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We have witnessed a rapid exponential growth of all types of data in all domains specifically in the medical 

domain. The utilization of machine learning techniques has made significant strides across various 

domains, with deep learning achieving notable success in recent years. Lately, deep learning has gained 

increasing attention in the medical field. While deep learning excels at automatically learning 

discriminative features from raw data, it is still challenging to achieve high performance without a huge 

amount of data and some handcrafted steps. To address these challenges, deep learning has been 

incorporated with other new trends and domain knowledge to enhance deep learning's capabilities and 

improve performance covering the ever-growing needs. Transfer learning utilizes knowledge from natural 

images, curriculum learning integrates domain-specific knowledge, active learning selects the most 

informative samples to reduce reliance on labeled data, and federated learning enables collaborative 

training across organizations while ensuring data privacy. In this review paper, these new trends 

incorporated with deep learning have been investigated and presented as applications in the medical 

domain by investigating articles that have applied these trends and published in highly reputable journals 

in the Science Direct database in recent years. 

Povzetek: V pregledni študiji so predstavljeni sodobni trendi strojnega učenja v medicini, kot so 

transferno, aktivno in federativno učenje na podlagi učnih načrtov, ki v kombinaciji z globokim učenjem 

izboljšujejo diagnostiko, personalizacijo zdravljenja in varnost podatkov. 

 

1   Introduction 
Recently, we have witnessed the growth of all types of 

data in all domains. Medical data specifically has grown 

dramatically in the last few years due to the exponential 

increase of knowledge in the medical domain. Medical 

data can be found in various forms such as clinical and 

biomedical data. Biomedical data contains data related to 

genomics, drug discovery, and biomedicine. Clinical data 

contains patient records such as medical patients’ history, 

laboratory investigation, and image data from magnetic 

resonance imaging (MRI), ultrasound (US), X-rays, and 

computerized tomography (CT) scans. Clinical data exists 

in 2 forms, structured and unstructured. The structured 

format includes the disease history and living habits of the 

patients. While unstructured clinical data such as doctor’s 

investigation records and the conversation between the 

doctor and patients [1-3]. Therefore, this rapidly growing 

volume of medical data requires advanced methods for 

analysis. 

Applying artificial intelligence (AI) in the medical 

domain comprises a promising technology for different 

healthcare providers. These technologies, particularly data 

mining, help extract hidden patterns and insights from 

large datasets using machine learning techniques (MLTs). 

Traditional MLT includes Artificial Neural Networks 

(ANN), Decision Trees (DT), Support Vector Machines 

(SVM), and many other techniques. Machine  

 

 

learning techniques are usually categorized into 

supervised, unsupervised, semi-supervised, and 

reinforcement learning. In supervised learning, the labeled 

data is available, therefore, the model can be trained using 

this manually tagged data to extract patterns. When there 

is no labeled training data, unsupervised techniques are 

employed. It groups similar entities in the same cluster. 

Each cluster demonstrates a relation between these 

grouped entities. Semi-supervised depends on a set of 

hand-crafted extraction patterns and a few tagged 

instances as initial seeds of the target relation to start the 

training. The training output is used as the training input 

for the following generation. The process of learning is 

repeated for many generations. Reinforcement learning is 

based on evaluative feedback, so, it can automatically 

perform goal-oriented learning and process decision-

making problems [4, 5]. 

Deep learning is an advanced form of artificial neural 

network (ANN), with a larger number of layers than a 

conventional ANN model to automatically learn the 

features from the data which makes more refined 

predictions possible. In numerous recent medical image 

classification tasks, convolutional neural networks 

(CNNs), which are a kind of deep learning network 

particularized in image analysis, were utilized and 

achieved high performance. The success of CNN in the 

classification of medical images has motivated researchers 

to utilize pre-trained models in building new ones. These 
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high-performing CNN pre-trained models have been 

utilized for different image classification tasks by 

employing the transfer learning (TL) approach. Pre-

trained CNN models utilize features that were learned 

from a specific domain to fine-tune any other data. They 

can be utilized as-is to classify new images or to extract 

features using the output from the layer previous to the 

output layer and introduce it to another classifier [6]. 

However, many challenges face the application of 

machine learning techniques generally and in the medical 

domain specifically such as I) the limitations of available 

datasets for training the models, that is because collecting 

and labeling the data is a labor-intensive and expensive 

task, especially in the case of medical images data such as 

Ultrasonic imaging (US), CT, MRI. The annotation of data 

includes the segmentation annotations of abnormality 

regions and classification labels such as (normal, benign, 

and malignant). Also, that limitation may result from the 

scarcity of some diseases with which it is difficult to 

obtain enough positive cases.  II) The low quality of some 

data is another major challenge, where some of the data 

can be found unlabeled, inconsistent, inaccurate, or in an 

unstructured format—such as handwritten notes, 

radiology reports, and conversations between doctors and 

patients—which are difficult for machine learning 

algorithms to process effectively. In the case of medical 

image modalities, there may be variations in image 

resolution and quality. III) The shortage of explanations 

of pathological basis such as the diagnosis reasons, where 

the techniques depend only on the differences between the 

normal and patient cases. For healthcare professionals to 

trust and act on ML-generated results, it is essential to 

understand how these models arrive at their predictions. 

IV) Ethical and regulatory concerns play a crucial role, 

where the healthcare industry is tightly regulated, and 

machine learning models must comply with stringent 

standards to ensure patient privacy, data security, and 

model safety. Furthermore, any biases in the data could 

lead to unequal or unfair treatment recommendations, 

making fairness an ongoing concern in the application of 

ML in healthcare [7-10]. 

Despite these challenges, machine learning presents a 

wealth of opportunities that can significantly improve 

healthcare outcomes such as I) diagnostic accuracy and 

speed where ML algorithms, particularly deep learning 

models, have demonstrated remarkable success in 

automating and enhancing diagnostic processes, 

especially in medical imaging. For instance, ML models 

can analyze radiographs, MRI scans, and other images to 

identify abnormalities such as tumors or lesions with a 

level of precision that often rivals or exceeds that of 

human experts. This capability can lead to earlier 

detection, which is critical for improving patient 

outcomes, particularly in cancer and cardiovascular 

diseases. II) personalized medicine by analyzing large 

datasets, including patient demographics, genetic 

information, and medical history, machine learning can 

help tailor treatments to individual patients, optimizing 

therapeutic interventions based on their unique 

characteristics. III) Predictive analytics is another 

powerful opportunity that ML offers. By analyzing trends 

in patient data, machine learning models can predict 

disease progression, forecast complications in chronic 

conditions, and identify high-risk patients who may 

benefit from earlier interventions. IV) Automation is 

another key opportunity in healthcare, with ML models 

capable of automating routine tasks such as image 

analysis, patient triaging, and administrative work. This 

allows healthcare providers to focus more on direct patient 

care, improving overall efficiency. V) Drug discovery by 

identifying promising drug candidates and predicting their 

behavior in the human body, which can reduce the time 

and cost associated with bringing new medications to 

market [7-10]. 

In response to the mentioned challenges, recent 

research has shifted towards using advanced techniques 

such as deep learning with some incorporated techniques 

and domain knowledge like transfer learning which 

provides deep learning with information from natural 

images. Curriculum learning integrates domain 

knowledge through training patterns of the processed task. 

Active learning explores the most informative samples 

and retrieves them from an unlabeled pool to fulfill better 

performance with less labeled data. Federated learning 

allows many organizations to collaborate on deep learning 

without sharing clients' data or devices which provides 

efficient data access and security and an improvement of 

the learning model utilizing a large decentralizing dataset. 

The purpose of this research is to illustrate the new trends 

of machine learning in the medical domain. The selected 

articles that are reviewed show these new trends in the 

medical domain using different medical dataset types 

including medical images, tabular datasets, genes, etc. in 

different tasks. The remainder of this research is organized 

as follows: Section 2 illustrates the different types of 

medical data. Section 3 presents some data preprocessing 

steps. Section 4 presents the new trends of MLTs. Section 

5 describes the search methodology for articles that apply 

the mentioned new trends of MLTs in the medical domain. 

Section 6 presents some of the applications of new trends 

of MLTs in the medical domain. Section 7 presents the 

conclusion and some of the recommended points for 

future work. 

