

vehicle, either impeding its forward motion or providing 

a driving force, which in turn affects the vehicle's braking 

force. Sloped driving thus typically has a deleterious 

effect on the condition of the vehicle. However, most 

current methods are based on trajectory optimization to 

reduce energy consumption and limit the travel radius of 

the owner. Therefore, according  

 

 

to the work needs and objectives of the speed planning 

system, the overall structure of the speed planning system 

is determined and the perfect process of speed planning is 

established. The DP algorithm is applied to transform the 

ramp-driving process of PECV into a mathematical 

problem, and the ramp-driving speed optimization model 

is established. 

3 Design of DEC control scheme for 

PECVs 

This study first completes the establishment of basic 

theoretical models, including the overall architecture of 

control strategies and the longitudinal dynamics model of 

vehicles. Subsequently, the research on the objective 

function establishment and solution algorithm for 
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multi-objective programming problems in this experiment 

is completed. 

3.1 Overall design and vehicle mass 

modeling 

The advancement of new energy vehicle technology 

has made PECVs an important component of new energy 

vehicles, with extensive applications in urban logistics, 

urban passenger transportation, and other fields [16]. 

However, as a hybrid electric vehicle with multiple power 

sources, PECVs have always been one of the main 

challenges in the development of new energy commercial 

vehicles due to their DEC. This study is based on 

high-precision electronic maps and GPS positioning 

technology and implements a new predictable DEC 

control system. The main architecture is shown in Figure 

1. The vehicle position and slope information of the road 

ahead obtained through GPS are combined with the 

reference vehicle speed set by the driver, and this data is 

transmitted to the upper controller. This controller is 

based on a predictive energy-saving control model for a 

constructed vehicle, combined with the DP algorithm, to 

obtain the optimal reference speed running trajectory. 

The obtained trajectory is used as the set speed 

benchmark for the lower-level controller. The lower-level 

controller solves Multi-objective Optimization (MOO) 

problems based on the slope information of the road 

ahead and the set performance function to plan the 

vehicle's speed reasonably. 

This experiment mainly studies the longitudinal 

performance of PECVs, and models the longitudinal 

degrees of freedom and mechanical characteristics of the 

entire vehicle through analysis. Commercial vehicles 

achieve energy conservation and consumption reduction 

by optimizing the driving force and selecting the optimal 

gear for variable speed driving under different working 

conditions. In the time domain, a car with a mass of m  

passes through a short period sT
 on a slope with a tilt 

angle of  . sT
 is very small, so it can be assumed that 

the acceleration during this process will not change. The 

force situation of the PECVs particle model is shown in 

Figure 2. 
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Figure 1: DEC control system architecture of PECVs 
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Figure 2: Stress on the particle model of PECVs 

 

According to Newton's second law, the vehicle force 

balance, equation (1), is obtained. 

 
( )t f w i jF F F F F F= + + +

 (1) 

In equation (1), tF
 represents the driving force. F  

represents braking force. fF
 represents rolling 

resistance. wF
 represents air resistance. iF

 represents 

the slope resistance. jF
 represents acceleration 

resistance. To balance the complexity and accuracy of the 

model, a simple assumption and simplification have been 

made for the longitudinal dynamic characteristics of the 

entire vehicle: lateral and vertical movements are not 

considered, only longitudinal movements of the vehicle 

are considered. Under normal driving conditions, the 

vehicle does not consider tire sliding or deformation of 
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the drive shaft. The vehicle has no transmission and is 

symmetrical on both sides. Substituting the calculation 

equations in equation (1) yields equation (2). 

 

( ) 20 1
cos sin

2

m T

D

T i dv
F mgf C A v mg m

r dt


   = + + +

 (2) 

In equation (2), mT
 represents the motor torque. 0i  

represents the transmission ratio of the main reducer. T  

represents the mechanical efficiency of the vehicle's 

transmission system. r  represents the rolling radius of 

the wheel. 
g

 represents gravitational acceleration. 
f

 

represents the rolling resistance coefficient. DC
 

represents the air resistance coefficient. A  represents 

the windward area of the vehicle. 


 represents air 

density.   represents the conversion factor for the 

rotational mass of the vehicle. v  represents the driving 

speed. 