2   Types of medical data   
Medical data can be found in different forms such as 

arrays of numerical data, images, sequences of DNA, 

amino acids, ...etc. For developing any ML model, the data 

is split into three parts which are training, validation, and 

testing. The training part is used to learn to tune the 

parameters of the model. The validation part is used to 

stop overfitting, and the test part is used to assess the 

performance of the model. In the next subsections, a brief 

overview of different medical data forms will be 

presented. 

2.1 Numerical data 

Different diseases' related data are found as an array of lab 

tests which is numerical data. These numerical datasets 

can be used to manage the related diseases such as the 
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datasets available on the UCI machine learning repository 

[11]. Most numerical data are available in table form such 

as Excel sheets or database tables where rows represent 

samples from patients and columns represent different 

features that describe the intended diseases or vice versa. 

A huge number of numerical datasets are available such as 

the patient demographics of some diseases like COVID-

19, and the lab results for different diseases such as 

thyroid, heart disease, dermatology, cancer, etc.  

2.2 Microarray gene expression data 

Microarray techniques provide a platform for measuring 

the expression levels of thousands of genes in various 

conditions. It is composed of a small glass slide or 

membrane that contains samples of many genes arranged 

in a regular pattern. It is used to find genes associated with 

specific diseases by analyzing and finding the differences 

between two mRNA sets, one set is from normal cells and 

the other set includes cells from pathological tissues such 

as cancer cells. Microarray data contains a lot of redundant 

genes, and many genes include inappropriate information 

for the accurate classification of diseases. Thus, the 

analysis of the large amount of data generated by this 

technology is not an easy task for biologists [12]. Figure 1 

shows a cDNA microarray spotted on a glass surface. 

While, in Figure 2 the general structure of the microarray 

is illustrated, which is represented as an array of numerical 

values. Cancer gene expression datasets for leukemia, 

lung, prostate, etc. can be found in [13]. 

 

 
Figure 1: cDNA microarray spotted on a glass surface. 

https://www.cell.com/fulltext/S0960-9822%2898%2970103-4 

     

 
Figure 2: General structure of microarray. 

 

2.3 Image modalities 

Information obtained from medical imaging modalities is 

clinically beneficial in many applications like computer-

aided detection, diagnosis,  and treatment planning. Many 

imaging modalities can be used to check abnormalities in 

different body organs. They include radiation such as CT, 

X-rays, US, and MRI. They are categorized according to 

the method of producing images. They help radiologists to 

recognize abnormal regions. The interpretation of 

different image modalities needs expertise, where it is 

operator dependent. Therefore, the process of reading 

image modalities is exhausting, costly, and prone to error.  

Ultrasound (US) is a suitable modality for tumor 

detection. It can estimate the size of the tumor and 

distinguish abnormalities. Its capability of detecting 

contra-lateral malignant lesions is limited [14]. 

Magnetic resonance imaging (MRI) produces images 

relevant to the displaying of hydrogen atoms to radio 

waves and magnetic fields. MRI images are valuable as 

they present physiology and anatomy. It images the target 

organ and prepares it as thin slices; moreover, it provides 

information about the vascularity of the tissue [15]. 

Computed tomography (CT) scanners display better 

image clarity using multiple X-ray sources and detectors 

[15]. Radiation X-ray generated images are 2-dimensional 

images. Fluoroscopy units show real-time moving images 

produced by X-ray exposure. Angiography is a 

widespread usage of fluoroscopy, imaging blood flow in 

vessels [15]. 

Digital Mammography (DM) is an X-ray imaging that 

is specialized for breast tissue. DM is the most common 

and most important screening method in clinical practice. 

It can detect tumors before they develop further and 

become easily detected and felt by the physician [16]. 

Microscopic images are the images that are captured 

by the microscope to enlarge small scanned objects and 

extract fine details that cannot be obtained otherwise    

[17] . Figure 3 shows samples of different image 

modalities for different body organs. 

2.4 DNA and protein sequences 

The fast growth of sequencing resulted in huge numbers 

of DNA and protein sequences. Sequences can be used to 

predict diseases associated with a given either DNA or 

protein sequences. DNA is a long polymer chain of units 

named nucleotides; it exists in a double helical shape as 

shown in Figure 4. There are 4 types of nucleotides which 

are A (adenine), C (cytosine), G (guanine), and T 

(thymine), they are considered the alphabet of DNA. They 

are arranged into sequences of 3-letter called codons. A 

double-stranded helical structure of DNA would be 

complementary, where “G” is chemically combined with 

“C”, and "A" with "T" within the replication of DNA [18]. 
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(a)  X-ray of Lung [19]       (b) DM of breast [20]         (c) Microscopic blood image [21] 

  Figure 3: Samples of different image modalities for different body organs. 

 

 

Amino acids are linked into linear chains to produce 

proteins. The properties of proteins are defined by the 

composition of their amino acids. The triplets of 

consecutive DNA nucleotides which are called codons are 

responsible for the forming amino acid sequence in a 

protein. There are 4³ = 64 various codons formed from the 

4-letters [22], which is more than 3 times larger than the 

number of amino acids which is 20 amino acids, 3 of 

which represent stop codons and one is a start codon. 

While the remaining codons are responsible for generating 

the 20 amino acids. So, it is possible that more than one 

codon maps the same amino acid [18]. Figure 5 shows the 

transcription of DNA sequence into molecules of mRNA; 

then, the translation of the transcribed mRNA into the 

associated chain of amino acid sequence, which later fold 

into fully functional proteins.  

Single nucleotide polymorphisms (SNPs) are the most 

common human genetic variations as mutations or 

insertions/deletions (indels). If SNPs have changed the 

codon triplets without changing the encoded amino acid, 

it is synonymous (sSNPs) while the gene is not mutated. 

Otherwise, it is non-synonymous (nsSNPs), as it changes 

the codon while the encoded amino acid is changed into 

various amino acids which are called missense mutations 

which are the reason for many diseases [23, 24]. Figure 6 

shows single nucleotide polymorphisms (SNPs). 

 

 
Figure 4: Chain of DNA sequence. 

http://acer.disl.org/news/2016/08/17/tool-talk-gene-sequencing/ 

 

 
Figure 5:  The process of translation from DNA sequence to the associated amino acid sequence. 

https://courses.lumenlearning.com/suny-ap1/chapter/3-4-protein-synthesis/ 

 

http://acer.disl.org/news/2016/08/17/tool-talk-gene-sequencing/
https://courses.lumenlearning.com/suny-ap1/chapter/3-4-protein-synthesis/


A Review of Machine Learning Techniques in Medical Domain Informatica 49 (2025) 115–136 119 

 
Figure 6: Single nucleotide polymorphisms (SNPs). 

https://isogg.org/wiki/Single-nucleotide_polymorphism 

3   Data preprocessing 
The knowledge discovery includes 3 main phases which 

are the preprocessing phase, the data mining phase, and 

the post-processing phase. Data pre-processing is a crucial 

phase of knowledge discovery to build an accurate 

machine learning model. In the preprocessing phase, a set 

of data preprocessing steps are performed (cleaning the 

data from the noise, handling missed values, merging 

appropriate data from different databases, normalizing the 

data, extracting features, and selecting the most 

informative features) to prepare the data for data mining 

phase. Datasets can also be small therefore the relevant 

features have not been captured and thus data 

augmentation is performed by applying different data 

augmentation techniques. Data mining, which is the core 

phase in knowledge discovery, is performed by applying 

MLTs. The preprocessing facilitates the application of the 

MLTs to extract important patterns or correlations. In the 

post-processing phase, the discovered knowledge is 

refined and improved then interpreted into meaningful 

knowledge for the user’s presentation [25]. 

Feature selection is a key difference preprocessing 

step that should be highlighted when comparing deep 

learning with the traditional MLTs so it will be tackled in 

more detail in the next subsection. 

3.1 Features selection 

Feature selection is the process of finding the optimal 

feature subset that is strongly distinguishing among 

different classes. The purpose of this process is the 

reduction of the dataset and the elimination of redundant 

and irrelevant features that impact the classification 

process negatively. Feature selection is a combinatorial 

optimization problem its aim is to select the feature subset 

with the least number of features that achieves the highest 

possible classification accuracy. It is one of the data 

preprocessing for pattern recognition and data mining 

specifically when working on high-dimensional datasets 

[26, 27]. 

Feature selection has 2 main approaches: the filter and 

the wrapper. In the filter approach, the feature selection is 

based on statistical individual feature ranking. It is easily 

implemented but eliminates the interaction among 

features and does not rely on the applied ML algorithm to 

the selected features. Whereas, for the wrapper approach  

 

 

 

the feature selection depends on the outcome of the ML 

algorithm to decide how favorable the features subset is. 

Candidate solutions of feature subsets are iteratively 

generated and their characteristics are assessed by the 

applied ML algorithm [28]. 

The wrapper-based feature selection approach 

evaluates the quality of feature subsets using the learning 

algorithm. Thus, it can determine and discard irrelevant 

and redundant features effectively. As the learning 

algorithm is frequently used in the search process, high 

computational time is required, especially when the 

datasets are large. On the other hand, the hybrid methods 

aim to utilize the advantages of both approaches; the 

efficiency of computation of the filter approach and the 

high performance of the wrapper approach [29]. 

Feature selection algorithms based on heuristic search 

methods are needed as the computation of a huge number 

of features is not feasible. Many meta-heuristics 

approaches have been used for feature selection. From 

these algorithms are the nature inspired algorithms such as 

genetic algorithm (GA), firefly [30, 31] and ant colony 

optimization (ACO) [32, 33]. 

4   New trends of machine learning 

techniques   
After data preprocessing, various Machine Learning 

Techniques (MLTs) are applied to uncover hidden 

patterns and correlations in the data. As mentioned earlier, 

disease-related data, often represented through numerical 

lab tests, microarray data, medical imaging, and genetic 

sequences, can be processed to predict disease presence or 

other related tasks. Traditional MLTs like Support Vector 

Machines (SVM), Decision Trees (DT), and K-Nearest 

Neighbors (KNN) are effective across these data types for 

decision-making. However, Artificial Neural Networks 

(ANNs), which mimic the brain’s neural structure, are 

increasingly used for more complex tasks and in various 

domains, especially the medical domain. ANNs consist of 

input, hidden, and output layers, and are trained through 

techniques like backpropagation. Their success across 

domains, especially healthcare, has led to the development 

of Deep Learning (DL), a more advanced form of ANN. 

This section explores the role of deep learning in modern 

machine learning. 

https://isogg.org/wiki/Single-nucleotide_polymorphism
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Figure 7: The general structure of Deep Neural Network. 

 

4.1 Deep learning (DL) 

Deep Learning (DL) models have gained prominence 

due to their ability to automatically extract complex 

patterns from data, eliminating the need for manual 

feature engineering. However, DL models require large 

datasets, making them particularly suited for high-

dimensional data, such as in medical fields, where they 

can uncover intricate structures through multiple 

intermediate layers. The depth of a DL model—

referring to the number of hidden layers—enables it to 

learn complex mappings between input and output. 

Unlike shallow networks, which struggle with intricate 

data patterns, deeper networks excel at learning these 

relationships [34, 35]. Figure 7 shows the general 

structure of Deep Neural Networks (DNNs).  

There are several deep learning algorithms such as 

Convolution Neural Network (CNN), radial basis 

function networks, deep belief networks, autoencoders, 

and Recurrent Neural Network (RNN) [35, 36]. 

Deep learning depends on hyperparameters such as 

activation function, learning rate, batch size, number of 

epochs, optimizer, dropout rate, etc. Different deep 

learning algorithms, like RNNs and CNNs, also have 

additional specific hyperparameters. Adjusting these 

hyperparameters is critical, as their values significantly 

affect the model's behavior. Finding the optimal 

combination of hyperparameters can be an exhaustive 

task, requiring substantial computational resources and 

time [37, 38].  

The performance of a DL model heavily depends on the 

selection of these hyperparameters, particularly in 

complex domains like medical data analysis. Medical 

data often have high dimensionality, noise, and 

imbalanced class distributions, making hyperparameter 

optimization crucial to enhancing model performance. 

Careful selection improves robustness and 

generalizability, ensuring reliability in real-world 

clinical settings. While methods like grid search and  

random search are widely used, more advanced 

techniques, such as Bayesian optimization, offer 

significant advantages [37, 38].  

Common techniques for hyperparameter 

optimization: 

1. Grid search: Exhaustively searches across all 

possible hyperparameter combinations. While it 

guarantees to find the best parameter set within the 

grid, it can be computationally expensive, especially 

for models with many hyperparameters. 

2. Random search: A more computationally efficient 

approach, randomly selecting combinations of 

hyperparameters from specified ranges. It often 

achieves comparable or better results than grid 

search in fewer trials. 

3. Bayesian optimization: An advanced method that 

builds a probabilistic model of the objective 

function. It predicts the best hyperparameters based 

on past performance, guiding the search toward the 

most promising regions with fewer trials. Libraries 

like Optuna and Hyperopt can implement Bayesian 

optimization efficiently. 

For example, CNN can be used to classify medical 

images like X-rays or MRI scans. Random search can 

explore different values for hyperparameters (e.g., 

learning rate, batch size, number of layers). 

Alternatively, Bayesian optimization can be used for a 

more efficient search, predicting the most promising 

hyperparameters configurations based on prior 

evaluations. By optimizing the model’s parameters 

using these methods, we can improve classification 

accuracy, reduce overfitting, and ensure the model 

performs well on unseen medical data. 
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Advantages and Limitations of DNNs for Medical 

Data 

Advantages: 

• Versatility: DNNs can be adapted to work with 

various data types, including structured clinical data 

(e.g., patient demographics, lab results), unstructured 

data (e.g., free-text medical records), and image data. 

• Feature Learning: DNNs can automatically learn 

relevant features from the data, making them more 

flexible than traditional machine learning algorithms 

that rely on feature engineering. 

Limitations: 

• Training complexity: Training deep neural 

networks can be computationally expensive and 

time-consuming. Additionally, DNNs require large 

datasets to avoid overfitting. 

• Overfitting: If not carefully tuned, DNNs can overfit 

to small or imbalanced datasets, a common issue in 

medical data where datasets may not be as large or 

diverse as needed for training. 

Use Cases in Medicine: DNNs have been applied to a 

variety of tasks in medicine, including predicting 

patient outcomes, disease progression modeling, and 

disease classification from images and clinical data. 

CNNs and RNNs are two of the most common and 

promising deep learning algorithms used in medical 

applications. These algorithms have demonstrated 

success in a variety of tasks, such as medical image 

classification and time-series data analysis. Further 

details on these algorithms will be discussed in the next 

subsections. 

4.1.1 Recurrent neural networks (RNN) 

Recurrent neural networks (RNNs) are neural networks 

that contain memories that can capture the stored 

information in the prior element of the given sequence. 

Therefore, RNN is suitable for processing sequential 

data types such as the diagnostic history of patients, 

DNA and protein sequences, etc., where the 

information is remembered through the network. RNN 

is called recurrent because it executes the same task for 

each element of the input sequence while its output is 

based on the prior computations (memory). Thus, the 

decision of recurrent net at time t-1 affects the decision 

that will be taken later at time t. Therefore, RNN has 2 

sources of input, the recent past and the present, which 

are combined to define the response to new data. Figure 

8 shows the architecture of the RNN in which a set of 

input x values are mapped into a sequence of output o 

values. A loss L measures the difference between the 

expected output o and the actual output y [35]. 

Where 𝑥, ℎ, o, L, y symbolizes input, hidden state, 

output, loss, and target value. A weight matrix U 

defines the input to hidden connection, a weight matrix 

W defines the hidden-to-hidden connection, and a 

weight matrix V defines the hidden-to-output 

connection. Then, from time step t = 1 through time step 

t = n, the following equations are used: 

𝑎𝑡 = 𝑏 + 𝑊ℎ𝑡−1  + 𝑈𝑥𝑡                  (1) 

ℎ𝑡   = tanh(𝑎𝑡)       (2) 

𝑜𝑡   = c + 𝑉ℎ𝑡     (3) 

𝑦𝑡 ̂ = SoftMax(𝑂𝑡)  (4) 

The forwarding propagation of RNN is defined by 

the preceding equations, where b and c are the bias 

vectors, while tanh and SoftMax are the activation 

functions. To update the weight matrices U, V, and W, 

we compute the gradient of the loss function for each 

weight matrix. Gradient computation requires both 

forward and backward propagation of the network. Any 

loss function can be used depending on the goal. At 

each time step, the sum of all losses is the total loss for 

a particular sequence of x values. 