The longitudinal dynamics model of a car can reflect 

the relationship between various forces and its motion 

state during operation [17]. PECVs can obtain real-time 

vehicle speed and motor torque through the local area 

network of the vehicle controller. The transmission ratio, 

wheel radius, air resistance coefficient, and windward 

area of the main reducer are already known parameters. 

The rolling resistance coefficient, road slope, and other 

parameters are dependent on the road condition. In this 

study, quality estimation is the input of the ramp speed 

planning system, and it is believed that road parameters 

can be obtained through high-precision electronic maps 

and other means. However, to improve the applicability 

of the quality estimation model, it is considered that these 

two parameters are unknown. Therefore, equation (2) can 

be rewritten as equation (3). 

 

( )

20 1

2

cos sin

m T

D

T i
v C A v R

mr m

g
R f




 

 



= − −


 = +
  (3) 

 

In the longitudinal dynamic’s equation of a vehicle, 
v  represents the time variation of the vehicle's motion 

state. However, m  and the road related parameter R  

are unknown, so these three parameters are selected as 

the system state parameters. The rolling resistance 

coefficient remains relatively constant under the same 

road conditions, despite changes in slope angle. The mass 

estimation process is also relatively quick, taking into 

account factors such as the vehicle's constant mass and 

rolling resistance coefficient. Therefore, assuming that 
R  remains basically unchanged, the differential 

equation of the system can be obtained as shown in 

equation (4) below. 

 

 

20 1

2

0

0

m T

D

T i
v C A v R

mr m

R

m




 


= − −


=

 =

  (4) 

 

Equation (4) is discretized and state noise is added to 

obtain the state equation of the system. In the observation 

equation of the system, only the vehicle speed can be 

observed by the bus in the local area network of the 

onboard controller. After considering the observation 

noise, equation (5) is obtained. 

 

 1 0 0

k

k k

k

v

x m V

R

 
 

= +
 
    (5) 

In this model, the state equation of the system is 

nonlinear, while the observation equation of the system is 

linear. When using the extended Kalman filtering 

method, the first step is to perform partial differentiation 

on each parameter of the system, and then calculate its 

Jacobian matrix, as shown in equation (6). 

 

2

0

2
1

2

0 1 0

0 0 1

m TD D

f

T itC Av C A v
t t

m m m r

J



  

  
−  − −  

   
 =
 
 
 
    (6) 

 

Then, according to equations (3) to (5), the initial 

values and relevant parameters are determined, and the 

extended Kalman filtering algorithm is used to achieve 

real-time estimation of the vehicle mass. 

3.2 Vehicle speed planning and predictive 

cruise control strategy 

DP algorithm is a typical type of nonlinear 

programming method. Due to its global optimality, the 

DP method is widely used to solve multi-stage decision 

optimization problems and is also regarded as a 

validation standard for the accuracy of other algorithms. 

The core idea is "reverse optimization, forward solution". 

This approach breaks down the original multi-stage 

decision problem into several sub-problems, which are 

then solved iteratively in reverse order to obtain a 

sequence of optimal solutions for the multi-stage problem 

[18]. 
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Figure 3 briefly illustrates the basic principle of the 

DP algorithm. In practical engineering, local optimal 

control problems can be transformed into multi-stage 

decision problems. To break it down into multiple 

sub-problems (or stages). The endpoint of each 

sub-problem is two adjacent sets of states, each 

containing a finite number of partitioned state variables, 

each of which can take a value within a certain interval. 

A series of states composed of multiple states, obtained 

by solving the optimal control problem, is the most 

effective series of control sequences, which is the optimal 

solution to the optimal control problem. 