However, traditional RNNs suffer from gradient 

exploding and gradient vanishing issues, making them 

unsuitable for long-term dependencies. On the other 

hand, long short-term memory (LSTM) is effective in 

capturing long-term time dependence. LSTM networks 

address this by introducing gating mechanisms that 

control the memory flow, allowing for better long-term 

sequence learning. Gated Recurrent Units (GRUs) offer 

a simplified version of LSTMs with similar benefits but 

fewer parameters. 

Advantages and Limitations of RNNs for medical 

data 

Advantages: 

• Sequential data processing: RNNs can handle 

different types of sequential data, including time 

series and text, where the past medical history or a 

series of clinical events influence future outcomes. 

• Memory of past inputs: RNNs can remember 

information from previous time steps in the 

sequence, allowing them to capture temporal 

dependencies in data. This is particularly useful for 

tracking disease progression over time or analyzing 

patient histories. 

Limitations: 

• Training difficulties: RNNs are prone to the 

vanishing gradient problem, especially in long 

sequences, making them harder to train effectively. 

• Data complexity: RNNs are best suited for data 

where the relationship between input and output is 

sequential. For static data like images or tabular data, 

CNNs or DNNs might be more appropriate. 
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• Resource intensive: Training RNNs, especially on 

long sequences, can be computationally expensive. 

 
Figure 8: The architecture of recurrent neural network. 

 

  

 

Use cases in medicine: RNNs (and their variants like 

LSTMs) are commonly used in medical applications such 

as gene sequence classification, predicting disease 

progression over time, and analyzing time-series medical 

signals (e.g., ECG readings) [35]. 

4.1.2 Convolution Neural Network 

CNNs are a type of deep learning network specialized for 

image analysis. Unlike traditional MLTs that rely on 

manual feature extraction, CNNs can automatically learn 

hierarchical features from raw image data. This is 

especially useful in the medical field, where CNNs are 

applied to analyze medical images for tasks like disease 

detection and classification [36, 39].  

It contains an input, an output and many hidden layers 

which represent convolutional networks. Convolutional 

network includes three types of layers: convolutional, 

activation, and pooling. The convolutional layers apply 

filters to detect features (edges, textures, etc.). As the 

image proceeds through layers, the filters can detect more 

sophisticated features. The activation function like 

Rectified Linear Unit (ReLU) follows the convolution 

layer to control the output, it introduces non-linearity. 

Pooling layers reduce the dimensionality of the data, 

making the model more computationally efficient and less 

sensitive to minor positional changes in the features. The 

final layer is fully connected, producing predictions for 

classification tasks. The overall number of network 

parameters is defined by the number of layers, the number 

of neurons in each layer, and the connection between 

neurons. The weights should be tuned through the training 

phase to achieve good performance [40].  

convnet processes the image (I) using a matrix of 

weights called filters which can recognize certain features 

at specific positions. At a specific layer 𝑙, the feature map 

at position (𝑖, 𝑗) is defined as ℎ𝑖𝑗
𝑙 , the bias as 𝑏𝑙, and the 

weight as 𝑊𝑙. The feature map can be expressed as 

follows: 

 hij
𝑙 = ReLU((W𝑙 ∗ I)ij + b𝑙)  (5) 

Where ReLU is activation function which controls the 

output. The basic structure of the CNN is shown in Figure 

9. 

Advantages and limitations of CNNs for medical data 

Advantages: 

• Feature extraction: CNNs automatically learn 

hierarchical features from raw image data, 

eliminating the need for manual feature 

extraction, which is time-consuming in 

traditional methods. 

• Spatial relationships: The convolutional layers 

can detect local patterns (e.g., edges, textures) in 

images, which are crucial for tasks like tumor 

detection or organ segmentation. 

• Efficiency: CNNs are computationally efficient 

due to shared weights in convolution layers, 

allowing them to process large datasets more 

effectively. 

Limitations: 

• Data requirements: CNNs require large labeled 

datasets to perform well, which may not always 

be available in medical settings. 

• Limited to spatial data: While CNNs excel in 

image-based data, they are not as effective for 
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non-spatial data like time-series or sequential 

data. 

Use cases in medicine: CNNs have been widely applied 

in diagnostic tasks such as detecting cancers, classifying 

lesions, and analyzing radiological images (e.g., X-rays, 

MRIs, CT scans) [35, 36, 41]. 

Recent advances in CNN, like AlexNet [42], VGGNet 

[43], GoogLeNet [44], and ResNet [45], have significantly 

improved image classification accuracy, with models now 

outperforming human experts in some cases. These 

networks have been trained on the ImageNet Large Scale 

Visual Recognition Challenge (ILSVRC) using millions 

of annotated images [46, 47]. And their success has 

spurred the rise of transfer learning, where pre-trained 

models are fine-tuned for specific tasks [48]. In the next 

subsection, a brief description of some of the high-

performance pre-trained models using ImageNet. 

4.1.2.1 Visual geometry group network VGG 16–

19 

VGG16 network is the winning model architecture of 

the 2014 ImageNet competition. VGG consists of 16–19 

layers. The size of the input image to VGG is (224×224). 

VGG has a set of convolutional filters with small sizes 

(3×3) to capture the information of the up/down and 

left/right center. The size of the pre-trained weights is 528 

MB. The overall number of parameters of VGG16 is 138 

357 544 parameters [43]. 

 

4.1.2.2 InceptionV3 model architecture 

InceptionV3 network is the winning model 

architecture of the 2015 ImageNet competition. The 

Inception V3 model has a total of 48 layers. The size of 

the input image to InceptionV3 is (299×299). It is deeper 

than VGG16 but with fewer parameters. The size of the 

pre-trained weights is 92 MB. It has 23 851 784 

parameters [44].  

 

4.1.2.3 Residual neural network (ResNet) 

ResNet network is the winning model architecture of 

the 2016 ImageNet competition. ResNet-50 contains a 50-

layer architecture. The size of the input image to ResNet 

is (224×244). The size of the pre-trained weights is 99 

MB. It has 25 636 712 parameters [45]. 

 

 

 

 

 
Figure 9: The basic structure of CNN. 

 

 

 

 
Figure 10: Transfer learning architecture. 
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4.2 Transfer learning 

Transfer learning is a more appropriate approach when the 

available data for training is limited. In transfer learning, 

an intricate model can be trained using available large-

scale annotated images such as natural images. Therefore, 

the TL process drives knowledge from source domain (e.g. 

natural images) to a target domain or network where the 

domain images are limited. Only the small amount of 

available annotated data of the target domain is used to 

tune the model. Where the fundamental features used for 

classification are similar between domains, retraining the 

entire model is unnecessary. In such cases, TL allows for 

the transfer of learned features, with only the classification 

layer(s) being retrained on the small new dataset [48]. TL 

leverages pre-trained models such as VGG [43], 

NasNetLarge [22], Inception GoogLeNet [44], ResNet 

[45], etc—that have been developed for image 

classification and they have been presented at the annual 

ILSVRC [46, 47]. TL saves a great amount of time lost in 

developing and training CNN models. The pre-trained 

model or the required part of the model can be 

incorporated directly into the new model and used as a 

classifier, standalone feature extractor, integrated feature 

extractor, or weight initializer [48, 49]. Figure 10 shows 

transfer learning architecture.  

4.3 Curriculum learning 

In the standard educational method, learning depends on a 

curriculum that presents new concepts based on previously 

collected ones. The rationale beyond this is that people 

pick up better if the information is introduced in a 

meaningful method instead of randomly. By using the 

same ideas to train neural networks starting with simple 

cases, it was noticed that the networks perform better, 

which indicates the significance of gradual and systematic 

learning [50]. 

The curriculum learning (CL) approach is motivated 

by the capacity of humans to pick up new tasks fast with 

finite "training sets". Similarly, the training procedure of 

medical students called teacher-student curriculum 

learning is based on training by tasks with gradually 

growing difficulty. While each task uses smaller datasets 

than those utilized in machine learning. Like, students can 

start with a simple task, such as deciding if an image 

includes lesions, and later are asked to determine if the 

lesions are malignant or benign which is a more 

complicated task. With time, they will progress to a more 

complex task, like recognizing the subtypes of lesions [8]. 

In machine learning, CL works with a series of 

training samples sorted in increasing order according to 

learning difficulty. The order in which the samples are 

introduced to the model is critical, as it can significantly 

impact the model's performance. Curriculum learning is an 

active area of research, particularly in applications such as 

medical image diagnosis [8]. 

A key point in CL is the design of data schedulers that 

control the sequence in which training samples are fed into 

the model. These schedulers can use a variety of methods 

to determine sample difficulty, such as expert input, 

heuristics, or natural language processing (NLP) applied to 

radiology reports. 

Given a sample xi which should be assigned to a class 

label Ci 𝜖 {C1, C2, …., Cm}. Suppose the training set 

consisted of pairs {X, C}, and the training is processed in 

batches of size B for a total of E epochs. To train CNN 

with CL, prefer to start the training with simpler samples. 

Practically, CL is performed by assigning a probability to 

every training pair, where the simpler samples are given 

higher probabilities to be chosen first. Initially, every 

sample xi is assigned a probability pi(0). At the beginning 

of each epoch e, the training set {X, C} is permuted to {X, 

C}k by the reordering function F(e). Where this mapping 

is produced by sampling the training set based on the 

probabilities at the present epoch pi(e). After executing 

many iterations, these probabilities are updated using a 

scheduler, aiming to achieve a regular distribution by the 

end of the training process [50].  

4.4 Active learning (optimal experimental 

design) 

Supervised learning techniques rely heavily on annotated 

data. Although more datasets are becoming available, the 

effort, cost, and time required to annotate them remain 

significant. On the other side, any error especially in some 

important applications such as those in the medical domain 

can have severe consequences. Achieving reliable 

outcomes often requires an interactive process where 

predictions are reviewed or modified by an oracle or user. 

This means users must be able to override and adjust 

automated predictions to meet specific criteria. 

Techniques such as Active Learning (AL) or what is called 

Human-in-the-Loop computing have witnessed progress 

in overcoming these challenges [51]. 

Active learning is a semi-supervised learning 

approach that begins with a small set of labeled samples 

(seed samples) and iteratively selects the most informative 

samples from a pool of unlabeled data for annotation. By 

focusing training on the most informative subset of 

samples, AL improves model performance and reduces the 

annotation burden, particularly for image data. In AL, an 

MLT scans unlabeled data and recognizes the most 

informative samples. These samples are then presented to 

a human annotator (oracle) for labeling. This makes AL a 

part of the Human-in-the-Loop paradigm, where only 

selected samples are used for training, often far fewer than 

in traditional supervised learning [51].  

Formally, suppose that U is available big pool of 

unannotated data and that there are oracles to request 

annotations for any unannotated sample xU to be added to 

annotated set L. The goal is to train a model f(x | L∗) using 

the annotated set L∗⊆L. A brute-force solution would 

involve requesting the oracle(s) to annotate each sample 

xU, resulting in L∗ = L. However, this is a costly and not 

practical solution. Theoretically, there is an optimal subset 

L∗ of data that can achieve performance equivalent to that 

obtained using the whole annotated dataset L, i.e. (f(x | L∗) 

≈f(x | L)). AL is a trend of ML that tries to explore this 

optimal subset L∗, where the current model is f´(x | L´), L´ 

is an intermediate annotated data. AL intends to iteratively 
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explore the most informative data samples 𝑥𝑖
∗ to train the 

model, assuming that the unannotated data samples and the 

model will evolve through time, rather than choosing a 

constant subset of samples once for training. 

The selection of samples to be annotated is based on 

the informativeness of these requested samples. The 

evaluation of the informativeness of each un-annotated 

data sample xU is done given f´(xU | L´), then all selected 

samples are demanded to be annotated. After the 

annotations, the new annotated data has been used to 

improve the model. This is done by retraining the whole 

model using all available annotated data L´, or by using the 

most recently annotated sample 𝑥𝑖
∗ to fine-tune the network 

[51].  

Active Learning typically employs three methods to 

select samples for annotation: 

Stream-based selective sampling supposes the 

existence of a continuous flow of unannotated data 

samples xU. In this method, the present model and 

informativeness I(xU) measure are the criteria used to 

specify, for each incoming sample whether or not to 

require an annotation from the oracle(s). Thus, while the 

model is being trained, it is offered a data sample and 

instantly decides if it needs to query for the label. Although 

this type of query is inexpensive, its performance is limited 

because it does not consider the broader context of the 

underlying distribution, but it depends on the separation 

nature of each decision, therefore the balance between the 

exploration and exploitation is less than in other query 

kinds. 

Membership query synthesis generates the sample 

𝑥𝐺
∗  that the model believes to be most informative, rather 

than selecting from real-world data. Therefore, it is 

annotated by the oracle(s). This method may be very 

effective in bounded domains, but it may struggle when the 

model has no knowledge of unrepresented areas of the data 

distribution, similar to stream-based methods.  

Pool-based sampling selects N data samples 𝑥0
∗ , . . . 

, 𝑥𝑁
∗  from a large unlabeled dataset U to pull samples from. 

Pool-based approaches use the present model to do a 

prediction on un-annotated data samples to get a ranked 

measure of informativeness for each data sample in the un-

annotated data. The highest N informative samples are 

selected for annotation by the oracle(s). Therefore, the 

model is initially trained on labeled samples which are then 

used to find which data samples would be most 

informative to be inserted into the training set for the next 

AL loop. This approach has proved to be the most 

promising, which depends on batch-based training. Figure 

11 shows the full process of active learning. 

AL uses some informativeness measures of unlabeled 

samples to select the most informative samples. They 

depend on probabilities, these approaches are least 

confidence sampling, margin sampling, and entropy 

sampling [51]. 

Least confidence sampling the model selects the 

highest uncertainty sample or least confidence for 

annotation and therefore is given to the oracle to be 

labeled.   

Margin sampling can be utilized in a multi-class, it 

uses the first and second most likely labels and computes 

the difference between them, then considers the sample 

that has the smallest difference between the first and 

second most likely labels to be annotated. 

 Entropy sampling uses entropy as it is a measure of 

uncertainty to select a sample to be annotated. Entropy 

measures the amount of information gained by considering 

a sample and so selects the sample that maximizes the 

information that has the largest entropy value [51].  

4.5 Federated learning 

Federated learning (FL), developed by Google in 2017 is a 

collective distributed decentralized learning method that 

allows many organizations to collaborate on machine 

learning or deep learning models without sharing clients' 

or devices’ data. It allows the training data to be on the 

decentralized edge devices rather than keeping it in a data 

center. These individual nodes or devices jointly train a 

machine learning or deep learning model from their local 

data and then aggregate the devices' training outputs on the 

server to update the global model without sharing edge 

data. The resulting model can be shared among all 

participating devices or clients. Therefore, it provides 

secure models that fulfill an efficient solution while 

providing data access and security [52-54]. 

One major issue with centralized models is that 

medical organizations do not allow to break doctor-patient 

confidentiality by providing medical images such as CT 

and X-ray images for training purposes because of privacy, 

legal, and data-ownership issues. To develop deep learning 

models for the medical domain, large medical data is 

needed to develop these models. Therefore, many medical 

researchers illustrated that federated learning is a good 

technique to connect different medical organizations and 

let them share their experiences while keeping privacy. 

Furthermore, the performance of the learning model will 

be improved using a large medical dataset. However, the 

resulting models may be biased toward organizations that 

have larger training datasets [53].  

In federated learning, the process begins by sending a 

global model with unified initial weights to each client. At 

each client side, there is a local dataset, where the model is 

trained in each separately. After completing local training, 

the client sends its model updates back to the server, which 

aggregates these updates to refine the global model, while 

the data at the clients remains local in each client. The 

server has the authority to manage the whole process 

where it sends the model to the client, collects the updates, 

and synchronizes them to build the updated model with the 

new parameters. This method enables medical 

organizations to collaborate on training models while 

maintaining data privacy. There are different federated 

learning algorithms according to the computation method 

of gradients such as federated stochastic gradient descent, 

federated averaging, and federated learning with dynamic 

regularization. [53, 54]. Figure 12 shows the architecture 

of federated learning. 
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Figure 11: The process of active learning. 