 

( )1 1N NJ x− −( )0 0J x

Step N+1: Step N-k+1: Step N-k: Step 1:

0x 1x
kx 1kx + Nx

0u 1ku − ku 1Nu −

( )1 1k kJ x+ +( )k kJ x

… … 

… … 
Solving 

sequence

Procedure 

sequence

 

Figure 3: Schematic diagram of DP algorithm principle 

 

The predictive cruise control system aims to optimize 

the speed set by the driver and reduce electrical energy 

consumption, achieving economical driving while 

keeping the following speed constant. The DEC control 

of PECVs is a MOO problem. The objective function 

includes speed tracking indicators and electricity 

economy indicators [19, 20]. 

Based on the slope information of the road ahead, 

future road conditions can be predicted and vehicle 

speeds can be planned reasonably. Additionally, the 

conversion between potential energy and kinetic energy 

can be utilized to reduce unnecessary braking and select 

the optimal gear to reduce fuel consumption. The 

economic index EJ
 of electric energy is given by 

equation (7). 

 

 
( )E tJ E k t= 

 (7) 

 

In equation (7), 
( )tE k

 represents the electric 

energy consumption rate of commercial vehicles. The 

system does not limit the speed range, but allows the 

speed of commercial vehicles to change within a certain 

range of reference speeds set by the driver. However, the 

magnitude of this change is not completely fixed, but 

adjusted by controlling the weight coefficients in the 

algorithm. The speed tracking index vJ
 is given by 

equation (8). 

 
( )( )

2

1v refJ v k v t= − 
 (8) 

In equation (8), 1  represents the weight coefficient 

and refv
 represents the predetermined vehicle speed. 

When commercial vehicles are driving at a constant 

speed, their speed tracking performance, electric energy 

efficiency, comfort, and safety factors mutually affect and 

constrain each other. Therefore, to obtain the optimal 

cruise control system, it is necessary to collaborate and 

optimize multiple performance indicators. By adding up 

the weights of each indicator, a comprehensive 

performance indicator function that can achieve optimal 

comprehensive performance is obtained. The 

comprehensive performance indicator function that needs 

to be minimized is given by equation (9). 

 

( ) ( ) ( )

( ) ( ) ( ) ( )( )

( ) ( )( )

1

0

2

1

2

2

, , ,

, ,

,

N

k

t ref

set

J L x k u k k x N N

L x k u k k E k t v k v t

x N N v N v





 

−

=


   = +    




  =  + −   

   = − 





 (9) 

 

In equation (9), N  represents the number of grid 

divisions. 2  represents the weight coefficient. setv
 

represents the speed set by the driver. 
( )( )

2

setv N v−
 

represents the terminal punitive indicator. By determining 

the weight coefficients of each objective, the 

multi-objective model can be transformed into a single 

objective model, thereby adjusting the weights of the 

multi-objective programming problem. The core of this 

method is to reasonably determine the weight coefficient 

to reflect the importance of different goals. The 

independent weight coefficient method is used to 

determine the weight of each index according to the 
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collinearity between each index and other indicators. 

Given an indicator item 
 1 2, , , mX X X X  , if the 

complex correlation coefficient between indicator 
X  

and other indicators is larger, it indicates that the 

collinearity relationship between indicator 
X  and 

other indicators is stronger. The easier it is to be 

represented by the linear combination of other indicators, 

the more repetitive information it is, and the smaller the 

weight of this indicator should be. That is, if the complex 

correlation coefficient R  between indicator 
X  and 

other indicators is larger, the weight of the indicator is 

smaller. The R  is expressed as equation (10). 

 

 

( )( )

( ) ( )
2 2

ˆ

ˆ

x x x x
R

x x x x

− −
=

− −



 
 (10) 

 

The reciprocal of R  is taken as the score, and then 

normalized to get the weight system. Predicting cruise 

control for commercial vehicles is not a random process, 

but requires applying certain constraints to the various 

state variables and control variables of the system. 

Assuming the maximum engine speed is min
 and the 

minimum engine speed is max
, the engine speed 

constraint is given by equation (11). 

 

 
( )min maxk   

 (11) 

 

The predictive cruise control system allows the 

vehicle to change within a given speed range, but if the 

reference speed is exceeded, it will have a certain impact 

on the vehicle. For example, if the speed is too fast, it can 

lead to vehicle speeding or safety accidents, while if it is 

too low, it can cause an extension of travel time, resulting 

in a decrease in traffic efficiency. The expression for 

velocity constraint is given by equation (12). 

 

 
( )set down set upv v v k v v−   −

 (12) 

In equation (12), downv
 and upv

 respectively 

represent the limits of the allowed downward and upward 

variations in the actual driving speed. Business vehicles 

are generally equipped with several gears to optimize 

their power, economy, and shifting smoothness. Multiple 

gears can allow drivers to choose gears that are more 

energy-efficient and have better power, but gears are also 

limited by speed. At a certain speed, not every gear can 

meet certain limits. The constraint conditions that the 

allowed gear 
( )G k

 needs to meet are shown in equation 

(13). 

( ) ( )
( )

( )( )
( )min max

30 30

w w

g

f f

r r
G k G k i G k

i v k i v k

 
 

  
=   
    (13) 

If the engine speed is 
( )k

, the maximum output 

torque of the engine is 
( )( )maxT k

, and the minimum is 

( )( )minT k
. The constraint of the system's engine torque 

is given by equation (14). 

 

( )( ) ( )( ) ( )( )min maxT k T k T k   
 (14) 

 

The transmission can only switch to adjacent gears. 

If the shifting command is defined as 
( )gu k

, 
 1,0,1−

 

represents downshift, hold, and upshift respectively, then 

the corresponding shifting constraint is given by equation 

(15). 

 
( )  1,0,1gu k  −

 (15) 

In multi-variable systems, model predictive control is 

a method that can be controlled through optimal methods. 

The schematic diagram of the solving mechanism for 

model predictive control is shown in Figure 4. It consists 

of three parts: model, prediction, and control. The three 

parts are connected by constructing a mechanism model 

or a data-based model that describes the motion state of 

the controlled object. This allows for predicting the future 

of the controlled object. Subsequently, a judgment is 

made and control behaviors are outputted with the 

objective of achieving the optimal solution. 
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Figure 4: Schematic diagram of solving mechanism of model predictive control 

 

Grid discretization is an important step in applying 

DP methods to solve continuous problems. The 

magnitude of its dispersion directly affects the overall 

optimal solution result. When solving the same problem, 

using a smaller mesh can accelerate the calculation speed 

of the DP algorithm, but there is a significant deviation 

between its calculation results and the actual optimal 

value. As the number and density of grids increase, the 

error between the calculation accuracy of the DP method 

and the true value will become smaller, but the 

calculation speed will be greatly reduced, and the 

calculation time will grow exponentially. To strike a 

balance between computational speed and accuracy, it is 

necessary to choose the appropriate grid dispersion. 

The entire journey is divided into parts N  to obtain 

time 1N + . Each moment includes the vehicle state of 

displacement, speed, and gear, i.e.  

( ) ( ) ( ) ( )
T

x k s k v k G k =   , as shown in Figure 5. 

If the starting point offset of commercial vehicles is 0, 

then the distance from the starting point to the current 

point of the commercial parking space movement can be 

determined. Similarly, the speed of commercial vehicles 

can also be discretized into equation (16). 

 
 min min min max, , 2 ,kV v v v v = + +

 (16) 

In equation (16), kV
 represents the discrete interval. 

For each discretized speed, a finite number of gears can 

be selected based on limitations such as torque and speed. 

This study completes the selection of the above 

parameters by comparing the simulation results under 

different mesh densities. 
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Figure 5: Schematic diagram of DP solution process 
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4 Simulation analysis of energy 

consumption control during 

vehicle operation 

To verify the effectiveness of the designed DP-based 

DEC control strategy, simulation analysis was conducted 

on the DEC data of the vehicle model under typical 

operating conditions. This study built a simulation model 

of the vehicle model in MATLAB/Simulink and set three 

different operating conditions in the simulation model to 

compare the effectiveness of the proposed system. 