 

 

 
Figure 12: Federated Learning architecture. 

5   Search methodology 

5.1. Search criteria 

This research investigates recent trends in machine 

learning (ML) within the medical domain. To achieve this, 

we explored a ScienceDirect (Elsevier) 

(http://www.sciencedirect.com). The following keywords  

 

were used in the search: “active learning”, “curriculum 

learning”, “deep learning”, “transfer learning” and 

“federated learning” to investigate the different research 

that utilizes these recent trends. Additional keywords—

"medical", "disease", "cancer" and "gene" were included 

to focus the search on medical applications that used these 

new trends. Although the search intended to retrieve the 

articles related to any disease, "cancer" was added to 

http://www.sciencedirect.com/
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retrieve more relevant results, given that much of the 

recent research in ML is focused on cancer. Publications 

from 2016 to 2024 were considered. The composition of 

the used terms to form the search query used for deep 

learning-based techniques in the medical domain was: 

"Deep learning" AND ("medical" OR "Disease" OR 

"Cancer" OR "Gene"). 

Where the aim of this research is to find the new 

trends  in machine learning techniques which after accurate 

investigation were found to be mostly based on “deep 

learning” either alone or combined with other new 

techniques such as “transfer learning”, “active learning”, 

“curriculum learning” and “federated learning”, so the 

same query was used as for deep learning-based 

techniques with adding the other techniques’ keyword as 

follow: 

("Deep learning" AND "*") AND ("medical" OR 

"Disease" OR "Cancer" OR "Gene") 

Where “*” can be replaced by any of the other 

techniques’ keywords (“transfer learning”, “active 

learning”, “curriculum learning”, and “federated 

learning”).  

The following criteria were applied to select the 

publications: (1) Articles related to human diseases (other 

organisms’ related diseases are excluded); (2) Inclusion of 

at least one of the new ML techniques; (3) Only complete 

research articles were included (excluding letters, surveys, 

book chapters, and non-English articles); (4) publications 

published from 2016 to 2024. 

5.2. Data extraction 

As the search retrieved a large number of articles, 

therefore only a subset of the retrieved articles was 

selected for analysis. Figures 13-15 illustrate the number 

of publications per year for the various techniques 

between 2016- 2024, based on “Elsevier” database to 

show the growth rates of these new trends.  

• Figure 13 shows the steady increase in deep learning 

publications, from 17 articles in 2016 to 2958 in 2024, 

indicating a growing interest in applying deep learning 

in the medical domain. 

• Figure 14 shows that transfer learning started to be 

applied in the medical domain in 2017 with 2 articles 

only and reached 218 in 2024. 

• Figures 15 shows that the number of publications of 

active learning, curriculum learning, and federated 

learning is limited and scattered across the years as they 

are newly emerged trends. 

The selected articles were drawn from top journals in 

ScienceDirect, adhering to the criteria mentioned above. 

The references provide a sample of the applications of 

these new ML techniques in the medical domain, rather 

than an exhaustive list. For each reference, key details 

such as the task, disease, technique(s) used, evaluation 

results, and data type are presented. 

 

 

 

 

 
Figure 13: The number of articles published on deep learning from 2016- 2024 in Elsevier database.
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Figure 14: The number of articles published on transfer learning from 2016- 2024 in Elsevier database. 

 

 

 

 
Figure 15: The number of articles published on active/curriculum/Federated learning from 2016- 2024 in Elsevier 

database. 

6   Some applications of new trends of 

MLTs in the medical domain 
This section illustrates the selected articles from the 

retrieved ones from searching the databases which 

represent the applications of previously discussed 

emerging ML trends in the medical domain.  

Li, X., et al., [55] proposed a DL model to detect lung 

nodules. First, segmentation and rib suppression were 

applied to extract the region of interest and enhance the 

nodules’ visibility. Then, the histogram was applied to 

enhance the images. After that, patch-based multi-

resolution CNN was used for feature extraction, and 4 

fusion methods were employed for classification, the best 

performance method to detect lung nodules achieved an  

 

 

accuracy of more than 99% and FAUC of 0.982 when 

applied to the Chest X-ray radiographs dataset [56]. 

El Houby & Yassin [57] developed a CNN model to 

classify the breast mammographic images' into 

nonmalignant or malignant. They used 2 methods, the first 

is based on patches of region of interest (ROI) in the 

mammogram and the second is based on the whole breast. 

The accuracy, specificity, sensitivity, and AUC were 

95.3%, 92.6%, 98%, and 0.974 respectively using MIAS 

[20] dataset, while they were 96.52%, 96.49%, 96.55%, 

and 0.98 using INbreast [58] dataset. 

Dai, Y., et al., [59] developed a deep learning CNN 

model for detecting coronary artery disease utilizing raw 

heart sound signals. It extracts 206 multidomain features 

and 126 medical multidomain features. The heart sound 

signal datasets have been collected from 400 patients from 
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the hospital of Xinjiang Medical University. The model 

achieved an accuracy of 87.86, sensitivity of 90.67, 

specificity of 82.38, and AUC of 94.70 using multidomain 

features. It achieved an accuracy of 85.6, sensitivity of 

88.04, specificity of 80.83, and AUC of 92.74 using 

medical multidomain features. 

Alassafi et al., [60] proposed a model that predict the 

distribution of the COVID-19 outbreak in Saudi Arabia, 

Malaysia, and Morocco. A DL RNN and LSTM network 

were developed to predict the number of possible cases of 

COVID-19. The LSTM achieved an accuracy of 98.58%, 

while the RNN achieved an accuracy of 93.45%. A 

comparison was conducted between the number of 

resulting deaths and the number of coronavirus cases in 

each of the 3 countries. The model predicted the number 

of certain COVID-19 cases and deaths for the following 7 

days. The model was tested using a public dataset from the 

European Centre for Disease Prevention and Control [61]. 

Maiti et al., [62] developed a deep learning (DL)-

based framework to automatically detect and segment the 

optic disc from fundus images for the diagnosis of diabetic 

retinopathy. The framework utilized an adjusted CNN, 

experimenting with seven different encoder networks: 

DenseNet121, InceptionV3, ResNet34, GG11, VGG19, 

VGG13, and VGG16. VGG16 was selected as the adopted 

encoder, while the decoder was designed with a harmonic 

structure based on that of the encoder to improve 

segmentation performance. The framework was applied to 

several fundus image datasets, including DIARETDB1, 

MESSIDOR, IDRiD, DIARETDB0, CHASE-DB1, 

DRIVE, and STARE. It achieved an impressive accuracy 

of 99.44%. 

Zareen, et al. [63] developed a skin cancer 

classification deep learning CNN-RNN model with a 

ResNet-50 for spatial features extraction and LSTM for 

temporal dependencies. The model has been applied to a 

dataset of 9000 images of skin lesions representing 9 

cancer types. The model achieved an accuracy of 94.48, a 

sensitivity of 94.38, and a specificity of 93. 

Ge, R., et al., [64] Proposed a Dual-Enhanced 

Convolutional Ensemble Neural Network (DECENN) to 

detect the presence or absence of metastasis in the whole 

slide imaging patches of breast cancer. It utilizes VGG16 

and DenseNet121 in the network. It was applied to the 

updated version of a benchmark dataset of microscopic 

images and histopathologic scans of lymph node sections 

for the breast [65]. It achieved an accuracy of about 

98.92%, an AUC of 99.70%, and a F-score of 98.93%.  

Liu, Q., X. She & Q. Xia [66] proposed a model to 

classify osteosarcoma cells and other cell types using an 

updated version of CA-MobileNet V3 based on the 

transfer learning model. It was applied to osteosarcoma 

cells microscopy imaging of bone cancer dataset [67]. It 

achieved an accuracy of 98.69 % and f1-score of 94.11. 

Oommen & Arunnehru [68] proposed a model to 

diagnose Alzheimer’s disease in its early stages. The 

proposed model contains 3 phases: preprocessing the 

images, extracting features using TL with ResNet-18, 

which are then compressed by cascaded autoencoders 

(AE), and finally classifying the disease to one of its 5 

stages using DNN. The model was applied to the MRI 

Neuroimaging dataset [69] and achieved an accuracy of 

98.54% recalls of 98.9%, a precision of 98.98%, and an 

F1 score of 98.82%.   