4.1 Analysis of vehicle uphill and downhill 

working conditions 

The total length of the simulated virtual road is 

6500m, and the driving distance of the vehicle is 5500m. 

Table 2 shows all the parameter settings of vehicle. 

Uncertainty represents the evaluation of the magnitude 

range of the measured truth value. The uncorrectable part 

of the error range represents the dispersion of the 

measured value. Observation error is  

 

 

the difference between the measured result and the 

measured true value, indicating the degree to which the 

measured result deviates from the true value. The 

observation error of the experimental data is 1%, and the 

relative uncertainty is in the range of [-1%, 1%]. 

The vehicle is a PECV, and the parameters in Table 2 

are all actual vehicle data. Firstly, the ramp modeling 

collects the vehicle's ramp driving data. Then, the motion 

travel between the beginning of one idle state and the 

beginning of the next idle state during the running of the 

vehicle is regarded as a short travel. Next, the feature 

parameters of each divided short stroke are calculated. 

The feature parameters include velocity, acceleration, and 

slope angle. Principal component analysis is used to 

construct the principal component score matrix. Finally, 

the short-stroke clustering results are obtained and the 

candidate driving conditions with the lowest average 

relative error are taken as the driving conditions of urban 

ramps. There are 4 types of virtual typical ramps, 

including uphill, downhill, concave, and convex slopes. 

The four types of virtual ramps are constructed using the 

sine function, and the average slope is 6%. 

 

Table 2: Parameter settings 

Parameter name Parameter value 

Vehicle mass 3340 kg 

Initial velocity state 45 km/h 

Velocity state minimum 30 km/h 

Velocity state maximum 60 km/h 

Minimum allowable acceleration -3 m/s2 

Allowable maximum acceleration 3 m/s2 

Distance phase partition interval 25 m 

Speed state interval division interval 1 km/h 

 

The simulated slope is set between 2600-3200 

meters, with a 3% uphill slope. The simulation results are 

shown in Figure 6. Commercial vehicles using the DP 

control algorithm accelerate in advance before going 

uphill, which results in a slower speed compared to the 

original deceleration during the actual uphill process, and 

the speed will also change up and down from the 

reference speed. This means the degree of speed 

deviation has been controlled. The speed of a car 

controlled by PID is constant before going uphill, but 

gradually decreases when going uphill, resulting in a  

 

 

greater change in speed during full uphill compared to the 

previous two methods. The proposed DP algorithm 

combines the long-term optimization of the DP algorithm 

with the real-time correction of model predictive control, 

overcoming the limitation that model predictive control is 

only suitable for short-term optimization. As a result, 

lower torque fluctuations and smoother driving have been 

achieved, with greater energy-saving potential. Under this 

operating condition, the improved DP algorithm achieves 

a power saving rate of 1.63% compared to the traditional 

PID control method. 
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Figure 6: Comparison diagram of co-simulation of uphill road 
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Figure 7: Comparison of downhill road co-simulation 

 

Figure 7 shows the result of a downhill slope of -3% 

on the 2600–3200-meter section. Commercial vehicles 

using the DP algorithm will also slow down in advance 

before going downhill. Therefore, in the actual downhill 

process, the speed of the car is slightly slower than the 

initial growth rate, and the speed varies between the 

increase and decrease of the reference speed, indicating 

that the degree of speed deviation has been controlled. 
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The speed of a car controlled by PID is constant before 

going downhill, and gradually accelerates when going 

downhill, resulting in significant changes in the speed of 

the car. This system has lower torque fluctuations and 

higher energy-saving potential. Under this operating 

condition, compared to conventional PID control, the 

traditional DP algorithm can save about 3.23% of 

electricity, while the improved DP algorithm can save 

4.56%. 

Figure 8 shows the simulation results of uphill and 

downhill roads (uphill first, then downhill), with a 3% 

uphill condition set for the 1700–2300-meter section and 

a -3% downhill condition set for the 4200–4800-meter 

section. Commercial vehicles controlled by the DP 

algorithm accelerate before going uphill and decelerate 

before going downhill. Therefore, when going downhill, 

the increase in car speed is smaller than before, and the 

degree of speed deviation is also controlled. However, 

commercial vehicles using the PID algorithm have no 

significant changes before going uphill and downhill, 

maintaining the same speed. As the uphill speed declines, 

the downhill speed continues to rise, resulting in a more 

pronounced alteration in the vehicle's velocity during the 

ascent and descent phases when compared to the initial 

two methods. Under this operating condition, compared 

to conventional PID control, the traditional DP algorithm 

can save about 6.68% of electricity, while the improved 

DP algorithm can save 7.19% of electricity. 
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Figure 8: Comparison diagram of co-simulation of uphill and downhill roads (uphill first then downhill) 
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Figure 9 shows the comparison results of uphill and 

downhill roads (downhill first, then uphill), where the 

1700–2300-meter section is set as a -3% downhill 

condition, followed by a 3% uphill condition in the 

4200–4800-meter section. Commercial vehicles 

controlled by the DP algorithm slow down before going 

downhill and accelerate before going uphill. Therefore, 

when the car is uphill, the increase in speed will decrease 

and the deviation in speed will be controlled. Commercial 

vehicles using the PID algorithm maintain a constant 

speed before going downhill and uphill, gradually 

increasing speed while going downhill but decreasing 

speed when going uphill. This results in a greater change 

in the speed of the car during the entire uphill process 

compared to the first two methods. Under this operating 

condition, compared to conventional PID control, the 

traditional DP algorithm can save about 2.36% of 

electricity, while the improved DP algorithm can save 

4.63%. 
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Figure 9: Comparison diagram of co-simulation of uphill and downhill roads (First down, then up) 
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Compared to traditional DP algorithms, improved DP 

algorithms can save 1%-2% more electricity (Table 3). 

This method is more efficient because it can process and 

utilize slope information more quickly. Compared to 

conventional PID algorithms, this method can save about 

1%-7.5% of electrical energy, and the average vehicle 

speed under typical operating conditions is relatively 

similar. While ensuring the efficiency of vehicle 

operation, it can significantly improve the fuel economy 

of the vehicle. 

From the average total DEC values of three 

experiments in each of the three groups, compared to 

normal driving, the total energy consumption of 

optimized speed tracking decreases by 23.56%, while the 

DEC at constant speed decreases by 6.62% (Table 4). The 

simulation results indicate that the proposed PECVs ramp 

driving speed planning can achieve the goal of reducing 

DEC. 

 

Table 3: Summary of simulation results 

Road type Algorithm 
Average speed 

[km/h] 
Travel time [s] Energy saving rate 

Uphill 

PID 60.12 324.13 / 

Traditional DP 59.63 324.02 0.49% 

Improved DP 59.21 329.45 1.63% 

Downhill 

PID 62.31 309.45 / 

Traditional DP 60.47 319.82 3.23% 

Improved DP 59.68 324.91 4.56% 

First up, then down 

PID 62.38 315.74 / 

Traditional DP 60.49 319.84 6.68% 

Improved DP 59.22 327.38 7.19% 

First down, then up 

PID 63.78 308.19 / 

Traditional DP 61.68 319.47 2.36% 

Improved DP 60.94 323.16 4.63% 

 

Table 4: Experimental results of vehicle speed trajectory 

Experiment Serial number Total DEC (kJ) Average value (kJ) 

Normal driving 

1 10362 

9814.00 2 9845 

3 9235 

Constant speed 

1 7963 

8033.33 2 8175 

3 7962 

Optimized speed 

1 7485 

7501.67 2 7496 

3 7524 
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Figure 10: SOC changes corresponding to three constant speed trajectories 
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The change of battery State of Charge (SOC) when 

the driver drives three times at a constant speed on the 

selected road is shown in Figure 10. The experimental 

battery SOC is reduced by 0.32 for the three times of 

constant speed driving. The constant speed is controlled 

by the driver, resulting in a lower overall speed. This 

reduces the work required to overcome driving resistance, 

leading to a lower total DEC compared to normal driving. 