Kumar et al. [70] developed a CNN model using the 

Resnet152 TL approach with feature extractors to classify 

the brain tumor images into normal, benign, and 

malignant. The model has been applied to the Brats MRI 

image dataset. The proposed transfer Learning model 

achieved high accuracy reaching 99.57%. 

Manickam, et al., [71] proposed a deep TL model for 

pneumonia detection. The chest X-ray images were 

preprocessed to recognize the existence of pneumonia 

based on the U-Net segmentation network, then classify 

the cases as normal or abnormal (Bacteria, viral) using 

pre-trained models such as ResNet50, InceptionV3, and 

Inception ResNetV2. It was evaluated using a publicly 

available database which includes 5,232 chest x-ray 

images. ResNet50 model achieved an accuracy of 93.06%, 

precision of 88.97%, Recall of 96.78%, and F1-score of 

92.71%.  

Veknugopal, et al., [72] developed a DNN using 

modified EfficientNetV2-M based on transfer learning to 

detect skin cancer on dermoscopic images. The model was 

applied to 58,032 dermoscopic images collected from [73-

77]. The model was tested for binary classification tasks 

and the multiclass classification tasks. It achieved an 

accuracy reached 97.62 for the multiclass classification of 

the ISIC 2020 dataset, while it achieved an accuracy of 

99.23 for the binary classification of the same dataset.  

Mehmood, et al., [78] developed a model to diagnose 

Alzheimer’s disease (AD) in its early stage based on TL 

using VGG-19 pre-trained model. The model 

distinguishes among 4 classes which are AD, late mild 

cognitive impairment (LMCI), early mild cognitive 

impairment (EMCI), and normal control (NC). The used 

dataset was collected from the AD Neuroimaging 

Initiative (ADNI) [69] database. In the pre-processing 

phase, the gray matter (GM) tissue was segmented from 

brain MRI, and then VGG-19 was used to classify the 

segmented parts. The model achieved an accuracy of 

98.73% to distinguish between AD and NC, 83.72% to 

distinguish between LMCI and EMCI cases, and more 

than 80% to distinguish between the other combinations 

of classes. 

Al-Shabi, Shak, and Tan, [79] developed a 

Progressive Growing Channel Attentive Non-Local 

(ProCAN) deep learning model to classify lung nodules as 

benign or malignant. Curriculum Learning (CL) was used 

to train easy samples before hard samples. The model has 

gradually grown to improve the possibility of classifying 

the samples based on CL. The model has been applied to 

samples from 2 publicly available CT scan datasets LIDC-

IDRI [80] and LUNGx [81]. It achieved an accuracy of 

95.28% and AUC of 98.05%, precision of 95.75, 

sensitivity of 94.33 and F1-Score of 95.04.  

Cho, Y., et al., [82] proposed CL model using a DL 

CNN to classify chest radiograph (CXR) images into 

normal and five types of pulmonary abnormalities. The 

model used ResNet-50 for training on patches of CXR 

images based on the various patch ratios according to pre-

trained weights, with fine-tuning using transfer learning 

https://08101hzzs-1104-y-https-www-sciencedirect-com.mplbci.ekb.eg/topics/engineering/binary-classification-task
https://08101hzzs-1104-y-https-www-sciencedirect-com.mplbci.ekb.eg/topics/engineering/binary-classification-task
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(TL). The model was applied to CXR from hospitals, 

including Seoul National University Bundang Hospital 

(SNUBH) and Asan Medical Center (AMC). It achieved 

the following accuracies: 90.97% for 20% of the dataset at 

SNUBH, 91.92% for 50%, and 93.00% for 100%. At 

AMC, the accuracies were 93.90%, 94.54%, and 95.39%, 

respectively. 

Wong et al., [83] developed a CL-based method for 

classifying medical images, using features from 

segmentation networks. The model first learns simpler 

shapes and features through a segmentation network pre-

trained on similar data, then applies this knowledge for 

more complex classification tasks. The M-Net, a CNN 

modified from U-Net for working with fewer training 

samples, was used for segmentation. Then the CNN 

classifier receives the features from a segmentation 

network as inputs. The model achieved an accuracy of 

82% in a 3D 3-classes brain tumor classification and 86% 

on a 2D nine-class cardiac semantic level classification 

problem. 

Wu, et al. [84] developed a weakly-supervised deep 

AL framework to diagnose COVID-19 using CT scans. 

The framework contains a 2D U-Net for segmentation of 

the lung region and a hybrid active learning approach, 

which keeps sample diversity and predicted loss diagnosis 

of COVID-19. The framework classifies the CT scans into 

one of three classes which are pneumonia, coronavirus 

pneumonia caused by SARS-CoV-2, and normal cases. 

The framework was validated on a CT scan dataset from 

the China Consortium of Chest CT Image Investigation 

(CC-CCII) [85]. With only 30% of the labeled data, the 

accuracy of the framework reached 0.867, while AUC was 

0.968. 

Wu, X., et al., [86] proposed a hybrid active learning 

(HAL) framework that combines AL with deep TL using 

ResNet18. The framework applies data augmentation to 

the unlabeled data pool and uses a hybrid sampling 

approach that maintains sample variety and classification 

loss (data uncertainty). The diversity sampling is based on 

data augmentation, while the generated data noise is 

discarded with an outlier detection process. The HAL was 

validated on 3 medical image datasets which are the 

Hyper-Kvasir for gastrointestinal disease [87], Messidor 

for eye fundus images [88], and breast cancer datasets 

[89]. By applying the proposed framework to the Hyper-

Kvasir dataset it achieves an accuracy of 0.871, precision 

of 0.602, recall of 0.587, and F1-score of 0.594. 

Meirelles, et al., [90] used Pool-based AL to train DL 

models for classifying Tumor Infiltrating Lymphocytes. 

The proposed approach selects image patches based on 

feature grouping and prediction uncertainty. They 

introduced a Diversity-Aware Data Acquisition (DADA) 

method, which ensures diverse batch selection by 

clustering images based on features and then choosing 

uncertain patches from each cluster. The most uncertain 

patches from each cluster are prioritized for selection, the 

clusters with the most uncertain patches must participate 

with more patches, the pool is updated by removing the 

selected patches. By applying the proposed model to the 

cancer tissue image dataset [91], it achieved an AUC of 

0.78 with fewer tissue patches and execution time.   

Zhang, et al., [92] developed a semi-supervised 

framework for brain segmentation that incorporates 

quality-driven active learning (QDAL). In the AL module, 

deep supervision loss and attention mechanism improve 

the accuracy of segmentation and return quality 

information for the unlabeled slices. The AL module 

chooses the most informative slices to be annotated, and 

the segmentation process is trained iteratively using the 

updated labeled data. The framework was tested on two 

brain MRI datasets [93, 94]. The experiment results 

showed that the segmentation utilizing the QDAL only 

wants 15–20% annotated slices for the brain extraction 

task, and 30–40% for tissue segmentation, achieving 

competitive results with full supervision and an accuracy 

of 90.7. 

Lu, Q., et al.,[95] presented a blood cell classification 

method called MAE4AL, which combines the self-

supervised Masked Autoencoder (MAE) and active 

learning (AL). It chooses the most remarkable samples for 

labeling based on self-supervised loss of MAE and sample 

uncertainty. Tested on blood smear samples obtained from 

[96], MAE4AL needed labeling only 20% of the data to 

perform the same as ResNeXt, which was trained on the 

full dataset. When it trained using half of the labeled data, 

MAE4AL achieved an accuracy of 96.36%, 

outperforming ResNeXt which trained on all the data. 

Kumbhare et al. [97] developed a FL method for 

breast cancer diagnosis using mammogram images from 

the “Curated Breast Imaging Subset of DDSM (CBIS-

DDSM)” dataset [98]. The DenseNet pre-trained model 

was used for feature extraction and the extracted features 

were classified using Enhanced Recurrent Neural 

Networks (E-RNN). FL was employed to reduce 

processing time and improve model performance. The 

method achieved an accuracy of 95%.  

Feki, et al. [53] proposed a decentralized FL 

framework that permits different medical organizations to 

screen COVID-19 using Chest X-ray images based on 

deep learning while keeping the privacy of patient data. 