5 Results and discussion 

The study focused on the slow development of 

PECVs due to the range limit. To address this challenge, 

a strategy was proposed to reduce the DEC by planning 

the ramp driving speed. This approach aimed to achieve 

two key objectives: reducing the slope DEC and avoiding 

the excessively high temperature of the downhill brake. 

Additionally, the study conducted a detailed analysis of 

the speed planning of PECVs on ramps. The simulation 

results of speed optimization to reduce DEC under four 

virtual typical ramp conditions showed that compared 

with constant speed cruise control, the economic speed 

trajectory of PECV could reduce DEC on the ramp in 

both regenerative and non-regenerative braking states. 

There are two points of principle. First, through the lower 

speed in the uphill stage, the vehicle can overcome the 

driving resistance and do less work, thereby reducing the 

DEC. The second point is to make full use of the 

gravitational potential energy of the vehicle during the 

downhill process, decelerate before the downhill, 

accelerate during the downhill, and decelerate again after 

the downhill. Given this, the motor driving torque 

demand before and after the downhill can be reduced, 

thus reducing the DEC [21]. 

The simulation results of vehicle speed optimization 

under virtual long downhill road conditions to reduce 

brake temperature rise showed that, compared with 

constant speed cruise control, the safe vehicle speed 

trajectory could reduce the brake temperature rise during 

downhill driving under two conditions: whether 

regenerative braking is possible or not. The safe speed 

trajectory converted the gravitational potential energy of 

the vehicle into kinetic energy, consumed the work to 

overcome resistance, and recovered braking energy. As a 

result, the gravitational potential energy converted into 

thermal energy during the downhill process was reduced 

[22, 23]. The experimental results of economic speed 

track verification showed that the actual speed track 

obtained by the driver according to the economic speed 

cue had the same change trend and characteristics as the 

economic speed track. This can reduce the work to 

overcome the resistance and utilize the downhill 

gravitational potential energy in the uphill stage. The 

driver's economic speed track followed the total DEC, 

which reduced energy consumption by 23.56% compared 

with normal driving and reduced energy consumption by 

6.62% compared with constant speed driving. It shows 

that the speed planning of PECV on the ramp can achieve 

the goal of reducing DEC. 

6 Conclusion 

This study aims to develop a PECV predictive cruise 

layered control system with advantages such as efficiency 

and economy to minimize electrical energy consumption 

and improve endurance within the allowable speed range. 

This study used a reference speed planning algorithm 

based on the DP algorithm in the upper layer and a speed 

tracking algorithm based on predictive cruise control in 

the lower layer to optimize the speed trajectory and 

control actions of commercial vehicles. The effectiveness 

and superiority of the developed algorithm in vehicle 

driving economy have been demonstrated through testing 

under different working conditions. The results showed 

that under uphill conditions, the improved DP algorithm 

achieved a power saving rate of 1.63% compared to the 

traditional PID control method. In downhill conditions, 

the improved DP algorithm saved 4.56% of electricity. 

Under the conditions of uphill and downhill, the 

traditional DP algorithm could save about 6.68% of 

electricity compared to conventional PID control, while 

the improved DP algorithm could save 7.19% of 

electricity. Compared to conventional PID control, the 

traditional DP algorithm saved approximately 2.36% of 

electricity in downhill and uphill conditions. The 

improved DP algorithm saved 4.63%. The comparison 

results greatly demonstrate that the algorithm has a good 

effect on improving the operational economy of PECVs. 

This experiment was conducted offline and failed to 

verify the real-time performance of the model. In the 

future, real-time data processing can be carried out based 

on the way of data flow, that is, the data arrive in a 

continuous stream and are processed and analyzed 

immediately. It emphasizes the real-time processing 

ability of infinite data flow, considering the design of 

data order, window processing, state management, etc., to 

carry out more perfect and effective experiments. 
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