Two pre-trained models which are VGG16 and ResNet50 

were used for classification. The framework was tested 

using four clients, where each client has his private dataset 

and the same CNN models. The proposed FL framework 

achieved competitive results compared to those models 

trained by sharing data. The best achieved accuracy was 

97% using the ResNet50 model with data augmentation. 

Zhang, et al. [99] proposed a FL based on DL 

framework for the diagnosing brain disorders. The 

proposed framework was tested on Autism Brain Imaging 

Data Exchange (ABIDE) [100] dataset. The proposed 

framework achieved an average accuracy of 79% and 

reduced the communication burden of FL. 

Shaikh, et al. [101] developed an FL-based DL 

method to classify respiratory diseases by listening to lung 

sounds. Generative Adversarial Networks created new 

lung sounds to train a neural network that classifies 4 lung 

diseases, heart attack and normal breathing patterns. Using 

two datasets [102, 103], the proposed method achieved an 

accuracy of 92% for the classification of different 

respiratory diseases and heart failure. 
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Table 1 provides a summary of 25 selected articles 

from top journals on Science Direct, published between 

2016 and 2024, based on a database search. These articles 

showcase applications of recent trends of MLTs in the 

medical domain and are intended to illustrate these trends, 

not to present a comprehensive list. For each reference, the 

table includes the task, disease, techniques used, 

evaluation results, and data type. 

 

 

  

Table 1: Summary of the selected articles from search results for applications of the new ML in medical domain. 

Ref. Task Disease Used Technique(s) Evaluation 

results 

Data Type 

[55] 
 

Detection  

  

Chest  

Lung cancer 

DL-CNN  

 

Acc.= 99% 

FAUC = 0.982 

x-ray radiographs  

[57] Classification 

  

Breast cancer DL-CNN Acc.=96.52% 

spec.=96.4% 

Sen.=96.5%  

AUC =0.98 

mammogram 

[59] Detecting 

  

Coronary artery 

disease 

DL-CNN Acc.=87.86, % 

Sen.=90.67% 

Spec.=82.38 % 

AUC = 94.70 

heart sound 

signals 

[60] Prediction 

  

COVID-19 DL-RNN 

LSTM 

Acc. = 93.45% 

Acc.= 98.58% 

Numerical 

[62] Segmentation 

diagnosis 

  

Diabetic 

retinopathy 

DL-CNN Acc.= 99.44%  fundus images 

[63] Classification   Skin cancer DL-CNN-RNN Acc.=94.48,  

Sen.= 94.38    

spec. = 93 

skin lesion 

images 

[64] Detection 

  

Breast cancer DL-TL-VGG16-

DenseNet121 

Acc.=98.92%, 

AUC =99.70%,  

F-score = 98.93% 

histopathologic 

image of lymph 

node 

[66] Classification 

  

Bone cancer TL     

CA-MobileNetV3 

Acc.=98.69 %  

f1-score= 94.11% 

microscopic 

images of bone 

cancer 

[68] Classification 

  

Alzheimer’s 

disease 

TL- ResNet-18- AE- 

DL 

Acc. = 98.54% 

recalls = 98.9% 

prec.=98.98%  

F1-score=98.82%  

MRI 

Neuroimaging 

dataset 

[70] Classification 

  

Brain tumor TL-Resnet152-CNN Acc. =99.57% MRI 

[71] Segmentation 

Detection 

  

Pneumonia U-Net 

TL- ResNet50 

Acc.=93.06% 

prec.=88.97% 

Rec.=96.78% 

F1score=92.7 

chest X-ray 

 

 

 

[72] Classification   Skin cancer TL-EfficientNetV2-

M 

Acc. = 99.23 dermoscopic 

images 

[78] 
 

Classification 

  

Alzheimer TL-VGG19 Acc.=98.73% MRI 

[79] Classification 

  

lung nodules DL-CNN-CL 

 

Acc. = 95.28% 

AUC = 98.05% 

Precision = 95.75 

Sen = 94.33  

 F1-Score = 95.04 

CT scans 

[82] Classification 

  

pulmonary 

abnormalities 

TL-ResNet-50 -CL Acc. =93.90, 

94.54, 95.39 

For 20%, 50%, 

100% of dataset 

CXR 

[83] Segmentation 

Classification 

  

brain tumor 

cardiac 

TL-M-Net 

DL-CNN-CL 

Acc.= 82% 

Acc.= 86% 

MR 
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[84] Segmentation 

Classification 

 

COVID-19 TL-U-Net  

DL-AL 

Acc=0.866 

ROC= 0.968 

CT scans 

 

 

[86] Classification 

 

gastrointestinal 

disease 

TL-ResNet18 AL Acc. =0.871 

Prec. =0.602 

Recall=0.587 

F1score=0.594 

Images 

[90] Classification 

 

Tumor 

Infiltrating 

Lymphocytes 

DL_CNN_AL AUC = 0.78 histology image 

 

[92] Segmentation 

 

Brain DL_CNN_AL Acc.= 90.7 MRI 

 

[95] Classification 

 

blood diseases 

(Leukemia) 

MaskedAutoencoder  

(MAE4AL) 

Acc.= 96.36% blood smear 

samples 

[97] Classification 

 

Breast 

Cancer 

FL-TL-DenseNet-

RNN 

Acc.=95%  

  

mammogram 

[53] Classification 

 

COVID-19  FL-TL-VGG16/ 

ResNet50  

Acc. = 97% X-ray images 

[99] Classification 

 

Brain disorders FL-CNN Acc. = 79% Autism Brain 

Imaging 

    [101] Classification 

 

respiratory 

diseases& heart 

failure 

FL-DL Acc. = 92% breathing sounds 

 

7    Conclusion and future work 
This research explored the emerging trends in machine 

learning techniques (MLTs) within the medical domain. 

Through a comprehensive literature review, we found that 

deep learning has become the dominant trend, holding 

significant promise for developing intelligent medical 

applications. A key advantage of deep learning is its 

ability to perform automatic feature engineering, 

simplifying the model-building process and reducing 

reliance on manual input. Current research predominantly 

addresses diagnostic tasks, with disease classification 

being the most common approach. Other tasks, such as 

segmentation, are also explored. Cancer, in its various 

forms, is the most frequently studied condition, while the 

COVID-19 pandemic has notably led to a surge in 

research on lung diseases.   

In the realm of medical imaging, traditional machine 

learning approaches require extensive pre-processing, 

including feature extraction and selection. Deep learning, 

particularly Convolutional Neural Networks (CNNs), has 

advanced the field by automating feature engineering, 

reducing the need for manual intervention. However, this 

comes with an increased demand for large datasets and 

significant computational resources. To address these 

challenges, recent trends like transfer learning, curriculum 

learning, active learning, and federated learning have been 

introduced to enhance model performance, expedite the 

training process, and improve data security. In summary, 

the overarching goal in this field is to automate processes, 

reduce human intervention, and maximize the value  

 

derived from limited labeled data, thereby enhancing 

medical decision-making and patient outcomes. 

Looking ahead, there are several key areas where 

further work is needed. While the number of publications 

on deep learning in the medical domain has steadily 

increased since its initial applications in 2016, and 

although these applications have yielded promising 

results, further research is essential to address several key 

challenges. Areas such as active learning, curriculum 

learning, and federated learning have shown promise but 

remain under-explored and require more attention in 

future research. A critical direction for future is to focus 

on reducing the time and computational costs associated 

with deep learning models and other trends. These 

processes often consume substantial energy, indirectly 

contributing to environmental and climate concerns. 

Therefore, developing more energy-efficient techniques 

will be crucial. Additionally, data augmentation, a 

significant pre-processing step in deep learning, could be 

integrated more effectively into the model-building 

process itself, thereby enhancing sample diversity and 

improving class representation with less manual effort. 

Another important aspect for future research is the 

development of standardized, public databases that 

include diverse patient data, such as DNA sequences. 

These databases would enable more comprehensive 

studies and improve the accuracy of predictive models by 

providing a richer set of input data. Additionally, 

integrating knowledge from multiple domains could 

further enhance the performance of deep learning models 

in different medical applications. Despite the progress 
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made, the real challenge lies in translating these 

advancements into practical, real-world applications that 

can be implemented in clinical settings. Bridging the gap 

between theoretical research and clinical deployment will 

be vital to realizing the full potential of deep learning in 

medicine. 
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